
sensors

Article

Feature Selection Using Enhanced Particle Swarm Optimisation
for Classification Models

Hailun Xie 1, Li Zhang 1,*,†, Chee Peng Lim 2, Yonghong Yu 3 and Han Liu 4

����������
�������

Citation: Xie, H.; Zhang, L.; Lim,

C.P.; Yu, Y.; Liu, H. Feature Selection

Using Enhanced Particle Swarm

Optimisation for Classification

Models. Sensors 2021, 21, 1816.

https://doi.org/10.3390/s21051816

Academic Editor:

Antonio Fernández-Caballero

Received: 13 January 2021

Accepted: 22 February 2021

Published: 5 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computational Intelligence Research Group, Department of Computer and Information Sciences,
Faculty of Engineering and Environment, University of Northumbria, Newcastle upon Tyne NE1 8ST, UK;
hailun.xie@northumbria.ac.uk

2 Institute for Intelligent Systems Research and Innovation, Deakin University,
Waurn Ponds, VIC 3216, Australia; chee.lim@deakin.edu.au

3 College of Tongda, Nanjing University of Posts and Telecommunications, Nanjing 210049, China;
yuyh@njupt.edu.cn

4 College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China;
han.liu@szu.edu.cn

* Correspondence: l.zhang7@rgu.ac.uk
† Current affiliation: National Subsea Centre, Robert Gordon University, Aberdeen AB10 7AQ, UK.

Abstract: In this research, we propose two Particle Swarm Optimisation (PSO) variants to undertake
feature selection tasks. The aim is to overcome two major shortcomings of the original PSO model, i.e.,
premature convergence and weak exploitation around the near optimal solutions. The first proposed
PSO variant incorporates four key operations, including a modified PSO operation with rectified
personal and global best signals, spiral search based local exploitation, Gaussian distribution-based
swarm leader enhancement, and mirroring and mutation operations for worst solution improve-
ment. The second proposed PSO model enhances the first one through four new strategies, i.e., an
adaptive exemplar breeding mechanism incorporating multiple optimal signals, nonlinear function
oriented search coefficients, exponential and scattering schemes for swarm leader, and worst solution
enhancement, respectively. In comparison with a set of 15 classical and advanced search methods,
the proposed models illustrate statistical superiority for discriminative feature selection for a total of
13 data sets.

Keywords: feature selection; evolutionary algorithm; particle swarm optimisation; classification

1. Introduction

The knowledge discovery processes in real-world applications often involve datasets
with large numbers of features [1]. The high dimensionalities of datasets increase the
likelihood of overfitting and impair generalization capability. Besides that, the inclusion
of redundant or even contradictory features can severely reduce the performance of clas-
sification, regression and clustering algorithms [2]. As a result, feature selection and
dimensionality reduction become critical in overcoming the aforementioned challenges by
eliminating certain irrelevant and redundant features while identifying the most effective
and discriminative ones [3,4]. Moreover, for datasets with high dimensionalities, it is
computationally impractical to conduct an exhaustive search of all possible combinations
of the feature subsets [5]. In addition, the search landscape becomes extremely complicated,
owing to the sophisticated confounding effects of various feature interactions in terms of
redundancy and complementarity [6]. Therefore, effective and robust search methods are
required to thoroughly explore the complex effects of feature interactions while satisfying
the constraints of practicality in term of computational cost to undertake large-scale feature
selection tasks.

Evolutionary Computation (EC) techniques have been widely employed to compre-
hensively explore the complex effects of feature interactions, owing to the significant capa-
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bility of EC in finding global optimality [4]. Inspired by natural evolution, EC techniques
employ a population-based evolving mechanism to supervise the individual solutions to
move towards the promising search territory iteratively and identify the global optima.
In EC-based feature selection methods, the coevolution mechanisms based on diverse
evolving operators, e.g., crossover and mutation, are capable of producing various feature
representations of the original problem in one single run. Therefore, the confounding
effects of feature interactions can be thoroughly explored through the evaluation of various
feature constitutions during the iterative process. The effectiveness and superiority of
various EC techniques over other methods in undertaking feature selection tasks have
been extensively verified in many existing studies, such as feature optimisation using
Genetic Algorithm (GA) [7], Differential Evolution (DE) [8,9], Particle Swarm Optimisation
(PSO) [10], Moth-flame optimisation (MFO) [11], Firefly Algorithm (FA) [3,12], Ant Colony
Optimisation (ACO) [13], Grey Wolf Optimisation (GWO) [14], Whale Optimisation Al-
gorithm (WOA) [15], and Sine Cosine Algorithm (SCA) [16]. Nevertheless, the empirical
studies indicated that these original EC algorithms tend to be trapped in local optima,
and they can be further improved in terms of search diversity and capability of avoiding
local stagnation.

As one of the most acknowledged and widely-used EC algorithms, PSO has been
adopted in various optimisation problems, owing to its simplicity, fast convergence speed,
as well as effectiveness and robust generalization capability. In PSO, each particle adjusts
its search trajectory by learning from two historical best experiences, i.e., its own best
position and the global best solution. Despite the great advantages in following both the
local and global best signals, PSO suffers from the local optima traps as well as inefficient
fine-tuning capabilities owing to its working principles [17–19]. As an example, PSO lacks
the operation of exchanging information between particles, owing to the fact that only
the global best solution is exploited as the reference for coevolution [20]. Secondly, the
swarm often tends to revisit previously explored regions, owing to the strict adherence to
the historical best experiences of each particle [21]. These limitations in the original PSO
model severely constrain the search diversity and search scope, hence resulting in early
stagnation and premature convergence. Such constraints of the PSO algorithm become
worse when undertaking feature selection tasks with complex problem landscapes.

In this research, we propose two enhanced PSO models to address the identified
limitations of the original PSO algorithm as well as undertake complex feature selection
problems. Specifically, the research overcomes the lack of cooperation between individual
particles and ineffectiveness of search owing to frequent re-visits to previously explored
regions in the original PSO model. The proposed PSO models employ several key strategies,
including leader/exemplar generation using dynamic absorption of elicit genes, search
operations with differentiated nonlinear trajectories, exploitation schemes for swarm leader
enhancement, as well as re-dispatching mechanisms for enhancement of the worst solutions.
These strategies work cooperatively as augmentations to accelerate convergence while
preserving diversity. A summary of the research contributions is presented, as follows:

• Two new PSO variants for feature selection are proposed to overcome two major
shortcomings of the original PSO algorithm, i.e., premature convergence and weak
local exploitation capability around the near optimal solutions.

• The first proposed PSO model, i.e., PSOVA1 (PSO variant 1), comprises the following
mechanisms: (1) a modified PSO operation with rectified global and personal best
signals, (2) spiral search based local exploitation, (3) Gaussian distribution based
swarm leader enhancement, as well as (4) mirroring and DE mutation operations for
worst solution improvement.

• The second proposed PSO model, i.e., PSOVA2 (PSO variant 2), enhances PSOVA1
through four mechanisms: (1) an adaptive exemplar breeding mechanism incorpo-
rating multiple optimal signals, (2) search coefficient generation using sine, cosine,
and hyperbolic tangent functions, (3) worst solution enhancement using a hybrid
re-dispatching scheme, and (4) an exponential exploitation scheme for swarm leader
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improvement. Moreover, the search diversity and scopes in PSOVA2 are further
elevated in comparison with those of PSOVA1. This is owing to the adoption of
diverse exemplars to guide the search in each dimension, as well as the employment
of versatile search trajectories to calibrate the particle positions.

