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a b s t r a c t 

The Fundamental Clustering Problems Suite (FCPS) offers a 

variety of clustering challenges that any algorithm should 

be able to handle given real-world data. The FCPS consists 

of datasets with known a priori classifications that are to 

be reproduced by the algorithm. The datasets are intention- 

ally created to be visualized in two or three dimensions un- 

der the hypothesis that objects can be grouped unambigu- 

ously by the human eye. Each dataset represents a certain 

problem that can be solved by known clustering algorithms 

with varying success. In the R package “Fundamental Clus- 

tering Problems Suite” on CRAN, user-defined sample sizes 

can be drawn for the FCPS. Additionally, the distances of two 

high-dimensional datasets called Leukemia and Tetragonula 

are provided here. This collection is useful for investigat- 

ing the shortcomings of clustering algorithms and the lim- 

itations of dimensionality reduction methods in the case of 

three-dimensional or higher datasets. This article is a si- 

multaneous co-submission with Swarm Intelligence for Self- 

Organized Clustering [1]. 
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Specifications table 

Subject Computer Science 

Specific subject area Unsupervised Machine Learning 

Type of data All files are ASCII text files. TAB separates columns. Headers 

are included. ∗ .lrn files contain the data, including a unique 

key for each case; ∗ .cls contain keys and class labels. A 

positive number indicates each class. For Tetragonula, the 

geographic coordinates are included as a separate ∗ .lrn. 

How data were acquired Artificially, except for the two high-dimensional datasets 

Leukemia and Tetragonula. In this case, the distance matrices 

and Databionic swarm clusterings are included. 

Data format FCPS: Raw; High-dimensional datasets: Preprocessed. 

Parameters for data collection For artificial datasets, none; for High-Dimensional datasets, 

please see below. 

Description of data collection For artificial datasets none; for Leukemia and Tetragonula, 

please see below. 

Data source location For artificial datasets none; for Leukemia and Tetragonula, 

please see below. 

Data accessibility FCPS In R: https://CRAN.R-project.org/package=FCPS 

Complete data attached to this article. 

Related research article Co-submission of the revision of M. C. Thrun, and A. Ultsch, 

“Swarm Intelligence for Self-Organized Clustering,” Journal of 

Artificial Intelligence, in press, DOI: 

10.1016/j.artint.2020.103237 , 8. Jan, 2020. 

alue of the data 

• FCPS is a collection of intentionally low-dimensional artificial datasets of user-defined sample

sizes and an unique class labeling generated under the hypothesis that humans are most

often able to group objects in two- or three-dimensional plots by eye. 

• FCPS offers a variety of real-world challenges, such as outliers or density vs. distance-defined

clusters, on which the performance of clustering algorithms can be tested. 

• Additionally, two high-dimensional real-world datasets with a clear cluster structure are pro-

vided: 

◦ Any clustering of the Tetragonula dataset should be coherent with the geographic loca-

tions not used in the clustering, and the dataset presents the challenges that density in-

formation cannot be used directly, and the existence of many clusters and several outliers.

◦ The Leukemia dataset possesses high-dimensional cluster structures that are consistent

with the unambiguously defined diagnosis of patients of unbalanced class sizes. 

. Data 

This work presents a specific collection of twelve datasets with easy access via the program-

ing language R or attached to this work. In [1] , these datasets were used to benchmark sev-

ral clustering methods. The collection consists of two real-world examples of high-dimensional

atasets and ten artificial datasets. Each dataset has a specific clustering challenge, which is

ummarized in Table 1 . Lsun3D and each of the nine artificial datasets of the formerly Funda-

ental Clustering Problems Suite (FCPS) were defined separately for a specific clustering prob-

em, as cited below, but nine of the artificial datasets presented here were named FCPS by Ultsch

n 2005 in [2] . The original sample sizes defined in the respective first publications mention-

ng the datasets were used in [1] , but the R function “ClusterChallenge” of the FCPS package

n CRAN ( https://CRAN.R-project.org/package=FCPS ) can be used to draw a sample of 300 or

ore for all artificial datasets. Additionally, the ability to preserve the cluster structures of two-

imensional projections after dimensionality reduction can be investigated in the case of eight

atasets that have a dimensionality of three or higher. 

https://CRAN.R-project.org/package=FCPS
https://doi.org/10.1016/j.artint.2020.103237
https://CRAN.R-project.org/package=FCPS
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Table 1 

Summary of the description and challenges of the 12 datasets for cluster analysis, and in case of not 2D datasets for 

projection methods. 

