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Abstract

To achieve homeostasis, the human biological system relies on the interaction between

organs through the binding of ligands secreted from source organs to receptors located on

destination organs. Currently, the changing roles that receptors perform in tissues are only

partially understood. Recently, a methodology based on receptor co-expression patterns to

classify their tissue-specific metabolic functions was suggested. Here we present an

advanced framework to predict an additional class of inflammatory receptors that use a fea-

ture space of biological pathway enrichment analysis scores of co-expression networks and

their eigengene correlations. These are fed into three machine learning classifiers–eXtreme

Gradient Boosting (XGBoost), Support Vector Machines (SVM), and K-Nearest Neighbors

(k-NN). We applied our methodology to subcutaneous and visceral adipose gene expres-

sion datasets derived from the GTEx (Genotype-Tissue Expression) project and compared

the predictions. The XGBoost model demonstrated the best performance in predicting the

pre-labeled receptors, with an accuracy of 0.89/0.8 in subcutaneous/visceral adipose. We

analyzed ~700 receptors to predict eight new metabolic and 15 new inflammatory functions

of receptors and four new metabolic functions for known inflammatory receptors in both adi-

pose tissues. We cross-referenced multiple predictions using the published literature. Our

results establish a picture of the changing functions of receptors for two adipose tissues that

can be beneficial for drug development.

Introduction

As the human system instinctively and continuously aims to maintain a steady state, the bio-

logical system reacts to different conditions by activating feedback control loops between the

cells in tissues, which is manifested through the binding of chemical structures called receptors

to their ligands [1]. These receptors are proteins, usually cell surface receptors, which bind to

their ligands and cause a required response in the cell. When a ligand binds to its correspond-

ing receptor, it activates or inhibits the receptor’s associated biochemical pathway. Receptors
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can control membrane channels, induce cell growth, division, and death [1]. For example,

insulin is a metabolic hormone ligand that is secreted from pancreatic cells into the blood-

stream to bind distant insulin receptors located on various cell types [2]. Upon insulin binding,

the insulin receptors start a cascade of molecular events that result in, among other develop-

ments, glucose absorption by the cells [3]. Another example is cytokines, which are ligands

that serve as immunomodulating agents [4]. As such, they have immune-signaling and inflam-

matory receptors that respond to circulating levels of proinflammatory cytokines, adipokines

and other immune markers and trigger immune and inflammatory signaling pathways that

are found in various cell types, including immune cells and non-immune cells[5].

Since receptors play an important role in signal transduction within the cell, many drugs

are designed to target receptors [6,7] and understanding the functions these receptors fulfill in

different tissues is crucial in the development of these drugs. Despite years of biological experi-

mental research, the current knowledge and understanding of the functions in general and the

tissue-specific functions of many receptors specifically are lacking.

High-throughput sequencing technologies generate gene expression data that measure the

expression level of thousands of genes from a single experiment. Today, these technologies

and algorithmic advancements enable us to research simultaneously hundreds of genes coded

to receptors. A common task of gene expression analysis is the detection of gene–gene co-

expression networks. The most popular method for specifying co-expression networks is

Weighted Gene Co-Expression Network Analysis (WGCNA) [8]. The WGCNA algorithm

gathers together into gene modules (networks) related genes based on their co-expression pat-

terns and topological closeness to neighbor genes in the network. The main concept behind

WGCNA is that genes with similar functions might be co-expressed [9] and thus co-expression

networks are used to identify and categorize the functional roles of genes whose function is

unknown.

Supervised learning methods have been used to predict protein functions from gene expres-

sion data and gene co-expression [10–17]. For example, Support Vector Machines (SVMs)

have successfully classified functional modules and protein interaction networks from gene

expression data [18]. Brown et al. [10] proposed a method for functionally categorizing genes

based on gene expression data. The authors examined numerous SVM models as well as other

supervised learning approaches such as Parzen windows (a nonparametric method for estimat-

ing continuous density function), Fisher’s linear discriminant analysis (LDA), two decision

tree classifiers (C4.5 and MOC1), and SVMs with different kernels. They discovered that SVM

models with a radial kernel were the best at identifying groupings of genes with a common

function using expression data according to the cost function the authors defined, trying to

minimize the false-positive (FP) and false-negative (FN) errors (when giving double weight to

the FN mistakes). The authors used log-transformed gene expression levels, i.e., DNA microar-

ray hybridization experiments data, as the features’ space for the SVM models and measured

their performances compared to the null learning producer that classifies all test examples as

negative (a dummy classifier that always predicts “negative” for all examples). The results

showed that SVM can recognize some functional classes successfully and outperformed the

other examined models. Furthermore, based on their expression data, they employed SVMs to

infer new functional functions for unannotated yeast genes.

Kiliç et al. [11] tested the SVM model for semi-supervised positive unlabeled (PU) learning

(further discussed in the Methods section) as part of a survey of PU learning algorithms. The

authors used Escherichia coli gene expression data combined with known protein interactions

in such a way that if two proteins are known to be interacting, the example consisting of their

expression profiles is a positive example and all other protein pairs are treated as (unlabeled)

negative examples. SVM showed promising results for protein interaction predictions.
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Although clusters of gene expression profiles can be informative about function, they might

not always be coherent, as pointed out by Zhou et al [12]. The latter authors investigated a

graph-theoretic approach, in which genes are encoded as nodes, and edges connect genes with

correlated expression profiles—a co-expression network. They carry on conducting a simple

experiment in which the shortest path between genes with the same GO (gene ontology) term

is analyzed to determine whether genes in the path belong to the same GO term or GO terms

that are ancestors or descendants in the ontology. Wu et al. [13] showed that this method can

be used to predict the function of unknown genes from known genes that are part of the same

shortest path with good accuracy for several types of genes (mitochondrial and cytoplasmic)

but with medium accuracy for nuclear genes. Romero et al. [14] proposed a method that com-

bines cluster analysis with hierarchical multi-label classification (HMC) in which examples

may belong to more than one class at each hierarchical level at the same time. They employed

spectral clustering to extract novel features from the gene co-expression network (GCN) to

enhance the function prediction job. To generate consistent predictions, they emphasized the

need to develop new characteristics that indicate the GCN structural qualities and the hierar-

chical structure of biological processes. Obregón et al. [15] used the gene’s location in the

genomes to which they belong to predict their function. They executed machine learning mod-

els and trained them using attributes derived from the location of genes in the genomes to

which they belong to predict thousands of gene functions. The authors demonstrated that, in

some situations, gene location alone can be more valuable than sequencing in determining

gene function. Peng et al. [16] used network correlation to create a semi-supervised autoenco-

der approach for integrating various networks and generating a low-dimensional feature

representation. The authors used multi-network embedding using a semi-Auto Encoder to

map input networks into a non-linear and low-dimension space. A convolutional neural net-

work based on those integrated features’ embeddings was used to identify unlabeled gene func-

tions. Both yeast and human datasets were evaluated, and the approach outperformed three

other methods. Tahzeeb et al. [17] examined the ability of several neural networks to predict

protein function using Gene Ontology terms. Each protein instance was associated with sev-

eral Gene Ontology (GO) terms of molecular function, resulting in a multilabel classification

of protein functions using a dataset of reviewed protein entries from nine bacterial phyla. In

addition to the association of each protein to multiple terms of GO molecular function, the

dataset includes features such as the sequence of amino acids that make up the corresponding

protein, compositions of amino acids, dipeptides, and tripeptides; compositions of five groups

of amino acids, namely aliphatic, aromatic, positively charged, negatively charged, and

uncharged, and various structural and physiochemical properties derived from the amino acid

sequence. The researchers found that single-layer neural networks with a small number of

neurons outperformed multi-layer neural networks.