• Evaluation using 13 datasets with a wide spectrum of dimensionalities: the empirical
results indicate that both proposed models outperform five classical search meth-
ods and ten advanced PSO variants with significant advantages, evidenced by the
statistical test outcomes.

The rest of the paper is organized as follows. Section 2 introduces the original and
diverse PSO models, and their applications to feature selection. We present the two
proposed PSO models with elaborations and analysis for each proposed enhancement in
Sections 3 and 4, respectively. Section 5 discusses the evaluation of the proposed and the
baseline search methods on a variety of feature selection tasks. Conclusions are drawn and
future research directions are presented in Section 6.

2. Related Studies

In this section, we firstly introduce the original PSO model. Then, the state-of-the-art
PSO variants are presented. We also conduct a literature review on the application of PSO
variants to feature selection. Finally, we discuss the motivation of this research.

2.1. Particle Swarm Optimisation

PSO is a population-based self-adaptive optimisation technique developed by Kennedy
and Eberhart [22] based on swarm social behaviors, such as fish in a school and birds in
a flock. The PSO algorithm conducts search in the landscape of the objective function by
adjusting the trajectories of individual particles in a quasi-stochastic manner [23,24]. Each
particle adjusts its velocity and position by following its own best experience in history
and the global best solution of the swarm. In the PSO model, the updating equations of the
velocity vid

t+1 and position xid
t+1 of the ith particle at the dth dimension are prescribed in

Equations (1) and (2) [22]:

vt+1
id = w× vt

id + c1 × r1 ×
(

pbestid − xt
id
)
+ c2 × r2 ×

(
gbestd − xt

id
)

(1)

xt+1
id = xt

id + vt+1
id (2)

where vi and xi represent the velocity and position of the ith particle, while pbesti an
gbest represent the historical best solution of the ith particle and the global best solution,
respectively. Besides that, c1 and c2 denote the position constants, while r1 and r2 are two
random values generated from [0, 1]. Moreover, t and w represent the current iteration
number and inertia weight, respectively.

2.2. PSO Variants

Despite its simplicity and fast convergence speed, the PSO model is subject to local
optima traps and premature convergence, owing to the constant reference to the global best
solution for all swarm particles. The particle positions also become increasingly similar
over iterations. As such, various diversity enhancing strategies have been proposed, e.g.,
repulsion strategies [23], mutation operators [24], multi-swarm concepts [25,26], multiple
leaders [25,27], and hybridization with other search methods [27]. Such strategies enable
the search process to balance between convergence and diversity while searching for the
global optimality.

Chen et al. [28] proposed a dynamic PSO model with escaping prey schemes (DP-
SOEP). In DPSOEP, swarm particles were categorized into three sub-swarms according
to their fitness scores, i.e., ‘preys’ (top ranked particles), ‘strong particles’ (middle ranked
particles), and ‘weak particles’ (lower ranked particles). The particles in the above groups
subsequently followed distinctive search operations, i.e., Lévy flights, the original PSO
position and a multivariate normal distribution, respectively, to search for global optimality.
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Li et al. [29] proposed a multi-information fusion “triple variables with iteration”
inertia weight PSO (MFTIWPSO) model, in which the inertia weight was generated using
multiple information, including the particle velocity, position, random disturbance, number
of iterations, as well as inertia weight score from the last iteration. The MFTIWPSO
outperformed a number of baseline models for solving benchmark functions and hyper-
parameter tuning in classification methods.

Wang et al. [24] proposed a diversity enhancing and neighborhood search PSO
(DNSPSO) model for solving multimodal high-dimensional benchmark functions. It em-
ployed a crossover factor and a DE-based operation for trial particle generation. Moreover,
a ring topology was also utilized to facilitate local and global neighborhood search opera-
tions. In addition, an eXpanded PSO (XPSO) model was proposed by Xia et al. [30], where
the swarm leader and a dynamic neighboring best solution were employed to guide the
social component in the PSO operation.

A distributed contribution based quantum-behaved PSO with controlled diversity
(DC-QPSO) was proposed by Chen et al. [31] for solving large-scale global optimisation
problems. Their model first decomposed the original problem into several sub-problems.
A contribution-based mechanism was then employed to ensure more resources (i.e., more
number of function evaluations) to be awarded to the sub-swarms with comparatively
more fitness enhancement. A diversity control strategy based on genotype diversity (i.e.,
distance-based diversity) was subsequently used to increase search diversity.

Lin et al. [32] proposed an enhanced genetic learning PSO (GL-PSO) algorithm for
global optimisation. In GL-PSO, the genetic operators and a ring topology were em-
ployed for the generation of fitter exemplars, which were subsequently used to guide the
swarm particles.

Tan et al. [27] proposed an asynchronized learning PSO model, i.e., ALPSO, by in-
corporating DE, Simulated Annealing (SA) and helix search actions, for hybrid clustering
and hyper-parameter fine-tuning in deep Convolutional Neural Networks (CNN) for skin
lesion segmentation. Zhang et al. [33] proposed an Enhanced Sine Cosine Algorithm
(SCA), which employed two randomly selected neighboring solutions and the Gaussian
distribution-based search parameters for the diversification of the global best signal. More-
over, Jordehi [34] proposed an Enhanced Leader PSO (ELPSO) where a five-staged mutation
mechanism (e.g., Gaussian, Cauchy and opposition-based mutations) was used for swarm
leader enhancement to avoid premature convergence.

Kang et al. [35] proposed a modified PSO algorithm for optimal hyper-parameter
selection of Gaussian process regression (GPR). Instead of using the inertial component as
in PSO, a momentum element was proposed, which was based on the mean distance of
the swarm in two successive iterations. Subsequently a mutation mechanism based on a
perturbation function was proposed to further enhance the global best solution.

Yu et al. [36] developed an enhanced DE algorithm for tackling multi-objective opti-
misation problems. It incorporated a Gaussian mutation operator for the improvement
of infeasible solutions as well as a standard DE/rand/1 operation for evolving feasible
solutions according their dominance relationships.

Cao et al. [37] integrated comprehensive learning PSO (CLPSO) with an adaptive
local search starting strategy to solve multimodal and CEC 2013 benchmark functions,
whereas Xu et al. [38] proposed an accelerated two-stage PSO (ATPSO) method with
the employment of intra-cluster distance and intra-cluster cohesion measures as objective
functions, respectively, for tackling complex clustering problems. Elbaz et al. [39] developed
an improved PSO-adaptive neurofuzzy inference system (ANFIS) model for the prediction
of shield performance during tunneling. An improved PSO method with an adaptive
inertia weight and a constriction factor was employed for the optimisation of parameters in
ANFIS. The empirical results indicate that this PSO-ANFIS model offered better prediction
accuracy in comparison with those of ANFIS and GA-ANFIS. Elbaz et al. [40] proposed a
GA-based evolving group method of data handling (GMDH)-type neural network (GMDH-
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GA) model for the prediction of disc cutter life during shield tunneling. GA was adopted
to identify the optimal network configurations for the GMDH-type neural network.

Besides the aforementioned studies, there are other related investigations on diversity
enhancement. Among them include genetic PSO (GPSO) with a crossover operator [41],
a Bare-bones PSO variant (BBPSOVA) with repulsive operations and sub-swarm mecha-
nisms [42], a Micro-GA PSO [43], a PSO with multiple sub-swarms for multimodal function
evaluation (MFOPSO) [44], and a modified PSO method (MPSOELM) with time-varying
adaptive acceleration coefficients for hyper-parameter optimisation pertaining to an Ex-
treme Learning Machine (ELM) [45].

