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Abstract: The effect of the size of nickel nanoparticles on the fabrication of a Ni–graphene composite
by hydrostatic pressure at 0 K followed by annealing at 1000 and 2000 K is studied by molecular
dynamics simulation. Crumpled graphene, consisting of crumpled graphene flakes interconnected
by van der Waals forces is chosen as the matrix for the composite and filled with nickel nanoparticles
composed of 21 and 47 atoms. It is found that the main factors that affect composite fabrication are
nanoparticle size, the orientation of the structural units, and temperature of the fabrication process.
The best stress–strain behavior is achieved for the Ni/graphene composite with Ni47 nanoparticle
after annealing at 2000 K. However, all of the composites obtained had strength property anisotropy
due to the inhomogeneous distribution of pores in the material volume.

Keywords: crumpled graphene; Ni–graphene composite; molecular dynamics; mechanical properties

1. Introduction

Graphene is a new two-dimensional (2D) structure [1] that is already well-known
by its unique physical and mechanical properties, such as its Young’s modulus at about
1 TPa [2], high strength at ∼130 GPa [2,3], high thermal conductivity at ∼5000 W m−1 K−1,
and high mobility of electron carriers at ∼15,000 cm2 V−1 s−1 at room temperature [4,5],
to name a few. Due to its unique properties, the idea of obtaining composite materials
consisting of a metal matrix and graphene has been developed for the past decades. It
was found that the introduction of graphene into a metal matrix results in an increase its
mechanical resistance and strength [6–10]. Graphite inclusions improve the impact strength
of layered carbon/Ni and carbon/Cu composites [11]. Even a small addition of graphene
to a nickel matrix can increase its tensile strength and plastic elongation to 25% and 36%,
respectively, compared to pure nickel [12].

The review by [13] contains a large number of experimental works on the fabrication
and study of the metal matrix (including nickel matrix) graphene-reinforced composites.
These composite properties are presented, and the factors influencing these properties
are explained. For example, the graphene agglomerate formation negatively affects the
composites’ mechanical properties, and the coherent graphene–matrix interface formation
leads to an increase in the mechanical properties. It was also shown that the production
method of a composite has a strong influence on its properties. Table 1 presents a summary
of the commonly used methods for obtaining Ni/graphene composites, with an indication
of the final mechanical properties. It can be seen that the microhardness (HV), ultimate
tensile strength (σUTS), and yield stress (σ0.2) differ significantly depending on the method
used to obtain this composite based on a nickel matrix.
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Table 1. Production methods and varying mechanical properties of Ni/graphene composites: HV—microhardness, σ0.2—
yield stress, σUTS—ultimate tensile strength, and E—Young’s modulus.

Ref. Materials Production Method Mechanical Properties

[10]
Graphene-enabled Compressed and sintered σ0.2 = 780 MPa
Ni/Ni3C composite at 1723 K σUTS = 1095 MPa

E = 222 GPa

[14]

(1) Graphene thickness Electrochemical deposition HV = 4.6 GPa
3–5 nm E = 240 GPa
(2) Graphene thickness Casting and fraction stirring HV = 66 kg mm−2

10–20 nm (1.2 vol.%)
(3) Graphene thickness Semi-powder metallurgy σUTS = 197 MPa
5–15 nm (0.3 wt.%)
(4) Graphene thickness Hot extrusion σUTS = 238 MPa
5–15 nm (0.3 wt.%)

[15] Graphene/Ni composite Pulse-reverse electrodeposition HV = 1036.9 MPa
1.2 nm thick E = 185 GPa

[16] Graphene/Ni powders

(1) Cold pressing and HV = 1.56 GPa
annealing at 1523 K
(2) Cold pressing, annealing and σ0.2 = 1048 MPa
high pressure torsion at 296 K σUTS = 1201 MPa
(3) Cold pressing, annealing and σ0.2 = 923 MPa
high pressure torsion at 473 K σUTS = 992 MPa