The GTEx project [19] includes a unique collection of more than 8000 samples of RNA-seq

gene expression data across multiple tissues collected from ~1000 donors. Using this data and

focusing on metabolic and inflammatory roles of receptors, we ask the following question:

How can we use gene expression data to predict the function of genes corresponding to pro-

teins that represent receptors? Specifically, we focus on predicting two receptor functions: (1)

metabolic functions that are related to the metabolic/endocytosis/growth regulation systems

[20–22] and trigger various metabolic signaling pathways within the cell and (2) inflammatory

functions that respond to circulating levels of proinflammatory cytokines, adipokines and

other inflammatory markers and trigger inflammatory signaling pathways within the cell.

Somekh [23] suggested an approach for predicting the tissue-specific metabolic functions

of receptor proteins based on gene expression data. The method was based on detecting recep-

tor expression coordination patterns for over 700 receptors and predicting the metabolic roles
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of receptors in subcutaneous adipose tissue. The enrichment analysis scores of the receptor’s co-

expression networks were fed as an input to SVM and k-NN classifiers. Using a semi-supervised

technique and literature survey, Somekh [23] compiled a list of known metabolic and non-meta-

bolic receptors. Pathway enrichment scores were found by the authors to be highly successful

indicators of correctly categorizing metabolic receptors in the subcutaneous adipose tissue.

Here we extend and refine this previous work [23] that predicted metabolic receptors in

adipose subcutaneous by offering (1) an additional class of inflammatory receptors to classify

three receptor classes–“metabolic”, “inflammatory”, and “other” class (neither metabolic nor

inflammation-related), (2) an additional visceral adipose tissue, (3) an additional machine

learning model–the XGBoost, and (4) a new feature for each tested receptor, based on the cor-

relations between the receptor’s composing co-expression module eigengene and the correla-

tions between this eigengene and the rest of the co-expression modules’ eigengenes. We add

this feature to account for the modules’ connectivity, e.g., to include data on “close” metabolic

modules that might be positively correlated and may add more knowledge on receptor roles

using its co-expression.

Results

Our methodology classifies three classes of receptors applying to two adipose tissues. We vali-

dated our approach on the known labeled tissue-specific functions of receptors and further

used our approach to predict new tissue-specific “metabolic”, “inflammatory”, and “other”

functions of receptors in subcutaneous and visceral adipose. Our methodology is detailed in

the following sections and a schematic view is presented in Fig 1.

Receptor labeled lists

To construct a machine learning model, a labeled list of known receptor classes in each tissue

is required. As mentioned above, we focused on three classes of receptors–“metabolic”,

Fig 1. Schematic workflow of data preprocessing and the proposed methodology.

https://doi.org/10.1371/journal.pone.0276699.g001
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“inflammatory” and “other”. By “metabolic” we refer to receptors related to the metabolic,

endocytosis, or growth regulation systems [20–22]. By “inflammatory” we refer to receptors

that are activated as a result of immune-related stimuli such as inflammation or chronic dis-

ease by known immune-related ligands such as cytokines and chemokines. By “other” we refer

to a group of receptors that are neither metabolic nor inflammatory.

Receptor labeling was challenging since tissue-specific labeling of receptors is not an estab-

lished knowledge and we had to generate it. For the classification of metabolic receptors, we

used the “metabolic” labeling created by Somekh et al. [23], which was based on a literature

review and semi-supervised learning. We generated the “inflammatory” labeling using the

known cytokine receptors derived from the KEGG (Kyoto Encyclopedia of Genes and

Genomes) [24] database, the “cytokine-cytokine receptor interaction” KEGG pathway. The

“other” class was inferred using semi-supervised learning (see details in the Methods section).

Examples of receptors that were labeled as "other" are—GFRA2, HTR1F, KCNA3, ADCY7 and

CATSPER1. GFRA2 gene encodes to a potent neurotropic factor and a receptor of Neurturin

(NRTN) which regulate the survival and function of neurons [“GFRA2 GDNF family receptor

alpha 2 [Homo sapiens (human)]”. NCBI. Retrieved 21 July 2022]. HTR1F gene encodes sero-

tonin 5-TH 1F receptor that bind to the endogenous neurotransmitter serotonin and mediate

inhibitory neurotransmission ["HTR2C 5-hydroxytryptamine receptor 2C [Homo sapiens

(human)]". NCBI. Retrieved 21 July 2022]. KCNA3 gene encodes the Potassium voltage-gated

channel, shaker-related subfamily, member 3 protein. Potassium channels represent the most

complex class of voltage-gated ion channels from both functional and structural standpoints.

Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion,

neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell vol-

ume [“KCNA3 potassium voltage-gated channel subfamily A member 3 [Homo sapiens

(human)]”, NCBI. Retrieved 21 July 2022]. Adenylate Cyclase 7 (ADCY7) encodes a mem-

brane-bound adenylate cyclase that catalyzes the formation of cyclic AMP from ATP and is

inhibitable by calcium [“ADCY7 adenylate cyclase 7 [ Homo sapiens (human)]”. NCBI.

Retrieved 21 July 2022]. The Cation Channel Sperm Associated 1 (CATSPER1) plays a central

role in calcium-dependent physiological responses essential for successful fertilization, such as

sperm hyperactivation, acrosome reaction and chemotaxis towards the oocyte [“CATSPER1

Cation Channel Sperm Associated 1 [Homo sapiens (human)]”. NCBI. Retrieved 21 July 2022].

This way we labeled three known receptor classes: “metabolic”, “inflammatory” and

“other”. After labelling and processing, we had 44 “metabolic” receptors, 40 “inflammatory”

receptors, and 50 “other” receptors for subcutaneous adipose and 45 “metabolic” receptors, 47

“inflammatory” receptors, and 48 “other” receptors for visceral adipose.

Data preparation

The GTEx subcutaneous and visceral adipose gene expression data were filtered, pre-pro-

cessed, and corrected for batch effects (see the Methods section). After filtering, we were left

with 656 samples and 16,058 genes for subcutaneous adipose and 486 samples, and 16,091

genes for visceral adipose.

Co-expression module construction and annotation

We utilized the WGCNA [8] algorithm to generate 61 subcutaneous adipose co-expression

networks and 38 visceral adipose co-expression networks (see Methods section). Module (clus-

ter) dendrograms for subcutaneous and visceral adipose can be found in S3 and S4 Figs in S1

File, respectively. Following the construction of the modules, we executed KEGG pathway

enrichment analysis for each module to generate their enrichment scores [25]. The
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annotations of modules that include multiple known labeled receptors are demonstrated in

Fig 2. The figure presents a heatmap of ten representative WGCNA co-expression modules

and their enrichment scores (-log(p-value) for p-values < 0.01) for KEGG’s biological path-

ways for both subcutaneous and visceral adipose. It can be seen that the modules that are

enriched with multiple known metabolic receptors (highlighted as “Metabolic” on the x-axis),

are enriched with metabolic biological pathways. For example, module #1 in subcutaneous adi-

pose, which includes 52% of our “metabolic” labeled receptors (see S4 Table in S1 File), is

highly enriched with metabolic KEGG pathways that are classified as a “Metabolism” class

according to the BRITE classification (shown in blue on the annotation column to the left).