Name of Dataset Short Description of Shape or Content Challenge 

Atom Core enclosed by hull Completely overlapping convex hull 

Chainlink Two intertwined chains Linear nonseparable entanglements 

EngyTime Two Gaussian mixtures with different 

variance 

Overlapping clusters separable only by 

density 

GolfBall Empty sphere No distance-based cluster structures 

Hepta Six balls, each centered at each one of the 

six corners of a large octahedron with 

the 7th ball having a higher density at 

its center 

Nonoverlapping convex hulls with varying 

intracluster distances 

Lsun3D One full sphere, two bricks at a 

perpendicular angle to each other, and 

outliers 

Varying geometric shapes with noise 

defined by one group of outliers 

Target Circular disk enclosed by a circle with 

outliers in four corners 

Overlapping convex hulls combined with 

noise defined by four groups of outliers 

Tetra Four close full spheres at the four corners 

of a tetrahedron 

Narrow distances between the clusters 

TwoDiamonds Two rhombs with one touching corner Identification of the weak link in chain-like 

connected clusters 

WingNut Two rectangles, each having a density that 

increases towards one corner in the 

direction of the other rectangle 

Short intercluster distances combined with 

vast intracluster distances 

Tetragonula Distance matrix easy associable with 

geographic origins of cases 

Smooth transition between clusters and 

outliers, clusters have to be coherent 

with geographic origins 

Leukemia Distance matrix easy associable with 

patient diagnosis of cases 

Reproducing highly unbalanced class sizes 

Fig. 1. Visualization of the Atom dataset of a core enclosed by a hull. The predefined classification is indicated by color. 

 

 

 

 

 

1.1. Atom 

The Atom dataset, which was defined in [3] and is shown in Fig. 1 , consists of two clusters

in R 

3 with a completely overlapping convex hull. In Cartesian metric space, Atom is specifically

defined to be linearly nonseparable because the first cluster entirely encloses the second one.

The second cluster of the core, initially with 400 points, is located in the center and surrounded

by a well-separated cluster of the hull with 400 initial points [3] . Moreover, the density of the
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Fig. 2. Visualization of the Chainlink dataset of two intertwined chains. The predefined classification is indicated by 

color. 
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ore is larger than the density in the hull by several orders of magnitude [3] . “The inner cluster

ariance of the hull points is also larger than the distances between the clusters” [3] . 

.2. Chainlink 

The Chainlink dataset, which was defined in [ 4 , 5 ], consists of two clusters, as shown in Fig. 2 .

very cluster initially contains 500 points [ 4 , 5 ]. Together, the two clusters form intricate links of

 chain, presenting the problem of linear nonseparable entanglement. The rings are cohesive in

 

3 . This dataset serves as an excellent demonstration of several challenges. The data lie on two

ell-separated manifolds such that the global proximities contradict the local ones in the sense

hat the center of each ring is closer to some elements of the other cluster than to elements

f its own cluster [6] . The two rings are intertwined in R 

3 ; furthermore, they have the same

verage distances and densities. 

.3. EngyTime 

The EngyTime dataset, which was published in [7] and is shown in Fig. 3 , initially contains

096 points belonging to two clusters in R 

2 . The dataset serves as a simpliciation of a common

ensity problem as presented, for example, in unclassified high-dimensional flow cytometry data

8] . EngyTime is a two-dimensional mixture of Gaussian distributions, typical of sonar applica-

ions with the variables “Engy” and “Time”. The clusters overlap, and the cluster borders can

nly be defined using density information because there is no empty space between clusters. 

.4. GolfBall 

The GolfBall dataset is shown in Fig. 4 , consists of an artificial dataset with 4002 points in [2] ,

esembling a 3D view of a golf ball [9] in R 

3 . Originally, the points were located on the surface

f a sphere at equal distances from each of the six nearest neighbors [9] . Although the dataset

s based on the relative relationship between data points and the dataset can be partitioned by
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Fig. 3. Visualization of the EngyTime dataset of two Gaussian mixtures with different variance. The predefined classifi- 

cation is indicated by color. 