2.3. PSO for Feature Selection

Feature selection methods can be broadly divided into two categories, i.e., filter and
wrapper. The filter approach ranks the features individually based on certain statistical
criteria, such as chi-square test [46] and mutual information [47]. The feature ranking
scores indicate their relative importance to the problem. It is challenging to identify
the cut-off point for selecting the most important features. Besides that, the individual-
based ranking mechanisms are incapable of measuring the confounding effects of feature
interactions and feature composition [1]. Instead of measuring the impact of individual
features, the wrapper approach evaluates the quality of various feature subsets by taking
feature interaction into account, with the learning algorithm wrapped inside. Therefore, the
wrapper technique possesses interaction with classifiers to capture feature dependencies.

In addition, PSO and its variants have been widely employed as the search engines
in wrapper-based feature selection methods, owing to their fast convergence speed and
powerful discriminative search capabilities [3,4,10,42,43]. As an example, Gu et al. [48]
proposed a Competitive Swarm Optimiser, i.e., CSO, to undertake high-dimensional fea-
ture selection tasks. In CSO, the swarm was randomly divided into two sub-swarms,
and pairwise competitions were conducted between particles from each sub-swarm. The
winning particle was passed on to the next generation, while the defeated particle up-
dated its position by learning from the position of the winning particle in the cognitive
component as well as the mean position of the swarm in the social component. The CSO
model outperformed several existing algorithms with various initialisation strategies for
discriminative feature selection.

Moradi and Gholampour [49] proposed a hybrid PSO variant, i.e., HPSO-LS, for
feature selection by integrating a local search strategy into the original PSO model. Two
operators, i.e., “Add” and “Delete”, were employed to enhance the local search capability of
PSO. Specifically, the “Add” operator inserted the dissimilar features into the particle, while
the similar features were deleted from the particle by the “Delete” operator. Evaluated
with 13 classification problems, HPSO-LS significantly outperformed a number of existing
dimension reduction methods. Another hybrid PSO model, i.e., HPSO-SSM, was proposed
by Chen et al. [19]. Specifically, the Logistic chaotic map was used to generate the inertia
weight. Subsequently, two dynamic nonlinear correction factors were employed as the
search parameters in the position updating operation. A spiral search mechanism was
also incorporated to increase search diversity. Evaluated with 20 UCI datasets, HPSO-SSM
outperformed several feature selection methods, such as CatfishBPSO (binary PSO with
catfish effect). Tan et al. [50] proposed a hybrid learning PSO model, i.e., HLPSO, to identify
the most discriminative elements from the shape, color, and texture features extracted
from dermoscopic images for the identification of malignant skin lesions. HLPSO adopted
three probability distributions, i.e., Gaussian, Cauchy, and Levy distributions, to further
enhance the top 50% promising particles. Modified FA and spiral search actions were also
employed to guide the lower-ranking 50% particles. Moreover, Xue et al. [4] conducted
a comprehensive review on the applications of PSO as well as other EC techniques for
tackling feature selection problems.
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2.4. Research Motivations

Table 1 depicts a detailed comparison between several existing studies (including the
original PSO algorithm) and this research. The original PSO model employs a search process
led by a single swarm leader. Comparatively, both proposed PSOVA1 and PSOVA2 models
employ multiple hybrid global optimal signals and a number of cooperative search opera-
tions to mitigate premature convergence. In particular, PSOVA2 employs versatile search
operations with diverse specified sine, cosine, and hyperbolic tangent search trajectories
to overcome stagnation. Both proposed models show superior capabilities in accelerating
convergence while preserving diversity, in order to mitigate premature convergence.

The research motivations of the proposed models are as follows. The classical PSO
algorithm explores the search space by following single leader and the particles’ own per-
sonal best experiences, therefore lack of interactions with other neighboring elite solutions
accumulate through coevolution. Owing to a monotonous search operation led by single
leader, the particle positions become increasingly similar over iterations. In this research,
PSOVA1 is firstly proposed to enhance local and global optimal signals through the use of
neighboring historical best experiences. A set of effective cooperative search strategies is
introduced to overcome the limitations of the original PSO algorithm, namely a modified
PSO operation with rectified local and global best signals, spiral-based local exploitation,
enhancement of the swarm leader and the worst solutions using Gaussian distributions, as
well as mirroring and DE-based mutations.

Secondly, PSOVA2 is further proposed to enhance the best leader generation and the
search operation embedded in PSOVA1. In particular, it employs an adaptive exemplar
breeding mechanism incorporating multiple local and global best solutions to guide the
search process. A new search action is also proposed by embedding diverse search coeffi-
cients yielded using sine, cosine, and hyperbolic tangent formulae. In comparison with
PSOVA1 where the search mainly focuses on a modified PSO operation in principle, the
aforementioned new search operations equip the search process with a variety of distinc-
tive search behaviors and irregular search trajectories. In short, the search mechanisms
in PSOVA1 and PSOVA2 work in a collaborative manner to increase search diversity and
mitigate premature convergence.

Moreover, most of the aforementioned existing PSO variants employed purely the
single global best solution [19,22,24,31,32,34,35,39,41,44,45,51] to guide the search pro-
cess. In addition, except for a few studies such as Lin et al. [32], Srisukkham et al. [42],
Tan et al. [27], and Yu et al. [36], other existing work did not adopt any exemplar breeding
strategies to enhance the optimal signals or generate hybrid leaders. Although some stud-
ies adopted diverse search mechanisms [19,24,27,33,42,52], the search processes in many
existing studies [22,31,32,34–36,39,41,44,45,51] are mainly conducted by single position
updating formula. Therefore, they are more likely to suffer from premature convergence.
In comparison with these existing methods, the proposed PSOVA1 and PSOVA2 models
employ exemplar breeding mechanisms as well as multiple global best signals to lead the
search process and avoid local optima traps. A number of position updating operations
(such as local and global based search actions) are embedded in both models. When a
certain search operation becomes stagnant (e.g., the global search in PSOVA1 or sine-based
search in PSOVA2), the proposed models are able to adopt an alternative search action
(e.g., local search in PSOVA1 or cosine-based search in PSOVA2) to drive the search out of
stagnation. In addition, swarm leader and worst solution enhancement is also conducted
in both methods to reduce the probabilities of being trapped in local optima. The proposed
search strategies in both models work cooperatively to overcome premature convergence
and increase the chances of finding global optimality.
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Table 1. Comparison between existing studies and this research.

Studies Population
Initialisation Multiple Leaders Exemplar Breeding

Strategies
Modification of Existing

Search Operations
Novel Search
Mechanisms

Leader
Enhancement

Other Diversity
Enhancing
Strategies

PSO [22] Random No (single leader) No No (the original PSO
operation) No No No

Wang et al. [24] Random No No No

Local and global
neighborhood search

based on the ring
topology

No

Trial particle
generation using a

crossover factor & a
DE operation

Lin et al. [32] Random No Ring topology for
exemplar generation

The updated PSO operation
with the exemplar and the

adaptive parameters
No No No

Chen et al. [31] Random No No

Expansion-contraction
coefficient and diversity

measurement used in
position updating

No No

Genotype diversity
measure and

contribution-based
fitness evaluation

allocation
Chang [44]
(MFOPSO) Random No No The search led by each

sub-swarm leader No No Multiple sub-swarms

Fielding et al. [51] Random No No Cosine-based adaptive
search parameters No No No

Srisukkham et al.
[42] (BBPSOVA) Random The mean of all the

personal bests

The average of the
local and global
best solutions

The average of the local and
global optimal signals

leading the attraction action

An evading action
led by the mean of

the worst indicators
No Two sub-swarms

Tan et al. [27]
(ALPSO) Random Two remote swarm

leaders
The best leader and a
remote second leader

Using helix search
coefficients

Hybridization with
SA and DE
operations

No No

Chen et al. [41]
(GPSO) Random No No No No No

A crossover operator
for population
diversification

Nayak et al. [45]
(MPSOELM) Random No No

Using time-varying
acceleration coefficients and
an adaptive inertia weight

No No No

Jordehi [34]
(ELPSO) Random No No No No 5-staged mutation No
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Table 1. Cont.