The modules that include multiple inflammatory receptors (highlighted as “Immune” on the

x-axis) are significantly enriched with multiple pathways that are classified as “Human Dis-

eases” (highlighted in green on the annotation column to the left). Heatmaps that include the

full list of generated modules and their significantly enriched pathways are presented in S1 and

S2 Figs in S1 File for subcutaneous and visceral adipose, respectively. S4 and S5 Tables in S1

File show that many receptors with similar functions tend to be clustered together across sev-

eral main modules and present the percentages of labeled receptors from each class within the

WGCNA modules. The full distribution of labeled receptors into the different WCGNA-gen-

erated modules can be found in S7 Table in S1 File. Nevertheless, there are receptors, e.g., met-

abolic receptors, that are clustered in distinct modules and can be detected as metabolic only

by using the new feature of module correlations and enrichment scores that are fed into the

machine learning classifiers.

Machine learning model construction and validation

We employed the XGBoost, linear SVM, and k-NN models to tackle the problem of multiclass

classification of receptors in subcutaneous and visceral adipose tissues (see the Methods sec-

tion). All models utilized the following feature space per receptor: (1) the enrichment scores of

the KEGG pathways applied to each receptor’s module, and (2) the receptor’s module eigen-

gene correlations with other modules. To assess the performance of our classifiers, we utilized

tenfold cross-validation (see the Methods section).

Table 1 shows the performance of the classifiers for each adipose tissue in the three-class

experiment. It can be seen that the XGB classifier outperforms the SVM and k-NN classifiers

for both tissues, with accuracies of 0.89 and 0.8 for subcutaneous adipose and visceral adipose,

correspondingly.

We then investigated the receptors that were misclassified by our models, i.e., their known

functions and the predicted functions were not identical. Table 2 presents the FP and FN mis-

classified receptors and highlights in bold the common misclassified receptors in both tissues.

Interestingly, the EPOR, TNFRSF21, TNFRSF25, and IFNGR1 receptors that we labeled as

inflammatory (based on KEGG’s cytokine-cytokine receptor interaction pathway) are pre-

dicted to be “metabolic” for both adipose tissues. LDLR and TFRC that we labeled as metabolic

are both predicted to be “inflammatory” by the model for both adipose tissues. Some of the

predictions are consistent for both tissues. For example, the inflammatory labeled receptors

EPOR, TNFRSF21, IFNGR1, and TNFRSF25, as noted before, are predicted by the models to

be metabolic (and not “other”) in both tissues. Indeed, we found experimental validation sup-

porting our predictions (misclassifications) which we elaborate on in the discussion section.

Feature analysis for detecting significant biological pathways

We used feature analysis with the SHapley Additive exPlanations (SHAP) [26] to find the most

predictive features, i.e., KEGG pathways significantly enriched with genes that are included in

PLOS ONE A methodology for classifying tissue-specific receptor functions applied to subcutaneous and visceral adipose

PLOS ONE | https://doi.org/10.1371/journal.pone.0276699 October 25, 2022 6 / 24

https://doi.org/10.1371/journal.pone.0276699


Fig 2. Pathway enrichment analysis of ten representative WGCNA modules. The significantly enriched KEGG pathways (adjusted p-values< = 0.01) and

enrichment scores calculated for subcutaneous and visceral adipose are presented. The columns present the modules (that include many labeled receptors) in

each tissue and the rows represent the significantly enriched KEGG biological pathways. The matrix cells present the enrichment scores of the pathways for

each module. The pathways are classified into six classes according to the BRITE classification and highlighted in the annotation column to the left (see the y-

axis). For example, you can see that the modules that include many metabolic receptors (highlighted as “Metabolic” on the x-axis) are highly enriched with the

“Metabolism” classification (colored in blue on the y-axis).

https://doi.org/10.1371/journal.pone.0276699.g002
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the receptor’s module and that drive the prediction of receptors (see the full description in the

Experimental Design section). The SHAP values of each feature (KEGG pathway) represent

the feature’s impact on the model output/classification of receptors. Fig 3A and 3B show the

ten most important features for subcutaneous and visceral adipose tissues, respectively. It

shows the average SHAP influence on the magnitude of model output in absolute values for

the top ten features in our three-class model. It can be seen that the most important feature

affecting the “metabolic” classification of receptors (highlighted in pink in Fig 3A) is the “Dia-

betic cardiomyopathy” pathway. Diabetic cardiomyopathy is defined as left ventricular dys-

function that occurs among patients with diabetes mellitus independent of a recognized cause

such as coronary artery disease or hypertension [https://www.kegg.jp/entry/hsa05415] and is

characterized by insulin and metabolic resistance genes [27]. The enrichment score of the

“Necroptosis” pathway (third from the top in Fig 3A), which is related to cell apoptosis and

death, is most significant for classifying inflammatory receptors. We also highlighted KEGG’s

BRITE hierarchy for annotation of these top KEGG pathways. It can be seen that many of the

top pathways that drive the classification of metabolic/inflammatory/other receptors are anno-

tated as “Metabolism” (shown using green dots) and “Immune system/disease” (shown using

red dots). For example, see Fig 3A where the “Linoleic acid metabolism”, “Glycosaminoglycan

biosynthesis chondroitin sulfate”, “Phenylalanine” and “alpha-Linoleic acid metabolism” path-

ways are annotated as “Metabolism” (colored in green) for subcutaneous adipose and Fig 3B

where the top five “Immune system/disease” annotated pathways for adipose visceral are

shown in red. We note that the values are absolute and the interpretation is not always

straightforward, meaning that the combination of distinct features between the three classes

and the metabolically annotated pathways (highlighted in green) are presented by the model as

important features to distinguish the “other” type of receptors from the “metabolic” and

“inflammatory” classifications. To get a better understanding of what we were seeing, we used

a directional SHAP analysis that can only be generated for two types of classes (since it shows

direction). We analyzed the metabolic against the inflammatory classes and used the SHAP

method to investigate the direction of each feature’s contribution to the class classification in

subcutaneous adipose (see Fig 4).

Fig 4 shows the total magnitudes of the SHAP values over all samples as a plot of features

sorted in descending order by their relevance and uses the SHAP values to highlight the distri-

bution of their impact on the model output (metabolic) prediction. Here we analyze and show

how the value of the feature affects the “metabolic” class as opposed to the “inflammatory”

class. The horizontal position indicates the influence of each feature, i.e., whether that value’s

effect is related to a greater or lower prediction for the metabolic class. The coloring corre-

sponds to each feature’s original values across samples and indicates whether that feature value

(pathway enrichment score) is high (red) or low (blue) for that observation. The SHAP values

of each feature are represented on the x-axis and represent the feature’s impact on the model

output; the features (e.g., KEGG pathways) are on the y-axis. For example, a high value (red

Table 1. Performance evaluation for predicting “inflammatory”, “metabolic” and “other” receptor types in subcutaneous and visceral adipose.

Method Adipose tissue Accuracy Precision Recall F1

1 XGB Subcutaneous 0.89 0.91 0.88 0.87

2 SVM Subcutaneous 0.85 0.85 0.84 0.82

3 k-NN Subcutaneous 0.87 0.89 0.87 0.86

1 XGB Visceral 0.8 0.83 0.8 0.79

2 SVM Visceral 0.69 0.74 0.69 0.66

3 k-NN Visceral 0.79 0.81 0.79 0.78

https://doi.org/10.1371/journal.pone.0276699.t001
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colored dots) of the enrichment score for “Diabetic cardiomyopathy” (the third from the bot-

tom) has a negative impact (a negative SHAP value on the x-axis) on the “metabolic” type

receptor prediction. In other words, a higher enrichment score for this pathway drives a

Table 2. Misclassified receptors in subcutaneous and visceral adipose with their true/predicted labels and probabilities.