Fig. 4. Visualization of the GolfBall dataset of an empty sphere. The predefined classification is indicated by color. 

 

 

 

 

dividing the sphere into parts, no distance-based cluster structures exist because the range of

intracluster distances can never be smaller than the range of intercluster distances. 

1.5. Hepta 

The 3D Hepta dataset, which was defined in [10] , consists of seven clusters that are clearly

separated by distances. The seventh cluster in the center has a substantially higher density (de-

picted in magenta in Fig. 5 ). The challenge of Hepta is the nonoverlapping convex hulls with
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Fig. 5. Visualization of the Hepta dataset of six balls with their centers at the six corners of a large octahedron and a 

7th ball with a higher density at the center in magenta. The predefined classification is indicate by color. 
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arying intracluster distances. Originally, the dataset consisted of 212 points, comprising seven

lusters of thirty points each plus two additional points in the center cluster. The centroids of

he clusters span the coordinate axes of R 

3 . The density of the central cluster is almost twice as

igh as the density of the other six clusters. 

.6. Lsun3D 

The Lsun3D dataset shown in Fig. 6 consists of three well-separated clusters and four out-

iers in R 

3 and was originally published in [11] . Lsun3D is based on the two-dimensional Lsun

ataset of [1] . The challenge of Lsun3D is the nonoverlapping convex hulls with varying geo-

etric shapes with noise defined by one small group of outliers. Two of the clusters originally

ontained 100 points each, and the third contained 200 points. The intercluster minimum dis-

ances, however, are in the same range as or smaller than the intracluster mean distances [12] .

he dataset consists of 404 data points. 

.7. Target 

The Target dataset, which was defined in [13] , is shown in Fig. 7 and consists of two main

lusters and four groups of four outliers each in R 

2 . The first main cluster is a sphere of (for-

erly) 365 points, and the second cluster is a ring around the sphere consisting of 395 points.

he dataset as a whole consists of 770 points in R 

2 . The main challenge of this dataset is the

verlapping convex hulls combined with noise defined by the four small groups of outliers in

he four corners. 

.8. Tetra 

The Tetra dataset was defined in [ 14 , 15 ] and is shown in Fig. 8 . The dataset originally con-

isted of 400 data points in four spherical clusters in R 

3 that have large intracluster distances

13] . The clusters nearly touch each other, resulting in the challenge of low intercluster distances.
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Fig. 6. Visualization of the Lsun3D dataset of one full sphere, two bricks at perpendicular angle to each other, and 

outliers in red. The predefined classification is indicated by color. 

Fig. 7. Visualization of the Target dataset of a circular disk enclosed by a circle with outliers in four corners. The prede- 

fined classification is indicated by color. 

 

 

 

 

1.9. TwoDiamonds 

The TwoDiamonds dataset, which was defined in [ 16 , 17 ], is shown in Fig. 9 and consists of

two clusters of two-dimensional points. “Inside each ‘diamond’, the values for each data point

were drawn independently from uniform distributions” [16] . The clusters originally contained

300 points each. “[In] [e]ach cluster[, the] points are uniformly distributed within a square, and
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Fig. 8. Visualization of the Tetra dataset of four large full spheres close to each other centering at the four corners of a 

tetrahedron. The predefined classification is indicated by color. 

Fig. 9. Visualization of the TwoDiamonds dataset of two rhombs with one touching corner. The predefined classification 

is indicated by color. 

a  

r  

t

1

 

5  
t one point the two squares almost touch” [12] . This dataset is challenging for clustering algo-

ithms that use only distance because the clusters are connected like a chain, making it difficult

o identify the weak link. 

.10. WingNut 

The WingNut dataset shown in Fig. 10 consists of two symmetric data subsets originally of

00 points each [2] . “Each of these subsets is an overlay of equal[ly] spaced points with a lat-
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Fig. 10. Visualization of the WingNut dataset of two rectangles, each having a density that increases in direction of the 

other rectangle towards one corner. The predefined classification is indicated by color. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tice distance of 0.2 and random points with a growing density in one corner. The data sets are

mirrored and shifted such that the gap between the subsets is larger than 0.3. There is a bigger

distance between the subsets than within the data of a subset” [12] . This dataset is challeng-

ing for clustering algorithms that use only distance because of the small intercluster distance

relative to the large intracluster distance. 