Studies Population
Initialisation Multiple Leaders Exemplar Breeding

Strategies
Modification of Existing

Search Operations
Novel Search
Mechanisms

Leader
Enhancement

Other Diversity
Enhancing
Strategies

Kang et al. [35] Random No No
A momentum element is

used to replace the inertial
component.

No Mutation-based
leader enhancement No

Zhang et al. [33] Random No No No

Local search action
using two randomly

selected particles
with a Gaussian

search step

No
Distance-based

population diversity
estimation

Yu et al. [36] Random No

Solution selection
based on domination

relationships and
density measurement

No No No
Infeasible solution
enhancement using
Gaussian mutation

Chen et al. [19]
(HPSO-SSM) Random No No Using a logistic map to

generate the inertia weight

Local exploitation
using a spiral search

operation
No

Nonlinear
coefficients used for
velocity updating

Cheng and Jin [52]
(CSO) Random Winners from

pairwise competition No

Using a logarithmic linear
regression relationship to

generate the coefficient for
the social component

Position updating by
learning from the
winner solution

No No

Vieira et al. [53]
(MBPSO) Random No No No

Resetting the swarm
leader by deselecting

features, and
mutation on personal

best solutions by
flipping randomly

Using a mirroring
operation when the

maximum velocity is
reached

Chuang et al. [54]
(CatfishBPSO) Random No No No

10% worst solutions
replaced by

dimension-wise
random assignment

No No

Elbaz et al. [39] Random No No

Using a time-varying
adaptive inertia weight and

a constriction factor for
velocity updating

No No No
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Table 1. Cont.

Studies Population
Initialisation Multiple Leaders Exemplar Breeding

Strategies
Modification of Existing

Search Operations
Novel Search
Mechanisms

Leader
Enhancement

Other Diversity
Enhancing
Strategies

PSOVA1
(This research) Logistic map An enhanced hybrid

global best signal

Enhancing local and
global best solutions
using neighboring

personal best
experiences

The updated PSO operation
with enhanced local and

global best signals.

Local exploitation
using a spiral search

operation

Swarm leader
enhancement using

Gaussian
distributions

Mutation and
DE-based worst

solution
enhancement

PSOVA2
(This research) Logistic map

An adaptive
exemplar

incorporating
multiple local and

global best solutions

Exemplar generation
using adaptive

weightings between
local and global

optimal signals, as
well as a dynamic

number of local best
solutions.

N/A

A new search
operation using the

exemplar or the
swarm leader as the

best signal, with
search coefficients

generated using sine,
cosine and

hyperbolic tangent
functions.

Swarm leader
enhancement using

an adaptive
exponential function

Worst solution
enhancement using a

hybrid
re-dispatching

scheme
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3. The Proposed PSOVA1 Model

In this research, we propose two PSO variants for feature selection, which aim to
overcome two major shortcomings of the original PSO model, i.e., premature convergence
and weak local exploitation near the optimal solutions [4,22]. We introduce the first
proposed PSO model, i.e., PSOVA1, in this section. Specifically, the proposed PSOVA1
model employs four major strategies, including (1) Gaussian distribution-based swarm
leader improvement, (2) DE and mirroring schemes for worst solution enhancement,
(3) a modified PSO position updating strategy based on ameliorated pbest and gbest, and
(4) spiral based local exploitation. The implementation of these four mechanisms is able to
increase population and search diversity, therefore increasing the likelihood of attaining
global optimality as compared with the original PSO algorithm.

The novel aspects of the proposed PSOVA1 model are presented below. Firstly, we
propose a modified PSO operation where the rectified forms of gbest and pbest, as well as
the Logistic map-oriented chaotic inertia weight are used to increase global exploration. In
particular, the personal and global best signals in the search operation are further enhanced
using remote and randomly selected promising neighboring solutions to overcome stagna-
tion. Secondly, a logarithmic spiral search mechanism oriented by gbest is used to intensify
local exploitation. A dynamic switching probability is designed to enable the search process
to balance between the aforementioned global (first) and local (second) search operations.
Thirdly, Gaussian distribution is used to enhance the swarm leader. It enables gbest to
conduct local exploitation to avoid being trapped in local optima. Then, the mirroring and
DE-based mutation operations are employed to improve the three weakest particles in the
swarm. The details of the proposed PSOVA1 model are illustrated in Algorithm 1.

Overall, the Gaussian distribution based gbest enhancement, the mutation strategies
for enhancement of the worst solutions, exploration schemes assisted by ameliorated gbest
and pbest, as well as the intensified fine-tuning capability using the spiral search operation,
cooperate with and benefit from each other to effectively avoid being trapped in local
optima and increase the likelihood of attaining global optimality. We introduce each of the
four proposed strategies in detail below.

3.1. A Swarm Leader Enhancing Mechanism

In the context of feature selection, both the elimination of critical features and in-
clusion of contradictory attributes can impose significant consequences on classification
performance. Therefore, a swarm leader enhancing mechanism using the skewed Gaussian
distributions is proposed to equip gbest with further discriminative capabilities to overcome
local optima traps. Such Gaussian distributions and random walk strategies have also
been widely adopted in existing studies for leader or swarm enhancement [33,34,36,50,55].
As shown in Equation (3), gbest is mutated successively based on three Gaussian distri-
butions with different skewness settings. Specifically, on the basis of the gbest solution,
the Gaussian distribution with a positive skewness (right-skewed) is likely to eliminate
noisy or irrelevant features, while the operation with a negative skewness (left-skewed) is
more inclined to include more discriminative features. In addition, the standard Gaussian
distribution (non-skewed) is employed to conduct local exploitation of gbest with neutrality
in determining the feature numbers [34,55,56].

gbest′d = gbestd + α× Gaussian(h)× (Ud − Ld) (3)

where gbest’d represents the enhanced global best solution. Parameter α denotes the step
size, and is assigned as 0.1 based on the recommendation of related studies [56]. Parameter
h represents the skewness of the Gaussian distribution, and is set as −1, 1, and 0 for the
left-, right- and non-skewed Gaussian distributions, respectively, based on extensive trial-
and-error processes. Besides that, Ud and Ld represent the upper and lower boundaries of
the dth dimension, respectively. The new solution generated by the Gaussian distribution
is used to replace gbest if it is fitter.
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Algorithm 1. The pseudo-code of the proposed PSOVA1 model.
1 Start
2 Initialise a particle swarm using the Logistic chaotic map;
3 Evaluate each particle using the objective function f (x) and identify the pbest
solution of each particle, and the global best solution, gbest;
4 Construct a Worst_memory, which stores the three weakest particles with the
lowest fitness values, and identify the worst solution as gworst;
5 While (termination criteria are not met)
6 {
7 Conduct swarm leader enhancement using Gaussian distribution as defined in
Equation (3);
Use the new solution to replace gbest if it is fitter;
8 For (each particle i in the population) do
9 {
10 If (particle i belongs to Worst_memory)
11 {
12 If (particle i is gworst)
13 {
14 Construct an offspring solution by employing the local mutation operation based
on gbest as defined in Equation (4), and use it to replace the global worst solution if the
new offspring solution is fitter;
15 Else
16 Construct an offspring solution by employing the DE-based
mutation operation based on three randomly selected pbest
solutions as defined in Equations (5)–(6);
17 Evaluate the offspring solution and update the position of particle i in
Worst_memory based on the annealing schedule as defined in Equation (7);
18 } End If
19 Update the pbest and gbest solutions;
20 } End If
21 } End For
22 For (each particle i in the population) do
23 {
24 If Rand < pswitch
25 {
26 Establish a memory of groupi which includes all neighboring pbest
solutions with higher or equal fitness scores than that of the pbest solution
of the current particle i, i.e., pbesti;
27 Identify the neighboring fitter pbest solution in groupi with the highest
degree of dissimilarity to gbest, denoted as pbestD;
28 Calculate the ameliorated gbest solution, i.e., gbestM, by averaging the
following two solutions, i.e., pbestD and gbest, as indicated in Equation (8);
29 Randomly select another neighboring fitter pbest solution from groupi,
denoted as pbestR,
30 Calculate the ameliorated pbest solution, i.e., pbestM by averaging pbestR