[17]
Graphene nanoplatelets/Ni Powder metallurgy route HV = 1.65 GPa
nanocomposite powders followed by the spark plasma σ0.2 = 370 MPa

sintering process at 1073 K

Layered metal/carbon composites were also widely studied. In [18], it was shown
that a decrease in metal layer thickness in layered graphene/FCC metal composites results
in strengthening of the material. The presence of graphene layers also determines the
deformation mechanisms of the composite. In [19], it was shown that the Ni/graphene
composite coating has excellent tribological properties due to the added graphene, which
forms a lubricating film, which effectively reduces the friction coefficient and increases wear
resistance. Excellent lubricating properties are demonstrated by a Cu-based nanocomposite
containing graphene nanoflakes [20]. In addition, the electro-co-deposition of Ni/graphene
oxide composite coating on low carbon steel was an effective anti-corrosion coating [21].
The Ni/graphene composite synthesized by electrodeposition on the nickel matrix surface
showed a significant increase in mechanical properties [22].

The mechanical properties of layered graphene metal composites are strongly influ-
enced by the graphene/metal interface. On the one hand, it can prevent the dislocations
gliding, which reduces the strength properties of the composite. On the other hand, such
interfaces can be a dislocation source in the metal matrix, leading to a degradation in
mechanical properties or even failure [23–29]. However, there are composites based on a
graphene matrix filled with metal nanoparticles, in which the metal/graphene interfaces
are blurred. Metal nanoparticles especially are of great interest nowadays [30–32]. The basis
for such structures can be crumpled graphene (CG), which consists of graphene nanoflakes
connected by van der Waals forces [33,34]. Crumpled graphene is a new and promising
structure with a high specific surface area of about 3523 m2/g. Such a three-dimensional
(3D) architecture exhibits advantages from its particular structure: pores and cavities
for serving metal nanoparticles, rigid bones for better strength, good interconnection be-
tween metal particles and graphene nanoflakes. Crumpled graphene shows considerable
non-linearity in strain hardening under applied strain [34–38]. The difference between
loading and unloading stress–strain curves reveals that this is completely non-elastic media.
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The important advantage that such a morphology of the crumpled graphene structure
capable of absorbing large amounts of other atoms in its cavities, which was shown in our
previous works [39,40].

Experimental production of carbon metal/graphene composites is a rather expensive
and energy-consuming process. Since the structure peculiarities considerably depend on
the experimental technique applied to obtain metal/graphene composite [41–43], different
simulation methods can be very helpful for a basic understanding of physical and mechani-
cal properties. Therefore, theoretical scientific research based on molecular dynamics (MD)
simulation is widely used. The simulation allows us to analyze at the atomic level the
dislocations evolution at the Cu/graphene interface [24,44], to estimate the tensile capacity
of carbon nanotube/Al composites [45], to study the effect of aluminum orientation on the
strengthening mechanisms of graphene/Al composites [46], and to predict the existence of
metal/graphene composites based on crumpled graphene [39,47] and much more. Using
MD simulation, it was also found that the addition of carbon materials (such as graphene
or carbon nanotubes) to a metal matrix leads to its strengthening [26,48–51].

In most theoretical [24,26,41–46,48–51] and experimental works [6–9,11,12,23,25,27–29],
metal–matrix composites with a small addition of carbon structures of different morphologies
are considered while carbon–matrix composites with metal nanoparticles are poorly studied.
Therefore, it is urgent to develop a technology for obtaining a similar type of composites, to
study their mechanical properties, and to determine the mechanisms of deformation. In this
regard, in the present work, a composite material consisting of crumpled graphene flakes filled
with metallic nickel nanoparticles of two sizes is investigated. One of the promising methods
for the fabrication of metal/graphene composites is proposed: hydrostatic compression at 0 K
followed by annealing at two temperatures (1000 K and 2000 K).