Gene Symbol Tissue True Label Predicted Label inflammatory probability Metabolic probability Other probability

1 LTBR SA inflammatory Metabolic 0.027 0.953 0.019

2 EPOR SA/VA Inflammatory Metabolic 0.014/0.013 0.982/0.982 0.004/0.005

3 TNFRSF25 SA/VA Inflammatory Metabolic 0.140/0.124 0.843/0.867 0.017/0.009

4 TNFRSF21 SA/VA Inflammatory Metabolic 0.004/0.008 0.992/0.989 0.004/0.004

5 IL17RA SA Inflammatory Metabolic 0.026 0.968 0.006

6 IFNAR1 SA Inflammatory Metabolic 0.039 0.947 0.014

7 IFNGR1 SA/VA Inflammatory Metabolic 0.022/0.030 0.973/0.968 0.005/0.001

8 CCR2 SA/VA Inflammatory Other 0.010/0.014 0.003/0.002 0.987/0.984

9 XCR1 SA Inflammatory Other 0.157 0.012 0.831

10 IL10RA SA/VA Inflammatory Other 0.032/0.003 0.010/0.001 0.958/0.996

11 IL12RB1 SA/VA Inflammatory Other 0.005/0.005 0.007/0.001 0.987/0.995

12 IL2RG SA/VA Inflammatory Other 0.004/0.014 0.004/0.001 0.993/0.986

13 F3 SA Metabolic Inflammatory 0.919 0.076 0.004

14 TFRC SA/VA Metabolic Inflammatory 0.603/0.776 0.340/0.215 0.057/0.009

15 LDLR SA/VA Metabolic Inflammatory 0.877/0.986 0.071/0.008 0.052/0.007

16 LEPR SA Metabolic Inflammatory 0.897 0.097 0.005

17 DRD4 SA Metabolic Inflammatory 0.962 0.027 0.010

18 ADRA2B SA Metabolic Other 0.061 0.129 0.810

19 TFR2 SA Metabolic Other 0.011 0.002 0.987

20 CD28 SA Other Inflammatory 0.704 0.014 0.282

21 MPL VA Inflammatory Metabolic 0.019 0.979 0.002

22 TNFRSF10D VA Inflammatory Metabolic 0.133 0.856 0.012

23 FAS VA Inflammatory Metabolic 0.061 0.934 0.005

24 IL22RA1 VA Inflammatory Metabolic 0.435 0.559 0.006

25 IL3RA VA Inflammatory Metabolic 0.028 0.970 0.003

26 CD27 VA Inflammatory Other 0.115 0.001 0.884

27 CSF2RB VA Inflammatory Other 0.035 0.002 0.963

28 CCR6 VA Inflammatory Other 0.211 0.008 0.781

28 IL2RB VA Inflammatory Other 0.110 0.007 0.883

30 IL10RB VA Inflammatory Other 0.004 0.001 0.995

31 EDNRB VA Metabolic Inflammatory 0.970 0.025 0.005

32 NOTCH4 VA Metabolic Inflammatory 0.732 0.263 0.005

33 ADRB2 VA Metabolic Inflammatory 0.815 0.177 0.008

34 FGFR2 VA Metabolic Inflammatory 0.865 0.132 0.003

35 S1PR4 VA Metabolic Inflammatory 0.988 0.007 0.005

36 CATSPER1 VA Other Inflammatory 0.573 0.006 0.421

37 KCNN4 VA Other Inflammatory 0.660 0.004 0.336

38 CD5 VA Other Inflammatory 0.664 0.004 0.332

39 NCR3 VA Other Inflammatory 0.804 0.014 0.182

40 CD48 VA Other Inflammatory 0.503 0.013 0.484

41 ITGAL VA Other Inflammatory 0.900 0.008 0.092

Receptors predicted as FN/FP in both adipose tissues are shown in bold. “SA” represents subcutaneous adipose and “VA” visceral adipose.

https://doi.org/10.1371/journal.pone.0276699.t002
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metabolic prediction in most cases, increasing the probability of the receptor being categorized

as belonging to the metabolic receptor group. An additional analysis of the effect (direction) of

each feature’s contribution to the metabolic, inflammatory or other class classification is pre-

sented in S5 and S6 Figs in S1 File.

Prediction

Finally, we chose the XGB model, which outperformed the other models, to use for predicting

the unlabeled receptors. Out of the 692 known receptors list derived from Ramilowski et al.

[28] we retained the receptors that were included in the GTEx dataset, 594 and 600 for subcu-

taneous and visceral adipose respectively. From these, we retained the receptors that were

included in the co-expression modules, 446 and 485 for subcutaneous and visceral adipose,

respectively. We used 134 and 140 labeled receptors, for subcutaneous and visceral adipose

respectively, for the training and testing phases (see methods). Finally, we executed the model

to predict the function of the remaining 312 and 345 unlabeled receptors for subcutaneous

and visceral adipose respectively. The XGB model predicted 96 and 46 new unknown inflam-

matory receptors and 24 and 22 new unknown metabolic receptors (with probability > 0.85)

for subcutaneous and visceral adipose, respectively. These full lists of newly predicted receptors

for subcutaneous and visceral adipose can be found in S1 and S2 Tables in S1 File, respectively.

The receptors that were classified in the same way in both adipose tissues (classification

probability > 0.85) are presented in Table 3. We surveyed the literature for relevant wet lab

Fig 3. Top 10 features (pathways) and their average SHAP influence (absolute values) on the magnitude of the

model prediction. A. Calculated for subcutaneous adipose. B. Calculated for visceral adipose. The SHAP method

illustrates the magnitude of the effect of each feature (KEGG pathway) on each classification. The colored dots to the

left highlight KEGG’s BRITE annotations of the pathways.

https://doi.org/10.1371/journal.pone.0276699.g003
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experiments in support of our predictions. Column 5 in Table 3 include the literature verifica-

tion of the predictions, describing the experimental summary and the manuscript reference.

We note that several inflammatory receptors (e.g., TNFRSF1B in row 9, Table 3) which were

included in the KEGG “Cytokine-cytokine signaling” pathway, were previously filtered out by

us (see Methods) since they are related to metabolic functions by GO. Nevertheless, these

receptors are predicted by our classifiers to trigger inflammatory functions in adipose tissues.

In addition, receptors that are strongly predicted to change functions (the predictions’ proba-

bility absolute difference is> 0.85) between the two tissues (e.g., predicted to be “metabolic”

in one tissue and “inflammatory” in the other) are presented in S6 Table in S1 File.

Discussion

Our approach predicts new metabolic and inflammatory functions of receptors in subcutane-

ous and visceral adipose tissues using a feature space of pathway enrichment analysis scores

and co-expression modules’ eigengene correlations. For the analysis, we employed the

XGBoost, linear SVM, and k-NN classifiers. We tested our technique on subcutaneous and vis-

ceral adipose RNA-seq data derived from the GTEx project [19]. Our approach detected meta-

bolic and inflammatory receptors successfully in both tissues with an accuracy of 0.89 and 0.8

for adipose subcutaneous and visceral, respectively. The XGBoost model outperformed the lin-

ear SVM and k-NN approaches and was further used for feature analysis and predicting new

functions of unlabeled receptors.

Interestingly, several receptors were misclassified by the classifiers, i.e., classified by the clas-

sification model differently than the original known label, in both tested adipose tissues. One

misclassified gene is the EPOR gene, which was initially labeled by us as “inflammatory” since

it is a member of the KEGG “cytokine-cytokine receptor interaction” pathway. The EPOR

gene was misclassified by the XGB model as a “metabolic” receptor for both subcutaneous and

visceral adipose, as noted in Table 3.