and the personal best solution of particle i, pbesti, as shown in Equation (9);
31 Conduct position updating using gbestM and pbestM for particle i as
defined in Equation (10);
32 Else
33 Move particle i around gbest by following a logarithmic spiral search path
as shown in Equation (11);
34 } End If
35 } End For
36 For (each particle i in the population) do
37 {
38 Evaluate each particle i using the objective function;
39 Update the pbest and gbest solutions;
40 } End For
41 } End While
42 Output gbest;
43 End
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3.2. Mutation-Based Worst Solution Enhancement

We subsequently enhance the weak particles in the swarm by conducting the mirroring
mutation on the swarm leader and a DE-based operation on the local elite solutions.

Firstly, a gbest-based local mutation scheme is proposed to enhance the global worst
solution in the swarm. As in Equation (4), the new particle is produced by conducting
the mirroring effects and reversing the sign of gbest with a mutation probability, rmu, in
each dimension. This simulates the effects of randomly activating or de-selecting some of
the features on the basis of the current best feature subset represented by gbest. In short,
the gbest-based local mutation scheme guarantees a balance between preserving effective
information captured by the current gbest solution and introducing stochastic perturbations
to create new momentum for the newly generated solution. Such mirroring actions were
also widely adopted in existing studies [34,57] to increase population diversity:

xnew
d =

{
−gbestd i f rand ≥ rmu,

gbestd otherwise,
(4)

where rmu represents the mutation probability, and is set to 0.9 based on trial-and-error
and recommendations in related studies [56]. When a randomly generated value is more
than or equals to rmu, the new offspring is assigned with the value of the mirroring—gbest
solution in the dth dimension, otherwise it is assigned with the value of gbest solution in
that dimension. This operation is used to yield a new offspring solution to replace the
worst particle in the swarm, if it is fitter.

Secondly, a DE-based mechanism is proposed to improve the second and third worst
individuals in the swarm. It produces new particles by following the mutation and
crossover operations of DE using three pbest solutions randomly selected from the collection
of all pbest individuals in the swarm, as shown in Equations (5) and (6). The differential
weight, F, in Equation (5) is generated using the Sinusoidal chaotic map, in order to
increase the variety of perturbations for the donor vector, xdonor

d, in each dimension.
Furthermore, the crossover parameter, cr, is generated by the Logistic chaotic map to
introduce more randomness to the crossover process in each dimension and exploit more
feature interactions on a global scale. When a randomly generated value is more than cr,
the current dimension in the new solution is inherited from the corresponding dimension
of the personal best solution, otherwise it is inherited from that of the newly generated
donor solution. Owing to the adoption of several distinctive personal best solutions in
the search operations, this DE-based mutation operation is able to increase population
diversity significantly when the pbest solutions of the particles illustrate sufficient variance
from one another in the early search stage:

xdonor
d = pbest1

d + F×
(

pbest2
d − pbest3

d

)
(5)

xnew
d =

{
xdonor

d i f rand ≤ Cr,
pbestid otherwise,

(6)

where pbest1
d, pbest2

d, and pbest3
d represent three randomly selected pbest solutions of the

swarm particles in the dth dimension, while pbesti represents the pbest solution of the current
particle i. xdonor

d and xnew
d denote the donor and new solutions in the dth dimension,

respectively. In addition, F and cr represent the differential weight and crossover factor,
respectively.

The newly generated fitter solution is accepted directly while the acceptance of a weaker
mutated solution is determined by an annealing schedule, as defined in Equation (7) [56]:

p = exp
(
−∆ f

T

)
> δ (7)
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where T represents the temperature for controlling the annealing process, and ∆f indicates
the fitness difference between the mutated and original solutions. Constant δ is a randomly
generated value in the range of [0, 1]. A linear cooling schedule is employed to decrease
the temperature, i.e., T = σT, whereas σ is assigned as 0.9 according to [56].

The two mutation operations based on the DE and gbest mirroring operations operate
in parallel, in order to improve the weak particles in the swarm.

3.3. Diversity-Enhanced PSO Evolving Strategy

In order to address stagnations in the original PSO model, we construct two distinctive
search mechanisms, i.e., a modified PSO search strategy and an intensified spiral exploita-
tion action, to increase diversification and intensification. A dynamic switching probability
schedule is also proposed to achieve the best trade-off between both mechanisms and
exploit the merits of both search operations to the maximum extent.

We firstly upgrade the position updating strategy in the original PSO operation by
introducing ameliorated pbest and gbest, combined with the Logistic chaotic map, to enhance
search diversity. As indicated in Equation (8), the global best experience is ameliorated
by adopting the mean position of two solutions, i.e., the gbest solution and a neighboring
superior pbest solution, i.e., pbestD, possessing the highest degree of dissimilarity to gbest.
The dissimilarity measure between gbest and any pbest solution is determined by the number
of distinctive units in their binary forms, which are converted by following the existing
studies [10]. In other words, the pbest solution that has the least number of shared selected
features in comparison with those recommended by gbest is selected as pbestD. Moreover,
as defined in Equation (9), the local best experience is ameliorated by adopting the mean
position of the particle’s own pbest and another randomly chosen superior pbest solution, i.e.,
pbestR, in the neighborhood. Equation (10) is used to conduct position updating, which
employs the enhanced global and local optimal signals defined in Equations (8) and (9),
respectively:

gbestM
d =

(
gbestd + pbestD

d

)
/2 (8)

pbestM
d =

(
pbestid + pbestR

d

)
/2 (9)

vt+1
id = σ× vt

id + c1 × r1 ×
(

pbestM
d − xt

id

)
+ c2 × r2 ×

(
gbestM

d − xt
id

)
(10)

where pbestD represents the pbest solution with the highest degree dissimilarity to gbest
among all neighboring superior pbest solutions, while pbestR represents a randomly chosen
pbest solution. Moreover, gbestM and pbestM represent the enhanced global and local optimal
indicators in the proposed position updating strategy, respectively, while σ represents the
inertia weight generated by the Logistic chaotic map.