2. Materials and Methods

In Figure 1, the initial structure of crumpled graphene with Ni nanoparticles of dif-
ferent diameters, dNi21 = 5.5 Å (a) and dNi47 = 7.2 Å (b), is shown. The size of nickel
nanoparticles was chosen because a rigid graphene flake interacting with given size nan-
oclusters destroys their crystal structure, which does not happen with larger nanoparticles.
The dynamics of the interaction of a graphene flake with nickel nanoclusters of different
sizes was described in detail in our early work [52]. Taking into account the peculiarity of
the interaction of crumpled graphene with nickel nanoparticles, it is possible to achieve a
denser structure of the metal/graphene composite with a smaller pore volume fraction.

The graphene flakes (GFs) initially were armchair carbon nanotubes (11,11), cut along
the z-axis to obtain a small flake. Graphene flakes filled with Ni nanoparticle were randomly
rotated and translated 4× 4× 4 times along the x-, y-, and z-axes correspondingly to obtain
3D initial structure shown in Figure 1c,d. For simplicity, crumpled graphene was filled with
Ni21 labeled as CG21 and with Ni47 labeled as CG47. The total number of atoms for CG21
was 17,472, where NC = 16 128 and NNi = 1344, and for CG47 was 19,136, where NC = 16,128
and NNi = 3008. To avoid overlap, the graphene flakes were placed far from each other in
the initial structure. However, these pores quickly disappeared during compression. It
should be mentioned that an increase in the size of the computation cell by two times did
not lead to significant changes in the results [39,40].

Periodic boundary conditions were applied in all directions. All of the simulations
were conducted using the LAMMPS package with the AIREBO [53] interatomic potential
for the description of the interaction between carbon atoms, which included both covalent
bonds in the basal plane of graphene flake and van der Waals interactions between GFs.
For Ni–Ni and Ni–C interactions, simple pair Morse interatomic potential was used with
the parameters for Ni–Ni [54] and for Ni–C [55,56]. The simulation configurations were
visualized by Visual Molecular Dynamics (VMD) Software [57].

Equations of motion for the atoms were integrated numerically using the fourth-order
Verlet method with the time step of 0.1 fs. A Nose-Hoover thermostat was used to control
the system temperature under the NVT and NPT canonical ensembles (the substance
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amount (N), volume (V) or pressure (P) and temperature (T) are constant) when simulating
the compression/tension of the structure and the annealing process, respectively.

It was shown earlier by the authors of [39,40] that it is impossible to obtain a composite
material by hydrostatic compression at 0 K. Additionally, to obtain Ni/graphene compos-
ites, it was proposed to use high-temperature annealing after hydrostatic compression.
The proposed technology for obtaining metal/graphene composites is one of the promising
and simple methods for processing materials, which can be easily realized experimentally.
In the experiment [10], a technology was proposed for the formation of a composite from
Ni/graphene powder using compression followed by sintering at 1723 K. Thus, in the
present work, the structures are sintered at high temperatures for 20 ps after hydrostatic
compression. The temperature range from 1000 K to 2000 K was chosen so that the tempera-
ture would activate the formation of new chemical bonds between adjacent graphene flakes
but would not allow for melting of the components. Note that the melting temperature of
graphene is about 5000 K [58–60] and the melting point of the Ni nanocluster is 1728 K [10].

CG21 CG47
Figure 1. Initial structural unit—graphene flake filled with Ni nanoparticle Ni21 (a) and Ni47 (b) as the projection on xy and
zx. (c,d) Structure of crumpled graphene filled with Ni21—CG21 (c) and Ni47—CG47 (d). Ni atoms are shown by red and C
atoms—by grey color.