Fig 4. SHAP subcutaneous adipose “metabolic” class variable significance plot. The values show the impact of the feature on model output (prediction). The

plot is composed of all receptors in the training data. SHAP values indicate how much the feature contributes to the classification.

https://doi.org/10.1371/journal.pone.0276699.g004
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We found experimental support for model’s prediction that the cytokine receptor EPOR

has a metabolic role in adipose and was shown to affect metabolic and glucose homeostasis in

white adipose tissue [47–50]. Another example is the TNFRSF21 cytokine receptor derived

from KEGG “cytokine-cytokine receptor interaction” pathway and which was misclassified as

a “metabolic” receptor in both adipose tissues and is found to be related to the “regulation of

lipid metabolic process” in GO. An additional example is the TNFRSF25 receptor, a member

of the tumor necrosis factor receptor superfamily 25, which mediates apoptotic signaling and

differentiation [51]. Its only known ligand is the TNF-like protein 1A (TL1A) [52], which is a

pro-inflammatory cytokine. Interestingly and supporting our predictions, the TL1A ligand

Table 3. Receptors with unknown metabolic and inflammatory functions, which we predicted to have similar functions in both subcutaneous and visceral adipose

tissues, and references supporting our predictions. Eight first receptors predicted to be “metabolic” are highlighted in light green and 15 “inflammatory” receptors are

highlighted in red.

Receptor Class prob.

SA

Class prob.

VA

Summary of the experiment/s supporting our prediction and its literature reference

1 ABCA1 0.875 0.909 ABCA1 in adipocytes regulates adipose tissue lipid content, glucose tolerance, and insulin sensitivity, de Haan et al.[29]

2 CD151 0.856 0.864 Laminin was shown to regulate energy expenditure and insulin sensitivity [30]

3 GUCY2C 0.876 0.946 Silencing of the GUCY2C gene in mice disrupts satiation, resulting in hyperphagia and subsequent obesity and

metabolic syndrome, Valentino et al. [31]

4 HCRTR2 0.85 0.851 Effects of orexins on energy metabolism and adipose tissue development [32]

5 ITGA7 0.872 0.940 ITGA7 is suggested to be responsible for laminin-dependent signaling in differentiating preadipocytes. Adipose tissue

laminins regulate energy expenditure and insulin sensitivity (Morandi et al. [33] and Goddi et al. [30])

6 MCAM 0.860 0.879 MCAM is the laminin alpha 4 receptor that is related to obesity [34], adipose tissue expansion, and weight gain [35,36]

7 PDE1B 0.879 0.905

8 PTPRS 0.852 0.860 The study identified several CpG methylation sites and specifically CpG sites located in PTPRS and PER3 genes

differentially methylated between obese and non-obese children, suggesting that the epigenetic regulation of these CpGs

might be involved in the development of childhood obesity (Samblas et al. [37])

9 TNFRSF1B 0.906 0.939 The M196R (676 T3G) variant in exon 6 of TNFRSF1B is associated with hyperandrogenism and PCOS, further

suggesting a role for inflammatory cytokines in the pathogenesis of these disorders (Peral et al. [38])

GeneCards [39] Summary for the TNFRSF1B gene: this gene participates in “Cytokine Signaling in Immune System

KEGG pathways”

10 ITGB3 0.924 0.932

11 BDKRB2 0.933 0.931

12 F2RL3 0.913 0.930

13 OSMR 0.926 0.927 Suggest that adipocyte OSMR signaling is involved in the regulation of adipose tissue homeostasis and that in obesity,

OSMR ablation may exacerbate insulin resistance by promoting adipose tissue inflammation (Carrie et al. [40])

14 F11R 0.923 0.925

15 JMJD6 0.933 0.913 Demethylase JMJD6 as a new regulator of interferon signaling: Effects of HCV and Ethanol Metabolism (Murali et al.

[41])

16 TACR1 0.875 0.912

17 CD93 0.917 0.907 GeneCards [39] related pathway: “Immune response Lectin induced complement pathway” and Lee et al. [42]

18 IL18RAP 0.932 0.891 Genecards [39] related pathway: “Cytokine Signaling in Immune System” and Aqrawi et al. [43]

19 SELL 0.932 0.883 GeneCards [39]: “The gene product is required for binding and subsequent rolling of leucocytes on endothelial cells,

facilitating their migration into secondary lymphoid organs and inflammation sites”

20 CSF3R 0.934 0.882 Showed increased expression of the CSF3R gene, which plays an essential role in the host immune response or the host

defense against several pathogens or oxidative stress.

GeneCards [39] related pathway: “Cytokine Signaling in Immune System” and Naruse et al. [44]

21 CD79A 0.940 0.878 CD79A is a lymphocyte receptor that is exclusively regulated in CD-MAT, exhibiting a different pattern of immune cell

activation compared to the ileal mucosa in CD patients (Da Silva et al. [45])

22 FLT1 0.924 0.873

23 FPR2 0.918 0.870 The endogenous anti-inflammatory role of murine Fpr2 was recently demonstrated in Fpr2–/–mice (Hellmann et al.

[46])

https://doi.org/10.1371/journal.pone.0276699.t003
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was shown to play an important role in regulating adipose tissue mass [53]. This evidence that

supports our predictions for metabolic functions in both adipose tissues of known inflamma-

tory receptors demonstrates the necessity of understanding the tissue-specific function of each

receptor and the ability of inflammatory receptors to change their functions and effects within

or across tissues [54–56]. Chen et al. [54] reviewed the roles of different pro-inflammatory

cytokines in lipid metabolism of metabolic diseases including cancer and presented a list of

these metabolic cytokines. Shi et al.[55] investigated the potential of receptors to modify their

activity across tissues and discovered clear evidence that different types of cytokines contribute

significantly to the development of abnormal glucose and lipid metabolism. Tumor necrosis

factor (TNF) is one example of a pro-inflammatory cytokine and the first ’adipokine’ reported

to be created by adipose tissue, regulated in obesity and related to obesity-related metabolic

disease. TNF became characterized as an adipokine following the accidental discovery of its

enhanced synthesis in adipose tissue in obesity, which led to an understanding of the inflam-

matory nature of obesity and accompanying metabolic disorders [56]. Here, we focused on the

changing roles of receptors across tissues and used the model’s prediction probabilities (using

classification probability cutoff > 0.85) to predict the main role of each receptor within a

tissue.

We predicted eight new unlabeled receptors to be “metabolic” in both adipose tissues, as

listed in Table 3 above. We found literature-based experimental support that many of them or

their ligands exhibit metabolic functions (see Table 3 column 5). For example, the ABCA1

receptor was verified as regulating adipose tissue lipid content, glucose tolerance, and insulin

sensitivity by de Hann et al. [29]. Another example is the GUCY2C receptor that was shown to

disrupt satiation, resulting in hyperphagia and subsequent obesity and metabolic syndrome

when silenced in mice by Valentino et al.[31]. MCAM is the laminin alpha 4 receptor that was

related to obesity [34], adipose tissue expansion, and weight gain [35,36]. CD151 is a laminin

receptor. Laminin was shown to regulate energy expenditure and insulin sensitivity [30].

HCRCR2, the hypocretin receptor type 2, is a receptor of the hypocretin (Orexin) ligand.

Orexins/Hypocretins were shown to affect energy metabolism and adipose tissue development

[32]. We predicted that 15 unlabeled receptors were “inflammatory” in both tissues, as listed in

Table 3. We found experimental support that eight exhibit inflammatory-related roles. For

example, the OSMR receptor in adipocytes was suggested to be involved in adipose tissue

inflammation (Carrie et al. [40]). Demethylase JMJD6 is suggested to be a new regulator of

interferon signaling [41]. These new predictions can now be further tested experimentally.