1.11. Tetragonula 

The Tetragonula dataset was published in [18] . For this dataset, clustering must be based on

only a distance matrix, and any clustering must be coherent with an external validation of geo-

graphic origins. The clustering challenge is the smooth transition between clusters and outliers.

Clusters should have smaller intracluster than intercluster distances while remaining coherent

with the geographic origins. 

The raw data are available to the public in the R package prabclus on CRAN: “It contains

the genetic data of 236 Tetragonula (Apidae) bees from Australia and Southeast Asia. The data

give pairs of alleles (codominant markers) for 13 microsatellite loci. The 13 string variables con-

sist of six digits each” [19] . The format is derived from the data format used by the GENEPOP

4.0 software implemented by Rousset in 2010. “Alleles have a three digit code, so a value of

‘258,260’ on variable V10 means that on locus 10, the two alleles have codes 258 and 260. ‘0 0 0’

refers to missing values” [19] . The shared allele distance is described in [20] (p. 493) as follows:

“[The distance is] defined as one minus the proportion of alleles shared by 2 individuals aver-

aged over loci. Loci with missing values are not considered in the pairwise distance calculation.

In the presence of missing values, this distance measure is not necessarily a metric”. For the
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Fig. 11. Heatmap of the distances in the Tetragonula dataset. The distances are not sorted. A high-dimensional distance 

structure is visible. Any clustering should have smaller intracluster than intercluster distances while remaining coherent 

with the geographic origins. 
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istance calculation, the R package fpc of [20] was used, along with the distance introduced by

Bowcock et al., 1994]. The distances are visualized in Fig. 11 as a heatmap. 

The geographic origins of the bees saved in “TetragonulaDataSetCoordinates.lrn” are defined

s follows: “Longitude (x-axis) and latitude (y-axis) of locations of individuals in decimal format,

.e. one number is latitude (negative values are South), with minutes and seconds converted to

ractions. The other number is longitude (negative values are West)” (see [19] and the prabclus

ackage). 

.12. Leukemia 

The anonymized leukemia dataset consists of 12,692 gene expressions from 554 subjects and

s available from a previous publication [21] . The challenge is to find an appropriate clustering

.r.t. to the diagnosis of subjects in the high-dimensional data. Each gene expression is a log-

rithmic luminance intensity (presence call), which was measured using Affymetrix technology.

he presence calls are related to the number of specific RNAs in a cell, which signals how active

 specific gene is. Of the subjects, 109 were healthy , 15 were diagnosed with acute promyelo-

ytic leukemia ( APL ), 266 had chronic lymphocytic leukemia ( CLL ), and 164 had acute myeloid

eukemia ( AML ). “The study design adhered to the tenets of the Declaration of Helsinki and was

pproved by the ethics committees of the participating institutions before its initiation” [21] . 

The leukemia dataset was preprocessed, resulting in a high-dimensional dataset with 7747

ariables and 554 data points separated into natural clusters, as determined by the illness status

nd defined by the patterns of change in distance and density. The challenge is to reproduce the

ighly unbalanced class sizes without ignoring the small APL class by depicting it as noise. 
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Fig. 12. Heatmap of the distances in the Leukemia dataset with four highly unbalanced class sizes. The prior classifica- 

tion defines the order of the distances. The high-dimensional distance structure is defined by the classification and two 

outliers are visible. 

 

 

 

 

 

 

 

 

 

 

 

2. Experimental design, materials, and methods 

The visualizations provided here are generated by the R package ‘DataVisualizations’ available

on CRAN [15] . All clustering algorithms used in [1] and the datasets can be found in the R

package on CRAN ( https://CRAN.R-project.org/package=FCPS ). The sample size can be changed

for any FCPS dataset using the R function “ClusterChallenge” of the FCPS package. 

All datasets are also attached to this manuscript and used in [1] to benchmark the clustering

algorithms. The DatabionicSwarm clustering used in [11] is provided and visualized in Fig. 12

with the Euclidean distance. 
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