Before annealing, the structure was subjected to strain-controlled hydrostatic com-
pression (εxx = εyy = εzz = ε) at the temperature close to 0 K with the strain rate ε̇ =
0.01 ps−1. This is necessary to create a compact initial structure with a lower pore volume
fraction. To study the mechanical properties of the obtained Ni/graphene composite, a
tensile strain at 0 K was applied: hydrostatic tension and uniaxial tension along the x-,
y-, and z-axes. The tension strain rate for each loading type was ε̇ = 0.005 ps−1. The ulti-
mate tensile strength (σUTS), which is the maximum that the material can achieve before
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breaking is considered one of the important characteristics for the composites under con-
sideration. For hydrostatic tension, the value of hydrostatic pressure was calculated as
p=(σxx + σyy + σzz)/3.

3. Results

Figure 2a,c shows the structure of CG21 and CG47 after hydrostatic compression.
It can be seen that, after deformation, a sufficient number of pores remain in the structure
of crumpled graphene and that they periodically are distributed over the structure. This
means that the formation of strong chemical bonds between GFs as a result of deformation
did not occur. Moreover, the bigger the nanoparticle, the larger the pore size (see Figure 2c).
The existence of pores in the Ni/graphene composite can have a negative effect on its
strength properties, which is discussed below.

To reduce the pore size and to achieve the formation of new covalent bonds between
graphene flakes, high-temperature annealing at 1000 K and 2000 K was used. After anneal-
ing at 1000 K, the number and size of pores in the compressed structure decreased (see
Figure 2b,d). In the annealed CG21 structure (see Figure 2b), pores are almost not observed,
and in the CG47 structure (see Figure 2d), after annealing at 1000 K, pores can be seen,
although their size and volume fraction are small. An increase in the annealing temperature
to 2000 K leads to a decrease in the volume fraction of pores in the CG47 structure.

Analysis of the composite structure before deformation showed that, during the
initial stages of compression, structural elements (GFs with nanoparticle inside) rotated so
that the zigzag edges of the graphene flake extends along the x-axis while the armchair
edge extends along the y-axis, which can affect the deformation behavior. Therefore,
to understand the effect of the initial orientation of the structural units on deformation
behavior and mechanical properties, three directions of uniaxial tension are considered:
along the x-, y-, and z-axes. Additionally, the hydrostatic tension of the obtained composites
is estimated at which the effect of the initial orientation of GFs is negligible.

Figure 2. Snapshots of CG21 (a,b) and CG47 (c,d) before (a,c) and after (b,d) annealing at 1000 K. Colors as in Figure 1.

3.1. Hydrostatic Tension

In Figure 3a, the pressure–strain curves during hydrostatics tension for Ni/graphene
composites obtained by hydrostatic compression at 0 K followed by annealing at 1000 K
(solid line) and 2000 K (dashed line) are presented. It can be seen that the increase in
the annealing temperature leads to an increase in the ultimate tensile strength (σUTS).
After annealing at 2000 K, the σUTS of CG21 (CG47) is 1.6 (1.5) times higher than at 1000 K.
This can be explained by the fact that the annealing temperature 1000 K is not enough to
melt a Ni particle [61] and not enough to mix carbon atoms and to form chemical bonds
between carbon atoms. At the same time, such a temperature is sufficient to allow the
spreading of Ni atoms inside the CG21 structure (see Figure 3b I).
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Figure 3b shows that, after ultimate tensile strain is achieved (I, II, III, and IV points
in Figure 3a), pores have appeared between GFs of crumpled graphene, which results in
a stress decrease and rapture of the composite. At an annealing temperature of 1000 K,
the σUTS of the CG47 structure is 5.5% larger than that of the CG21, but the pores in the
structure with Ni47 (CG47) appeared faster than for CG21. This can be explained by the
fact that Ni47 nanoparticles almost completely fill the graphene nanoflake, thus limiting the
ability of a graphene flake to form bonds between closely spaced carbon flakes, and those
bonds that nevertheless formed between the flakes during annealing break quite easily in
the process of hydrostatic tension.

Annealing at 2000 K does not lead to a significant difference in the stress–strain state
of the CG21 and CG47 composites: σUTS of CG21 and CG47 are very close (48.2 GPa and
47.6 GPa, respectively).