The feature analysis that we conducted verified that the biological pathways mostly discrim-

inating scores used for the predictions were relevant to the predicted receptor types within

each examined tissue. For example, the XGBoost model detected that 4 out of the 7 most pre-

dictive pathways of metabolic receptors in adipose subcutaneous were metabolic pathways,

classified as “Metabolism”. Inflammatory-related pathways, classified as “Immune systems/

Disease”, were highly significant for classifying the inflammatory receptors (see Fig 3). Fur-

thermore, we demonstrated (see Figs 3 and 4 and S5 and S6 Figs in S1 File) how the most sig-

nificant pathways affect the classification.

We note the limitation in that the GTEx data include bulk gene expression data comprising

the gene expression of the cell types included in each tissue. Thus, the co-expression networks

we detected here represent a combination of the expression of genes derived from the cellular

composition of each tissue type. For example, part of the inflammatory receptor classification

may be related to a signal that stems from inflammatory receptors located on immune cells in

the adipose tissues. Another limitation is that the known labeled receptors list is relatively

small (~50 receptors per class) which may result in a model trained on a subset of all possible

features (biological pathways). Our models were trained with the biological pathways related
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to the labeled receptors. Thus, the model can infer the roles of unlabeled receptors that are

enriched with biological pathways that participated in the training process. Finally, as noted

before, receptors may exhibit multiple roles across tissues [55]. In this work we aimed to define

the main changing roles across tissues. We used high cutoffs for predictors’ probabilities to

infer these main roles.

In future work, we plan to extend this work with additional classes of receptors and addi-

tional tissues. We note that the extension of the proposed methodology to other tissues is chal-

lenging and may require the usage of more general features and the creation and validation of

new tissue-specific labeled lists of “metabolic”, “inflammatory”, and “other” classes of recep-

tors, which is poorly known for most of these other tissues.

In summary, our approach is successful in predicting the tissue-specific metabolic and

inflammatory roles of receptors for adipose tissues. Our approach can save time by pinpoint-

ing the biological scientist and drug developer on disease-related potential receptors that

should be further investigated and experimentally validated. In addition, our approach enabled

us to draw a comprehensive and simultaneous view of the changing functions of receptors

across tissues and throughout the body.

Methods

Ethics statement

The GTEx [19] v8 data was downloaded from https://gtexportal.org/home/datasets. The GTEx

project follows all ethical, legal and social issues as detailed in the GTEx original publication

[19]. For deceased donors to participate in GTEx, next of kin permission was obtained in writ-

ing or verbally, typically as part of an amendment to an existing authorization form for a dona-

tion of tissue or organ. It included statements common to consent forms, such as the intention

to perform genetic analyses, establish cell lines, and share data with the scientific community.

Surgical living donors are only allowed to participate after obtaining written informed

consent.

Data preprocessing

The GTEx database [19] (v8) was used to download RNA-seq data from 54 human tissues and

17,382 RNA-seq samples from 948 donors. The transcripts per million (TPM) values were

then log2-transformed. We used the data of visceral adipose and subcutaneous adipose. To

include reasonably healthy donors, samples with death circumstance #4 (slow death after a

long illness) were removed. All genes within each tissue were quantile normalized, and outlier

samples were filtered (to remove background and sample effects). Genes with zero variance or

missing samples were omitted from the analysis. Genes that had at least 0.1 TPM in at least

80% of the samples were kept. Outliers were removed using the isolation forest model [57,58].

Outlier removal

For outlier removal, we used an isolation forest-based approach [57] that uses an ensemble of

machine learning trees to isolate anomalous points in the dataset (see the explanation in S7 Fig

in S1 File).

Confounding factors adjustments

Somekh et al. [59] showed that correcting for known confounding factors, e.g., by using linear

regression based-adjustment of the heterogenous GTEx data, outperform other methods in

preserving the biological signal–which is relevant here. Thus, we used linear regression models
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to adjust for the known confounding factors: experimental batch, ischemic time (elapsed time

between actual death and sample extraction), gender, age, and death circumstances.

The age factor covered ages 20–80 and is partitioned into 10-year intervals (embedded in

the GTEx dataset). The samples’ circumstances of death type classification (DTHHRDY) is

based on a four-point Hardy Scale: 0 = cases on mechanical ventilator prior death, 1 = non-

ventilation fast deaths due to accident, blunt force, trauma, or suicide of healthy individuals,

2 = non-ventilation fast deaths of natural causes of healthy individuals, 3 = intermediate death

after a terminal phase of 1 to 24 hours, and 4 = slow death after a long illness. As the focus of

our research was on relatively healthy individuals at the time of death, we excluded samples

with a DTHHRDY value of 4, non-healthy individuals with a long-term illness that also

includes a small number of samples.

We performed linear regression to correct for the known confounding factors (age, sex,

batch, ischemic time, and death circumstances) as follows:

Residualji ¼ Expi
j �
XN

n¼1
Coefi;n � Confoundern

j ð1Þ

Expji is the expression level of gene i in sample j, Coefi,n is the confounding coefficients of

the nth confounder in the regression model of gene i, and Confoundernj is the value of con-

founder n in sample j. The residuals were used as the input data for the co-expression module

detection.

Co-expression module detection

The most common algorithm for co-expression network analysis is WGCNA implemented in

the WGCNA R package [8]. Using correlation coefficient cor(i,j), the method created a similar-

ity co-expression matrix for all genes (we used the biweight midcorrelation measure that

accounts for outliers, by assigning larger weights to values closer to medians). The soft thresh-

olding power β is used to mimic a scale-free network and to increase the co-expression similar-

ity. The resulting co-expression network is presented by an adjacency matrix.

aij ¼ ð0:5 � ð1þ corð1; jÞÞÞb ð2Þ

where aij is the resulting adjacency that measures the strength of the connections. We deter-

mined the soft-thresholding power β for network construction parameter as 14, by using the

criterion of approximating the network’s scale-free topology as suggested in the algorithm [8]

(it can be seen in S8A Fig in S1 File that an “elbow” form corresponds to a β = 14). The dissim-

ilarity TOM is then computed from a topological overlap matrix (TOM) [8]. The TOM calcu-

lated the topological similarity between each pair of neighbors in the network, i.e., it compared

the neighbors of each pair of nodes. Finally, the dissimilarity TOM was utilized to create a tree

(dendrogram) using hierarchical clustering. Clusters (modules) are obtained from the tree

using dynamic tree cutting. The resulting modules featured tightly coupled genes, allowing co-

expression networks, also known as modules, to be constructed for each tissue. The “signed”

parameter was employed to characterize the positively/negatively correlated genes in distinct

modules, meaning that the co-expressed modules include only positively correlated genes.

Eigengenes are the weighted average of each module’s expression profile and are defined as the

first principal component of the expression matrix of the genes in each module. The module

membership (kME) measures can be defined (also known as eigengene-based connectivity) by

calculating the correlation between each gene in the module and the module’s eigengene. The

eigengenes can be further utilized to merge clusters and screen for prospective gene targets

using the dendrogram cut height as a module merging parameter. We set the module merging

PLOS ONE A methodology for classifying tissue-specific receptor functions applied to subcutaneous and visceral adipose

PLOS ONE | https://doi.org/10.1371/journal.pone.0276699 October 25, 2022 15 / 24

https://doi.org/10.1371/journal.pone.0276699


parameter to 0.25, corresponding to a correlation of 0.75 between the module’s eigengenes.

We tested several values for this parameter to find the best one for merging vis-à-vis the mod-

el’s performances. Using this method, the essential driver genes, the kMEs, in each module

were identified.

KEGG enrichment analysis of modules

KEGG is a database resource comprising cellular biological pathways. We used the R tool ‘clus-

terProfiler’ [60] on all 548 KEGG pathways to generate pathway enrichment analysis of the

modules based on the hypergeometric test. The significance of the pathways in each co-expres-

sion module was represented by the log-transformed adjusted p-values (adjusted for multiple

corrections using the BH (Benjamini and Hochberg) method [61]) and were used as the fea-

tures for the machine learning classification models.