3.4. An Intensified Spiral Exploitation Scheme

An intensified spiral exploitation scheme is introduced to overcome the limitations of
the fine-tuning capability of the original PSO algorithm in the near optimal regions. The
logarithmic spiral search is originally proposed in the MFO algorithm [11]. We employ this
spiral operation to fine-tune the swarm particles in the final iterations. By conducting this
local spiral search action, a search space of hyper-ellipse around gbest is constructed on each
dimension using the spiral function, as defined in Equations (11) and (12) [11]. As a result,
the exploitation around the near-optimal solutions can be significantly intensified:

xt+1
id = D× exp(b× l)× cos(2πl) + gbestd (11)

D =
∣∣gbestd − xt

id
∣∣ (12)

where D denotes the distance between gbest and particle i in the dth dimension, b is a
constant to control the shape of logarithmic spiral, with l as a random number in the range
of [–1, 1].
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Moreover, we propose a dynamic switching probability schedule with the aim to
achieve a trade-off between global exploration and local exploitation in the PSOVA1 model,
as demonstrated in Equation (13):

pswitch = 1− (iter/Max_iter)2 (13)

where pswitch denotes the switching probability, while iter and Max_iter represent the current
and maximum iterations, respectively. In each iteration, when the switching probability
pswitch is higher than a randomly generated value in the range of [0, 1], i.e., pswitch > rand, the
modified PSO operation discussed in Section 3.3 is conducted. Otherwise, the spiral search
action depicted in this section is conducted. In general, the proposed dynamic schedule
of pswitch not only ensures sufficient global exploration to identify the promising regions
in the early search stage, but also guarantees thorough exploitations in the near optimal
region before converging in the final iterations.

4. The Proposed PSOVA2 Model

We further enhance the PSOVA1 model by incorporating new search actions accompa-
nied with diverse nonlinear search trajectories to extend search territory. Specifically, we
propose four new strategies in PSOVA2 to refine the transition between search diversity and
swarm convergence, i.e., (1) an adaptive exemplar breeding mechanism incorporating mul-
tiple local and global best solutions, (2) search coefficient generation using sine, cosine, and
hyperbolic tangent functions, (3) worst solution enhancement using a hybrid re-dispatching
scheme, and (4) an exponential exploitation mechanism for swarm leader improvement.

PSOVA2 further strengthens PSOVA1 by providing new search mechanisms on the
best leader generation and position updating operations. The novel aspects of the proposed
PSOVA2 model are as follows. Firstly, an adaptive exemplar breeding mechanism is
proposed, which produces a new exemplar by incorporating multiple local and global best
solutions to guide the search process. On top of it, a new search action is proposed by
embedding diverse search coefficients yielded using sine, cosine, and hyperbolic tangent
formulae. In comparison with PSOVA1 where the search mainly focuses on a modified
PSO operation in principle, the aforementioned new search operations equip the search
process with a variety of distinctive search behaviors and irregular search trajectories. In
addition, scattering and random permutations from the pbest solutions are incorporated for
enhancement of the worst solutions. An adaptive exponential search flight is also used
for swarm leader improvement. These new strategies demonstrate great capabilities in
accelerating convergence while preserving search diversity. The pseudo-code of PSOVA2
is provided in Algorithm 2. We introduce each proposed strategy in the following sub-
sections.

4.1. A New Attraction Operation with Differentiated Search Trajectories

Firstly, a new search operation is proposed. It includes an exemplar breeding strategy
and a search coefficient generation scheme using four nonlinear formulae. Equation (14)
defines the proposed search action:

xt+1
id = xt

id + fs ×
(

xtarget
d − xt

id

)
+ Gaussian(t) (14)

where fs denotes a search coefficient generated by customized sine, cosine, and hyperbolic
tangent functions, respectively, and xtarget represents a target optimal indicator such as the
exemplar or the swarm leader. Gaussian (t) indicates a random walk following a Gaussian
distribution. Equation (14) is used for position updating in PSOVA2. We introduce the exem-
plar breeding and nonlinear search coefficient generation in detail in Sections 4.1.1 and 4.1.2,
respectively.
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Algorithm 2. The pseudo-code of the proposed PSOVA2 model.
1 Start
2 Initialise a particle swarm using the Logistic chaotic map;
3 Evaluate each particle using the objective function f (x) and identify the pbest
solution of each particle, and the global best solution, gbest;
4 While (termination criteria are not met)
5 {
6 Conduct swarm leader enhancement as defined in Equations (26)–(27);
7 Implement the worse solution enhancement as defined in Equations (23)–(25);
8 For (each particle i in the population) do
9 {
10 Construct a breeding exemplar as defined in Equations (15)–(18);
11 Select a coefficient generation function from Equations (19)–(22) randomly;
12 For (each dimension j) do
13 { % Choose the target optimal signal to follow in each dimension
14 If Rand < 0.4
15 {
16 Choose the breeding exemplar as the target signal for position updating;
17 Else
18 Choose the gbest solution as the target signal for position updating;
19 } End If
20 Update the position of particle i on dimension j as defined in Equation (14);
21 } End For
22 } End For
23 For (each particle i in the population) do
24 {
25 Evaluate each particle i using the objective function;
26 Update pbest and gbest solutions;
27 } End For
28 } End While
29 Output gbest;
30 End

4.1.1. Exemplar Generation Using Adaptive Incorporation of Multiple Optimal Solutions

Instead of completely following the gbest solution over the search course as in the
original PSO algorithm, an adaptive exemplar generation scheme is proposed. It incorpo-
rates two adaptive operations for exemplar generation, i.e., (1) stochastic recombination
and dynamic incorporation of different numbers of the pbest elicit solutions, and (2) an
adaptive weight generation to attenuate the impact imposed by the pbest solutions, while
amplifying the influence of the gbest solution over the search course. Specifically, an ex-
emplar is generated through the proposed breeding mechanism between the pbest and
gbest solutions for each particle through three steps. Firstly, a predefined number of the
pbest solutions (i.e., three or fewer) are randomly selected, and then aggregated into one
offspring solution by multiplying random but normalized weights on each dimension, as
illustrated in Equation (15). Secondly, the adaptive weights for governing the priority of the
aggregated offspring and the gbest solution during the breeding operation are generated by
two proposed mathematical formulae defined in Equations (16) and (17). Figure 1 presents
a visualization of adaptive weight generation defined in Equations (16) and (17). Lastly,
the exemplar solution is produced by conducting weighted aggregation between the gbest
solution and the offspring solution yielded by Equation (15) in each dimension, as defined
in Equation (18):

xo f f spring
d =


(c1 × pbest1

d + c2 × pbest2
d + c3 × pbest3

d)/(c1 + c2 + c3) i f iter ∈ [1, 25],
(c1 × pbest1

d + c2 × pbest2
d)/(c1 + c2) i f iter ∈ [26, 50],

pbest1
d i f iter ∈ [51, 75],

0 i f iter ∈ [76, 100],

(15)

m1 = 0.4 + 0.5× sin(π/2× iter/Max_iter)× sinh(iter/Max_iter) (16)

m2 = 0.4× cos(π/2× iter/Max_iter)× cosh(iter/Max_iter) (17)
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xexemplar
d = m1 × gbestd + m2 × xo f f spring

d (18)

where xoffspring and xexemplar represent the offspring solution generated from randomly
sampled pbest solutions and the obtained exemplar solution through the breeding mecha-
nism, while m1 and m2 represent the adaptive weights for gbest and xoffspring respectively.
Parameters c1, c2, and c3 possess randomly generated scores within [0, 1].
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generation (where x axis denotes a randomly generated value between 0 and 1, and y axis denotes
the weight parameters, i.e., m1 and m1 defined in Equations (16) and (17)).