.
..

.hydrostatic tension

Figure 3. (a) Stress-strain curves during hydrostatics tension for Ni/graphene composite CG21 (black curves) and CG47
(red curves) after annealing at 1000 K (solid lines) and 2000 K (dashed lines). (b) Snapshots of CG21 (I—after annealing at
1000 K, II—after annealing at 2000 K) and CG47 (III—after annealing at 1000 K, IV—after annealing at 2000 K). Colors as
in Figure 1.

The process of fracturing the Ni/graphene composite after the ultimate tensile strength
is achieved is shown on the example of GF filled with Ni21 and located in the center of
the CG21 composite during hydrostatic tension after annealing at 2000 K (Figure 4a–d).
Carbon atoms on the sides of the bonds broken during deformation are shown in blue.
At the first stage (until the ultimate tensile strength is achieved), deformation occurs due to
the unfolding of GFs, flattening of folds, and the formation of a more equilibrium structure.
When the critical stress σUTS is reached at ε = 0.23, the irreversible fracture of CG begins:
pores and voids appear between graphene nanoflakes. However, from Figure 4c, it can be
seen that, at ε = 0.24, the C–C interatomic bond (between blue atoms) is destroyed, which
leads to the appearance of defect followed by pore formation. Therefore, failure of the
composite occurs not only due to the formation of pores between neighboring GFs but also
due to the rupture of interatomic covalent bonds in the structure of the nanoflakes. Since
the breaking of these covalent bonds occurs gradually, the rapture of crumpled graphene
does not proceed fast.
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Figure 4. Snapshots of one GF (projection on the xy) during hydrostatic tension after annealing at 2000 K for CG21 (a–d) at
ε = {0.0; 0.23; 0.24; 0.3} and CG47 (e–g) at ε = {0.0; 0.24; 0.3}. Colors as in Figure 1, but two carbon atoms are shown in blue to
illustrate the breaking of bonds during deformation.

From Figure 4b–d, it can be seen that, for CG21 in the course of tension, Ni nanoparti-
cles are divided into individual atoms. They settle on the inner surface of the graphene
nanoflake and, as far as possible, occupy an equilibrium position above the center of the
hexagons. Upon hydrostatic tension of the CG47 (see Figure 4e–g), the Ni47 nanoparticle
maintains its spherical shape, although it becomes soft and amorphous after annealing.
Note that a graphene nanoflake in CG47 fully covers the Ni47 nanoparticle, forming a
strong unitary structural element, which slightly deforms during hydrostatic tension. Thus,
the failure of such a composite under hydrostatic tension occurs only due to the forma-
tion of pores and voids graphene flakes, and the bonds inside the graphene flake are
not damaged.

Below, the uniaxial tension of Ni/graphene composites obtained by hydrostatic com-
pression with subsequent high-temperature annealing is considered. In Figures 5, 7 and 9,
the stress–strain curves of the Ni/graphene composites under uniaxial tension along the x-,
y- and z-axes correspondingly after annealing at 1000 K (solid lines) and 2000 K (dashed
lines) are presented together with the characteristic snapshots of the structure under tension.
Only the main stress component (labelled as σ) is presented for each loading direction: σxx
for tension along the x-axis, σyy for tension along the y-axis, and σzz for tension along z-axis.
For detailed analysis of the structural transformations, tension of the single graphene flake
filled with Ni47 nanoparticle along the x-, y-, and z-axes is presented in Figures 6, 8 and 10,
respectively.

3.2. Uniaxial Tension along the x-Axis

Figure 5 shows the stress–strain curves of Ni/graphene composites CG21 and CG47
during uniaxial tension along the x-axis and the corresponding snapshots at the ultimate
stress points. The tensile stress for CG21 annealed at 2000 K is about 25% higher than that
after annealing at 1000 K. It is found that the structure of CG21 after annealing at 1000 K
contains a larger number of pores and voids than that after annealing at 2000 K.