Machine learning models

The machine learning methods that we used in this work are:

K-Nearest Neighbors (k-NN). The k-NN algorithm is a distance-based learning algo-

rithm used for classification [62,63]. The algorithm takes, as input, the k closest labeled exam-

ples in the feature space. The most common distance measure is the Euclidean distance. A

data point is classified by a plurality vote of its neighbors, with the data point being assigned to

the most common class among its k nearest neighbors (k is a positive integer, typically small).

The k-NN’s performance is very sensitive to the choice of k and an optimal k can be selected

by various heuristic techniques [64]. A common way of choosing the empirically optimal k is

by testing the error rate under a set of possible k values.

Support Vector Machine (SVM). SVM is a classification method that has been proved to

work in a range of situations [18]. Based on their properties of belonging to a class, a linear

SVM generates a hyperplane that separates positive and negative samples. SVM can be used

with different kernels such as linear and Gaussian kernels. The linear kernel will create a

straight line as the decision boundary, making the data linearly separable, while the Gaussian

(RBF) kernel will project the data into a Gaussian distribution. The SVM linear kernel is best

used to avoid overfitting when dealing with small sample sizes. For the SVM computations, we

used the Python scikit-learn SVM package.

XGBoost. The XGBoost approach [65] is a boosted decision tree approach that is based

on Friedman’s gradient boosting [66,67] and incorporates extra enhancements that improve

the results’ performance and accuracy. While the trees in the original gradient boosting model

are produced in sequence, XGBoost builds them in parallel, similar to the random forest

approach, where each tree attempts to compensate for the areas where the preceding tree was

less accurate. Regularization terms are also used in this method for managing the variance of

the fit and the flexibility of the learning task, resulting in models that generalize better to

unknown data as opposed to other machine learning models. The XGBoost [65] technique

works well on small samples and a large number of features. Additionally, tree boosting

machines have explainability capabilities, which can aid in evaluating the model’s correctness

by examining the relevance of the most important features to the phenotype. In addition, the

XGBoost model enables handling missing values uniquely. For example, during splitting,

XGBoost will allocate all missing data to the node which will mostly improve the model’s pre-

diction performance. In our scenario this ability is very useful since there are features with

missing values, i.e., not every receptor (module) has an enrichment score for each biological

pathway.
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We used the XGBoost python library [68] on our case of a small sample with a large number

of features. In addition to employing XGBoost to predict the class of each receptor, we used

the predict_proba() function to get the probability of each receptor to belong to each class.

These probabilities are calculated based on the number of votes for each class divided by the

number of trees, e.g., the number of votes each receptor received for each class by each tree

divided by the n_estimators (number of trees in the model).

Positive unlabeled (PU) SVM bagging

Supervised learning necessitates the definition (labeling) of positive and negative training

instances. Obtaining negative examples is more expensive than obtaining positive examples in

most fields, and it is occasionally impossible. Unlabeled examples are those in which we do not

know whether they are positive or negative. For example, if a receptor has been proven to be met-

abolic in an experiment, we label/annotate it as a positive metabolic; however, we are unsure and

lack the expertise to annotate the non-metabolic receptors, which are the unlabeled receptors.

PU learning algorithms [11] comprise a group of algorithms meant to learn from a small

number of positive instances and a large number of unlabeled examples, in the absence of neg-

ative examples. The majority of these algorithms rely on traditional supervised classification

methods such the SVM classifier. Kiliç and Tan [11], for example, examined eight PU learning

techniques for detecting protein–protein interaction (PPI) networks from gene expression

data using just positive prior knowledge of known protein–protein interactions. The PU bag-

ging SVM algorithm [69] is an effective algorithm for this goal. In each iteration of the algo-

rithm, a random subset of the unlabeled set is specified as containing the negative examples

(under the assumption that most of the unlabeled examples are negative), and a classifier is

trained using this negative subset and the known positive examples. Finally, by executing mul-

tiple iterations, the negative and positive rates for each example are calculated using the com-

bined results of these numerous classifiers. The method, in other words, (1) builds a training

set by mixing all positive data points with a random sample from the unlabeled points, by

replacement; (2) it creates an SVM classifier from this “bootstrap” sample, treating positive

and unlabeled data points as positives and negatives, respectively; (3) it then applies the gener-

ated SVM classifier to the rest of the unlabeled data points not included in the trained random

sample–hereafter referred to as OOB (“out of the bag”) points–for prediction and records their

scores; (4) the three steps above are repeated multiple times, and finally, the average of the

OOB scores each point has received are assigned to it, e.g., the rate at which all receptor predic-

tions are classified as non-metabolic or metabolic. After more than 100 iterations of the PU

bagging algorithm, there was little improvement in simulated and real data [11,69]. Even when

the number of known positives is low, the bagging SVM approach beats state-of-the-art meth-

ods for PU learning [11,69] and successfully discriminates between unlabeled positive and

negative samples.

We utilized the PU SVM bagging method, dedicated for binary classification, to define the

third (“other”) class representing the non-metabolic and non-inflammatory receptors. To gen-

erate a list of negative receptors that are non-metabolic and non-inflammatory, we used the

“metabolic” labeled receptors as the positive labeled group against all other receptors desig-

nated as the unlabeled group. The known inflammatory receptors (derived from the KEGG

cytokine–cytokine receptor interaction list) were excluded from the unlabeled group. Using

the PU SVM algorithm, we retained the top 50 “negative” receptors, i.e., the non-metabolic

and non-inflammatory receptors, from this analysis to represent the “other” group. We

retained 50 top "negative" receptors to maintain a balanced training set of ~50 labeled meta-

bolic and inflammatory receptors.
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Cross-validation

Cross-validation [70] is a technique used when the annotated data is limited. This method

splits the annotated dataset into a training set and a test set and evaluates the performance of a

prediction model on data points that are not used to train the model. A popular method of

cross-validation is sub-sampling (k-fold cross-validation). In k-fold cross-validation, as the

name suggests, the dataset is randomly divided into k number of non-overlapping sets. During

each iteration, one set is used as a test dataset and the rest are used for training the model. The

test dataset is predicted by the trained model. This iteration is repeated k times, each time with

different training and test groups, and generates k different classification models. The perfor-

mance statistics are calculated by summing in each distinct test group the true positives, true

negatives, false positives, and false negatives.

Evaluation matrices

The performance of the classifiers was measured by examining how well the classifier identi-

fied the positive and negative or the multiclass examples in the test sets. For binary classifica-

tion, each sample in the test set can be categorized as true positive (TP), true negative (TN),

false positive (FP), or false negative (FN). We used accuracy, recall, precision, and F1 to evalu-

ate the performance of the cross-validation analysis. The mathematical equations to calculate

these parameters are as follows:

Accuracy ¼
TP þ TN

TP þ FP þ TN þ FN

Recall ¼
TP

TPþ FN

Precision ¼
TP

TP þ FP

F1 ¼
TP

TPþ 1

2
FPþ FNð Þ

The overall correctly predicted examples were calculated by using accuracy. We calculated

the average accuracy, precision, recall, and F1 per class. For example, overall accuracy for the

three-class classifier was calculated as follows:

Average Accuracy ¼

Pk¼3

i¼1

TPiþTNi
TPiþFPiþTNiþFNi

k

Feature analysis

SHAP–SHapley Additive exPlanations [26], Lundberg’s approach for explaining boosted trees,

was used for features analysis. SHAP is a fast, accurate technique that can explain the results of

any machine learning model, including tree ensemble methods. SHAP generates values for

each feature, which are the average marginal contribution of the feature across all permuta-

tions, indicating how much each feature contributes to pushing the model output from the

base value (the average model output across the training dataset we provided) to the model

output. In the model’s trees, features enter the machine learning model sequentially and

repeatedly. The algorithm assesses each feature equally at each level of tree growth to deter-

mine which feature contributes the most. Hundreds of thousands of trees are planted.
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Different combinations of features may be offered. As a result, each feature’s marginal contri-

bution may be computed.