Specifically, we prescribe a decreasing process to control the number of selected pbest
solutions for exemplar generation. It starts with three pbest solutions being randomly
selected for breeding, then eliminating one in every 25 iterations. As a result, four different
cases are produced through the iterative process for pbest selection, i.e., 3 for iterations
[1, 25], 2 for iterations [25, 50], 1 for iterations [25, 75], and 0 for iterations [75, 100]. At
the beginning of the search process, the higher number of selected pbest solutions aims
to introduce more perturbation to gbest during breeding owing to the higher degree of
optimal signal diversity and less similarity among the pbest solutions. This can further
facilitate the exploration in previously unexploited search territory. By eliminating the
selected pbest solutions through the iterative process as well as the higher similarity among
elicit solutions owing to a gradually converged population, the disturbance produced by
breeding on gbest becomes less significant as compared with that from the early stages.
Therefore, the search becomes more accelerated through the incorporation of elicit genes
from gbest while maintaining the necessary level of diversity owing to distinctive elements
from the recombination effect among the pbest solutions. When the search comes to the final
stage, none of the pbest solutions are selected. As such, the exemplar becomes identical to
the gbest solution, in order to facilitate the exploitation around the most optimal regions.
As a result, the exploration at the early stage is intensified, and search diversity can be
maintained through a dynamic incorporation of the pbest solutions.

In addition to the above proposed mechanisms, we introduce two adaptive trajectories
for regulating the impact of the gbest and pbest signals during breeding over the entire
iterative process, as illustrated in Figure 1. The weighting factor of the gbest signal (m1)
keeps increasing from 0.4 to approximately 1 as the iteration increases, while that of the
pbest signal (m2) keeps decreasing from 0.4 to 0. Moreover, the slopes for both adaptive
trajectories change slowly at the beginning of the iteration, and then gradually ascend as
the number of iterations increases. As such, the impact of the pbest indicators would not
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diminish too fast, in order to maintain diversity. At the same time, the influence of the
gbest solution becomes strengthened over iterations, in order to accelerate convergence. In
other words, the proposed adaptive search trajectories enable the exemplar to conduct
more exploration attempts in the early stage by receiving significant and diverse influence
from the pbest signals while ensuring a thorough exploitation around the promising regions
in the final stage by receiving a dominant impact from the gbest solution. As a result, the
proposed trajectories are capable of accelerating convergence while preserving diversity.

The generated exemplar is subsequently used to guide the search operation. To further
increase diversification and avoid stagnation, we employ diverse search coefficients yielded
using sine, cosine, and hyperbolic tangent functions, which are explained in detail in the
next section.

4.1.2. Nonlinear Search Coefficient Generation

We further devise four nonlinear functions for coefficient generation in Equation
(14). The objective is to conduct distinctive yet complementary search operations around
the exemplar and the gbest solution, in order to further increase diversity and overcome
stagnation. The proposed coefficient generation functions are presented in Equations
(19)–(22) and plotted in Figure 2. In general, the first two functions, i.e., f1 and f2, enable
the particles to jump randomly in all directions around the destination optimal signal.
The next two functions, i.e., f3 and f4, avail the particles to approach the optimal indicator
with various speeds and intensities. Specifically, as illustrated in Figure 2 (blue line), f1
takes a hyperbolic tangent formula, 2/3 * tanh (2x – 1

2 ), as defined in Equation (19). It
increases in the range of [−0.3, 0.5] in a gradual manner. It facilitates the particles to deploy
a thorough exploration around the target optimal signal in two ways, i.e., approaching it
slowly when positive values are generated and distancing from it mildly when negative
values are yielded. In contrast, as illustrated in Figure 2 (red line), f1 takes a sin (cos(2π
× rand2)) formula, as defined in Equation (20). Comparing with other three functions,
it changes more rapidly with a wider range approximately in [−0.9, 0.9] for coefficient
generation. It enables the particles to perform larger jumps to escape from local stagnation.
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Figure 2. An illustration of four distinctive coefficient generation functions defined in Equations
(19)–(22) (where x axis denotes a randomly generated value between 0 and 1, while y axis signifies fs
as defined in Equation (14)).
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As illustrated in Figure 2 (yellow line), f3 takes a cos (sin(π/2 × rand2)) formula, as
defined in Equation (21). It constantly maintains at a high plateau in the range of [0.5, 1].
It regulates the particles to march towards the target optimal solution with a large step,
in order to accelerate convergence. On the contrary, as indicated in Figure 2 (purple line),
f4 takes a cos−1(cos(π/4 × x2)) formula, as defined in Equation (22). It increases in a
gradual manner in the range of [0, 0.7]. It enables the particles to deploy an intensive
exploitation in the promising regions. In each iteration, each particle is able to choose
from the aforementioned four coefficient generation strategies with an equal probability to
maintain search diversify. In comparison with standard sine, cosine, and hyperbolic tangent
functions, the proposed refined formulae offer more erratic and irregular search trajectories:

f1 = 2/3 ∗ tan h(2x− 1/2) (19)

f2 = sin
(

cos
(

2π × x2
))

(20)

f3 = cos
(

sin
(

π/2× x2
))

(21)

f4 = cos−1
(

cos
(

π/4× x2
))

(22)

where x is a randomly generated value within [0, 1], while f1, f2, f3, and f4 are the four
coefficient generation functions (i.e., specified sine, cosine, and hyperbolic tangent func-
tions). The generated coefficients are used as search parameters fs in the position updating
procedure as defined in Equation (14).

As discussed earlier, we compose these four distinctive coefficient generation strategies
in a complementary manner as an effort to enhance search diversity. When the particles are
trapped at local optima, large jumps and reverse directions are able to drive the search out
of stagnation. On the other hand, minor movements become dominant when a detailed,
near optimal exploitation is needed. Moreover, in the entire input range, the generated
coefficients from these four functions are always dominated by positive signals, i.e., at
least three positive outputs among four, which are able to lead the swarm to the promising
regions in an accelerated manner.

The parameter generation strategies are incorporated with the proposed exemplar
breeding scheme to leverage their respective advantages, i.e., diversification of the move-
ment strategies and the destination signals. Specifically, in every position updating process,
each particle is able to choose one coefficient generation function from the proposed four
formulae randomly. Then, in each dimension, the particle is able to choose one best signal
to follow from the breeding exemplar and the gbest solution.

To be specific, the four coefficient generation strategies possess equal probabilities to
be chosen for each particle. Note that gbest is allocated a higher probability to be chosen
when updating the particle position in each dimension, as shown in lines 8–22 in Algorithm
2. A threshold of 0.4 is determined based on trial-and-error. Such a setting is able to achieve
a reasonable balance between introducing a proper perturbation and inheriting benign
signals from the swarm leader.

4.2. A Hybrid Re-Dispatching Scheme for Enhancement of the Worst Solutions

To further accelerate convergence, we enhance several worst solutions by diverting
such solutions to the optimal regions using a hybrid dispatching scheme. Specifically, we
enhance the worse solutions by exploiting the personal best solutions as well as stochastic
disturbance induced by random initialisation. As shown in Equations (23) and (24), two
donor vectors, denoted as xdonor1 and xdonor2, are generated by random initialisation and
random permutations from the pbest solutions, respectively. In particular, the element
on each dimension of xdonor2 is obtained by inheriting the value from the corresponding
dimension of a randomly selected pbest solution. A random number is generated for each
dimension as the determinant for the hybridization process, as shown in Equation (25). The
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element is inherited from the corresponding dimension of xdonor1 when the determinant is
smaller than or equals to 0.5. Otherwise, it inherits the corresponding element from xdonor2.

xdonor1
d = Ld + β× (Ud − Ld) (23)

xdonor2
d = pbestrandom

d (24)

xnew
d =

{
xdonor1

d i f rand ≤ 0.5,
xdonor2

d otherwise,
(25)

where xdonor1 and xdonor2 represent the donor vectors generated by random initialisation and
random selection from the pbest solutions, respectively, while β is a random number within
[0, 1]. pbestd

random denotes a randomly selected personal best solution in the d-th dimension.
This worst solution enhancement procedure is conducted three times to generate three
offspring xnew

d solutions, which are subsequently used to replace the three worst particles
with the lowest fitness scores in the swarm, respectively.