For the same reason, a difference of about 18% is observed in tensile stresses upon
deformation of the CG47 composite after annealing at 1000 K and 2000 K at points C and
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D (red curves). However, tensile stresses for CG47 after annealing at both temperatures
have grown to the value of 120 GPa (points III and IV on the red curves).

tension along X-axis.
. .

.
....

Figure 5. (a) Stress-strain curves during uniaxial tension along x-axis for CG21 (black curves) and CG47 (red curves) after
annealing at 1000 K (solid line) and 2000 K (dashed line). (b) Snapshots of CG21 (A,B) and CG47 (III,IV) composites. Colors
as in Figure 1.

Structural analysis showed that, during uniaxial tension along the x-axis, a gradual
rearrangement of the graphene structure occurs due to the breaking of old bonds and
the formation of new bonds between carbon atoms. As a result, the volume fraction of
pores and voids remaining in the Ni/graphene composite CG47 after annealing at 1000 K
significantly decreased and the structure of this composite under tension became almost
identical to the structure obtained after annealing at 2000 K (see Figure 5b III and IV). This
can explain the equality of stresses at points III and IV on the red curves. In this case, Ni
atoms are evenly distributed throughout the CG47 composite. Comparatively, for the CG21
composite, Ni atoms are distributed inhomogeneously over the graphene surface during
tension (see Figure 5b A and B), which inhibits the decrease in the volume fraction of pores
due to the transformation of the graphene structure.

Figure 6a–f shows the structure of one graphene flake of the CG47 composite annealed
at 2000 K during uniaxial tension along the x-axis. Atoms in blue show carbon atoms lo-
cated along the zigzag direction of GF. Other graphene flakes after hydrostatic compression
and annealing are oriented along the x-axis in almost the same way as in Figure 6. Tension
along the x-axis of the entire composite corresponds to the zigzag direction of graphene
flake edge, which can lead to significant elongation of the obtained Ni/graphene structures
to a strain of 3.5. As can be seen, bonds are straightened along x-axis before ε < 0.5–0.6
(see bonds between blue carbon atoms in Figure 6a–c). Then, at ε > 0.5–0.6, breaks of old
covalent bonds and the formation of new bonds are observed (see Figure 6d–f). In this case,
the hexagonal carbon rings are rearranged into other configurations, forming a complex de-
fect structure. At high strains (ε > (1.5–1.6)), long carbon mono-chains are formed (Figure 6f)
and amorphization of the graphene structure took place. Such monoatomic carbon chains
are formed under large tensile strains, just before the fracture [62,63]. In Figure 6f, single
carbon atoms belong to the neighboring GFs, which are not shown.
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Figure 6. Snapshots of one GF (projection on the xy) for CG47 composite during uniaxial tension along the x-axis after
annealing at 2000 K. Colors as in Figure 1, but a few carbon atoms are shown in blue to illustrate the direction of the zigzag
graphene flake.

3.3. Uniaxial Tension along the y-Axis

Figure 7 shows the stress–strain curves of Ni/graphene composites CG21 and CG47
during uniaxial tension along the y-axis and the corresponding snapshots of the structure
at critical points. As for hydrostatic tension, an increase in the annealing temperature to
2000 K leads to an increase in the ultimate tensile strength for CG21 and CG47 by 15% and
23%, respectively (see Figure 7a). A greater number of pores is observed under tension in
the composite after annealing at 1000 K than after annealing at 2000 K. The formation of
a large number of pores results in faster rapture of the composite and a decrease in the
ultimate tensile strength. The number of pores for the CG21 composite is greater than that
for CG47 (see Figure 7b); this can explain the difference in the elongation of Ni/graphene
composites when σUTS is achieved. The elongation of the composite CG21 after annealing
at 1000 K (2000 K) is 128% (121%), and that for CG47 is 136% (132%). After reaching the
σUTS (points I, II, III, and IV), the stress/strain curves show a slow stress decrease.

tension along Y-axis

.