Methodology and experimental design

We preprocessed the data and accounted for batch effects as described in the Methods section.

Receptor labeling

We retained a list of ~700 known receptors from Ramilowski et al [28]. We labeled the genes

that correspond to known receptors into “metabolic”, “inflammatory”, or “other” receptors. A

list of 52 positive labeled metabolic receptors for both tissues was taken from Somekh et al

[23]. Somekh et al. [23] labeled metabolic receptors in subcutaneous adipose based on a semi-

supervised approach, using the SVM PU bagging algorithm, and a literature verification using

published experiments. Inflammatory receptors were derived from the KEGG cytokine–cyto-

kine receptor interaction list downloaded from the KEGG database. We retained only genes

that were included in our known receptor list and only receptors that were not labeled as “met-

abolic” by Somekh et al [23]. Additionally, we filtered out inflammatory receptors that are

related to metabolic/growth regulation processes according to the GO database. For filtering

the KEGG’s cytokine receptors, we used all the GO molecular functions and processes that

were marked by Somekh et al. [23] (the full list of processes is available in S3 Table in S1 File).

The “other” group receptors were labeled using semi-supervised learning by running the SVM

PU bgagging algorithm where the top 50 “negative” (non-metabolic and non- inflammatory)

receptors were used.

Co-expression and enrichment analysis

We generated co-expression networks for both tissues (subcutaneous adipose and visceral adi-

pose) and annotated the modules using KEGG pathway enrichment analysis. Pathway enrich-

ment analysis was done for each modules separately. Those pathways that did not contain any

genes from the module had null values as their enrichment score. This way the number of

non-null features (pathways) varied between the modules. All KEGG enrichment scores were

log2 transformed to normalize the skewness of the scores. These scores were used as the

machine learning models’ features. We learned about the function of the receptor from the

known functions of the genes included in its composing co-expression network. For each

tested receptor, the enrichment scores of its composing co-expression network were used.

Classifier construction and validation

We employed SVM, k-NN, and XGBoost models to solve a three-class receptor classification

problem for the “metabolic”, “inflammatory” and “other” receptor lists. We set up the models

for each of the two adipose tissues to use the tissues’ module enrichment scores and the corre-

lation between the modules’ eigengenes as features, together with the correlation of each recep-

tor to each module. For cross-validation, we utilized a non-shuffled scikit-learn

implementation of Stratified K-Fold Cross-Validation [71]. This cross-validation is a K-Fold

variant that yields stratified folds. The folds are created by keeping track of the percentage of

samples in each class. We picked a 10:90 split, which means that 90% of the data is used for

training and 10% for validation each time.

We fine-tuned each model’s hyperparameters to find the best estimator according to the

cross-validation. We tested the following parameters for the XGBoost model: number of esti-

mators (trees) 100 or 300, max depth (how deeply each tree is allowed to grow during any

PLOS ONE A methodology for classifying tissue-specific receptor functions applied to subcutaneous and visceral adipose

PLOS ONE | https://doi.org/10.1371/journal.pone.0276699 October 25, 2022 19 / 24

https://doi.org/10.1371/journal.pone.0276699


boosting round) of 3 or 5, learning rates (step size shrinkage used to prevent overfitting) of

0.01, 0.03, or 0.09, a subsample (percentage of samples used per tree) of 0.9 or 1.0, colsample_-

bytree (percentage of features used per tree) of 0.3, 0.5 or 0.9, and gamma (regularization

parameter that controls whether a given node will split) of 0, 1 or 5. The best estimator model

was then used for generating the predictions.

The experiment contained a 10-fold cross-validation prediction, with the results of the ten

executions being saved. The results of the ten executions, as well as the features’ importance,

were averaged. We tracked the average and standard deviation of each experiment’s accuracy,

precision, recall, and F1 score for each prediction.

Predictions and feature analysis

We executed feature analysis using the SHAP [26] for explaining boosted trees to find the

most predictive features (KEGG biological pathways and WGCNA module correlations). For

prediction purposes, we employed our best cross-validated model to categorize the unlabeled

receptors. The study comprised 323 unlabeled receptors that we classified. These were not part

of the training–test process and were included in modules in subcutaneous or visceral adipose.
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35. Vaicik MK, Kortesmaa JT, Movérare-Skrtic S, Kortesmaa J, Soininen R, Bergström G, et al. Laminin α4

Deficient Mice Exhibit Decreased Capacity for Adipose Tissue Expansion and Weight Gain. PLoS

ONE. 2014; 9. https://doi.org/10.1371/journal.pone.0109854 PMID: 25310607

36. Vaicik MK, Blagajcevic A, Ye H, Morse MC, Yang F, Goddi A, et al. The Absence of Laminin α4 in Male

Mice Results in Enhanced Energy Expenditure and Increased Beige Subcutaneous Adipose Tissue.

Endocrinology. 2018; 159: 356–367. https://doi.org/10.1210/en.2017-00186 PMID: 28973559

37. Samblas M, Milagro FI, Mansego ML, Marti A, Martinez JA. PTPRS and PER3 methylation levels are

associated with childhood obesity: results from a genome-wide methylation analysis. Pediatric Obesity.

2018; 13: 149–158. https://doi.org/10.1111/ijpo.12224 PMID: 28614626

38. Peral B, San Millán JL, Castello R, Moghetti P, Escobar-Morreale HF. The methionine 196 arginine

polymorphism in exon 6 of the TNF receptor 2 gene (TNFRSF1B) is associated with the polycystic

ovary syndrome and hyperandrogenism. Journal of Clinical Endocrinology and Metabolism. Oxford

Academic; 2002. pp. 3977–3983. https://doi.org/10.1210/jcem.87.8.8715 PMID: 12161545

39. Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D. GeneCards: A novel functional genomics compen-

dium with automated data mining and query reformulation support. Bioinformatics. 1998; 14: 656–664.

https://doi.org/10.1093/bioinformatics/14.8.656 PMID: 9789091

40. Elks CM, Zha P, Grant RW, Hang H, Bailey JL, Burk DH, et al. Loss of Oncostatin M Signaling in Adipo-

cytes Induces Insulin Resistance and Adipose Tissue Inflammation in Vivo*. Journal of Biological

Chemistry. 2016; 291: 17066–17076. https://doi.org/10.1074/jbc.M116.739110 PMID: 27325693

41. Ganesan M, Tikhanovich I, Vangimalla SS, Dagur RS, Wang W, Poluektova LI, et al. Demethylase

JMJD6 as a New Regulator of Interferon Signaling: Effects of HCV and Ethanol Metabolism. Cellular

and Molecular Gastroenterology and Hepatology. 2018; 5: 101–112. https://doi.org/10.1016/j.jcmgh.

2017.10.004 PMID: 29693039

42. Lee YH, Tharp WG, Maple RL, Nair S, Permana PA, Pratley RE. Amyloid Precursor Protein Expression

Is Upregulated in Adipocytes in Obesity. Obesity. 2008; 16: 1493–1500. https://doi.org/10.1038/oby.

2008.267 PMID: 18483477

43. Aqrawi LA, Jensen JL,Øijordsbakken G, Ruus AK, Nygård S, Holden M, et al. Signalling pathways iden-
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