.
...
.

..

Figure 7. (a) Stress-strain curves during uniaxial tension along y-axis for CG21 (black curves) and CG47 (red curves) after
annealing at 1000 K (solid line) and 2000 K (dashed line). (b) Snapshots of CG21 (I,II) and CG47 (III,IV) at the ultimate
tensile strength. Colors as in Figure 1.

During uniaxial tension of the Ni/graphene composites to the strain at points A, B,
C, and D in Figure 7a, the structure is stretched without the formation of pores between
the graphene flakes. From Figure 8a, it can be seen that GF is oriented by the armchair
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edge along the y-axis (along the loading direction). Tension of the composite results in a
break in the carbon interatomic bonds (see Figure 8), the appearance of new bonds, and the
formation of long carbon chains. Carbon atoms in these chains are separated by alternating
single and triple bonds, which corresponds to a polyynic configuration [62,63]. Such a bond
transformation is irreversible and leads to a sharp change in the stress–strain curves (see
Figure 7a). At ε > 0.5, the formation of new structural elements composed of carbon atoms
is observed, which differ from the graphene hexagonal structure (Figure 8c–e). At ε = 1.72,
the carbon structure is close to the amorphous state (see Figure 8f). Such a carbon structure
transformation upon tension results in a strong elongation of the Ni/graphene composite
by more than 170%. The Ni47 nanoparticle is destroyed during uniaxial tension and Ni
atoms are uniformly distributed over the graphene surface. A similar transformation is
observed for the Ni21.

Figure 8. Snapshots of one GF (projection on the xy) for CG47 during uniaxial tension along the y-axis after annealing at
2000 K. Colors as in Figure 1, but a few carbon atoms are shown in blue to illustrate the breaking of bonds between them
during deformation.

3.4. Uniaxial Tension along the z-Axis

Figure 9 shows the stress–strain curves of Ni/graphene composites CG21 and CG47
during uniaxial tension along the z-axis and the corresponding snapshots of the structure at
critical points. Under uniaxial tension along the z-axis, the stress–strain curves in Figure 9a
do not qualitatively different from the curves shown in Figure 7a (tension along x-axis).
However, an increase in the annealing temperature to 2000 K leads to a significant increase
in the ultimate tensile strength. The tensile strength for the CG21 (CG47) composite
annealed at 2000 K is 72% (54%) more than that of the composite annealed at 1000 K. Such
a large difference in tensile stress is associated with a decrease in the bulk porosity of
composites with an increase of the annealing temperature.

Figure 10a–f shows the central graphene flake of the CG47 composite after annealing
at 2000 K. As in the case of tension along the y axis, at ε < 0.5, a stretching of the carbon
flake is observed and the following deformation (ε > 0.5) results in the breaking of old
bonds and the formation of a new one. At ε > 1.1, a partial or complete transformation
of the crumpled graphene structure into an amorphous state with the formation of long
mono-atomic carbon chains is found (see Figure 10a–f).
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tension along Z-axis

1.75

..

.
..
..

.

Figure 9. (a) Stress-strain curves during uniaxial tension along z-axis for CG21 (black curves) and CG47 (red curves) after
annealing at 1000 K (solid line) and 2000 K (dashed line). (b) Snapshots of CG21 (I,II) and CG47 (III,IV). Colors as in
Figure 1.

Figure 10. Snapshots of one GF (projection on the zy) for CG47 composite during uniaxial tension along the z-axis after
annealing at 2000 K. Colors as in Figure 1, but a few carbon atoms are shown in blue to illustrate the breaking of bonds
between them during deformation.

4. Discussion

For correlation analysis, Figure 11 shows stress–strain curves for all of the tensile
deformation schemes of the CG21 (Figure 11a) and CG47 (Figure 11b) composites annealed
at 2000 K. This annealing temperature of Ni/graphene composites was chosen because it
provides better formation of the homogeneous structure with the smallest volume fraction
of pores and voids.

In Figure 11, it can be seen that hydrostatic tension (green thick line) to fracture of
Ni/graphene composites occurs at the lowest stresses not exceeding 50 GPa and the strain
at about 0.25. Such low values are associated with an intense increase in the volume fraction
of pores and voids between GFs during hydrostatic tension. In this case, no transformation
of the crumpled graphene structure into an amorphous state is observed.
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p, p,

Figure 11. Stress–strain curves for Ni/graphene composite CG21 (a) and CG47 (b) after annealing at 2000 K. Here, σ is for
uniaxial tension along x, y and z and p is for hydrostatic tension.

The highest tensile stress value is achieved during uniaxial tension along the x axis,
and this direction coincides with the zigzag edge of the GF. It is known that the graphene
strength along the zigzag direction is higher than that along armchair direction. Thus,
the stress–strain curve for tension along the y-axis is lower for both composites. In the case
of tension along the z-direction, a single flake is oriented by its open side. During compres-
sion, two edges of the initial flake can interconnect between each other and form something
similar to a small nanotube. The fracture takes place along the armchair-type edge of this
new structural element. However, it is the weakest direction since the edges around open
side are not connected by covalent bonds and can be easily opened.

Composite CG21 exhibits better compression since the Ni21 nanoparticle has a small
size and can be deformed easier. Ni atoms spread inside the carbon structure and cannot be
considered nanoparticles, just as separate atoms. Graphene flakes form new covalent bonds
easier than in the case of the bigger nanoparticle. At high temperatures, Ni atoms can move
inside the carbon network, and the final composite structure became more homogeneous.

In the structure with Ni47, graphene envelops the Ni nanocluster forming a rigid
structural element; therefore, it is less deformed during hydrostatic compression [39,40,61].
Moreover, the Ni47 nanoparticle preserves a near-spherical shape even at high pressure,
which leads to less anisotropy in stress–strain curves under uniaxial tension. Bigger
nanoparticles prevent interactions between neighboring GFs, since part of the σ bond
involves the van der Waals interaction between graphene flake and metal nanoparticle.

For all of the cases of uniaxial tension, structural amorphization occurred at ε > 1.0.
Such a structural transformation occurs due to the breaking of old carbon bonds and the
formation of new bonds. The combination of these deformation processes leads to an
increase in the ultimate strength and to a considerable elongation of the composites during
uniaxial tension.

The observed difference in the stress–strain curves in Figure 11 is caused by the
structural heterogeneity of the obtained CG21 and CG47 composites after hydrostatic
deformation with the following annealing.

5. Conclusions

Molecular dynamic simulation is used to fabricate Ni/graphene composites with Ni21
and Ni47 nanoparticles by pressure-heat treatment. To obtain a composite, hydrostatic
compression at 0 K followed by annealing at 1000 K and 2000 K is used. The strength of
the obtained composites is evaluated using hydrostatic and uniaxial tension along the x-,
y-, and z-axes.

It is found that all investigated composites have anisotropic strength properties. This
is due to the fact that the volume fraction of pores and voids in the x, y, and z directions
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are very different. The most homogeneous structure is obtained for the CG47 composite
after hydrostatic compression followed by annealing at 2000 K.

The best stress–strain behavior is observed under uniaxial tension along the x-axis
of composites annealed at 2000 K. In the process of uniaxial tension, the breaking of old
and the formation of new covalent bonds took place, which led to the transformation of
the graphene structure into an amorphous one. Thus, a high strain is achieved before the
failure of the composites. At large strain, long mono-atomic carbon chains are formed with
alternating double and triple bonds between carbon atoms.

It is found that, using hydrostatic compression followed by annealing at 2000 K, it is
possible to fabricate a Ni/graphene composite; however, it is necessary to achieve a more
homogeneous structure with a smaller volume fraction of pores and voids, which will lead
to a decrease or complete disappearance in strength property anisotropy.
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