Compared with a complete random initialisation, this hybridization scheme for en-
hancement of the worst solutions is capable of enhancing such solutions by exploiting elicit
genes from the population to accelerate convergence.

4.3. Swarm Leader Enhancement Using an Adaptive Exponential Search Flight

In addition, we propose an exponential function to generate random search steps for
enhancement of the swarm leader, as defined in Equation (26).

As depicted in Figure 3, the generated step g is confined within [−0.5, 0.5] with an
input value between [0, 1]. As a result, a smaller magnitude of steps enables the swarm
leader to examine thoroughly within its vicinity from all directions, in order to discover a
better position to further improve its quality. Equation (27) is used to generate an offspring
solution of gbest using the newly generated search step g.

g = 2/
(

1 + e(1−2x)
)
− 1 (26)

gbest′d = gbestd + g× (Ud − Ld) (27)

where x is a randomly generated value within [0, 1], while Ud and Ld denote the upper and
lower boundaries of the d-th dimension, respectively. This new gbest’ solution is used to
replace gbest if it is fitter.
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Overall, the proposed PSOVA2 model incorporates the aforementioned four major
improvements to further enhance search dynamics and diversity. They include an adaptive
exemplar breeding mechanism, search coefficient generation using nonlinear functions,
exponential exploitation and re-dispatching schemes for swarm leader and worst solution
enhancement. They account for the efficiency of PSOVA2 in accelerating convergence while
maintaining diversity.

Both proposed PSO variants are integrated with a K-Nearest-Neighbor (KNN) clas-
sifier to conduct fitness evaluation during the search process. Equation (28) [3,4,42,43]
defines the objective function, which is used to assess the fitness of each particle:

f itness(x) = k1 × accuracyx + k2 × (num_o f _ f eaturesx)
−1 (28)

where k1 and k2 denote the weights of classification accuracy and the number of selected
features, respectively. We assign k1 = 0.9 and k2 = 0.1 by following the recommendation in
previous studies [3,4,42,43].

The optimisation objective of the proposed PSO models is to identify the most dis-
criminative feature subset from a given database. The fitness function aims to maximize
the classification accuracy rate while reducing the number of selected features. The search
process of the most significant feature subset is conducted as follows. The particles are
initialised with continuous values in each dimension using the Logistic map at the begin-
ning of the search process. Each particle is used to represent the initial randomly assigned
feature subset, where the particle dimension is the same as the number of the features
in a given dataset. During fitness evaluation, we convert each element of each particle
into a binary value, i.e., 1 or 0, representing the selection (1) or non-selection (0) of a
particular feature. The recommended feature subset by each particle is evaluated using
the training data set. The KNN model with five neighbors, as recommended in related
studies [19,58], is employed to evaluate the fitness of the selected feature subset with a
10-fold cross-validation method. A fitness score is calculated using Equation (28). The
identified final swarm leader represents the most optimal feature subset. We subsequently
evaluate the efficiency of this selected feature subset using the unseen test set in the test
phase. The aforementioned feature selection process using each proposed PSO model
combining with KNN is also illustrated in Algorithm 3. We evaluate the effectiveness of
both proposed PSO variants in feature selection tasks in Section 5.
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Algorithm 3. The pseudo-code of the hybrid PSOVA1/PSOVA2-KNN feature
selection model.
1 Start
2 Initialise a particle swarm using the Logistic chaotic map;
3 For (each particle i in the population) do
4 {
5 Convert particle i into a corresponding feature subset by selecting features
on the dimensions where positive values are assigned;
6 Calculate classification performance of the feature subset encoded in particle
i on the training data set using the KNN classifier;
7 Evaluate the fitness score of particle i based on its classification performance
and number of selected features using the proposed objective function f (x)
as shown in Equation (28);
8 Identify the pbest solution of each particle and the global best solution
gbest;
9 } End For
10 While (termination criteria are not met)
11 {
12 Evolve swarm particles using the proposed mechanisms in PSOVA1 (i.e., line
7–35 in Algorithm 1) or PSOVA2 (i.e., line 6–22 in Algorithm 2);
13 For (each particle i in the population) do
14 {
15 Evaluate particle i using the objective function on the training set;
16 Update pbest and gbest solutions;
17 } End For
18 } End While
19 Output gbest;
20 Convert gbest into the identified optimal feature subset;
21 Calculate classification performance on the unseen test set based on the yielded
optimal feature subset using the KNN classifier;
22 Output the test classification results & the selected features;
23 End

5. Evaluation and Discussion

We employ a total of 13 datasets to investigate the efficiency of the proposed PSO
models for feature selection. The employed datasets pose diverse challenges to feature
selection problems, owing to a great variety of dimensionalities as well as complicated
class distributions. The proposed PSO variants are integrated with a KNN-based wrapper
model to conduct feature optimisation, where the number of the nearest neighbor is set to
5 according to the recommendation in previous studies [19,58]. Three performance indica-
tors are used to examine the effectiveness of the proposed PSO variants, i.e., classification
accuracy, number of selected features, and F-score. Furthermore, we compare the proposed
PSO variants against five classical search algorithms, i.e., PSO [22], DE [59], SCA [60],
DA [61], and GWO [62], as well as ten PSO variants, i.e., CSO [52], HPSO-SSM [19], binary
PSO (BPSO) [63], modified binary PSO with local search and a swarm variability control-
ling scheme (MBPSO) [53], CatfishBPSO [54], GPSO [41], MPSOELM [45], MFOPSO [44],
BBPSOVA [42], and ALPSO [27]. To ensure a fair comparison, we employ the same number
of function evaluations (i.e., population size × the maximum number of iterations) as the
stopping criterion for all search methods. In our experiments, the population size and the
maximum number of iterations are set to 30 and 100, respectively, based on trial and error.
We conduct 30 runs for each experiment.

5.1. Data Sets

We employ the ALL-IDB2 database [64] for Acute Lymphoblastic Leukaemia (ALL)
diagnosis, as well as ten UCI data sets [65], namely Arcene, MicroMass, Parkinson’s dis-
ease (Parkinson), Human activity recognition (Activity), LSVT voice rehabilitation (Voice),
Grammatical facial expressions (Facial Expression), Heart disease (Heart), Ionosphere,
Epileptic seizure (Seizure) and Wisconsin breast cancer diagnostic data set (Wdbc), for
evaluation. Besides that, two additional microarray gene expression data sets, i.e., Crohn’s
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disease (Crohn) and Multiple Myeloma (Myeloma), from the Gene Expression Omnibus
repository [66], are employed for evaluation. The details of each data set are shown in
Table 2. These data sets pose diverse challenges to feature selection models, owing to
a great variety of dimensionalities and class numbers, as well as complex data distribu-
tions. Specifically, the dimensionality of the employed data sets spans from 30 to 22,283,
while the number of the classes ranges from 2 to 10. Moreover, according to previous
studies [42,67,68], the employed data sets contain significant challenging factors (e.g.,
small inter-class and large intra-class variations) which can severely affect classification
performance. Overall, a comprehensive evaluation can be established for the proposed
PSO variants, in view of the dimensionality, number of classes, and sample distributions,
pertaining to the data sets used for evaluation.

Table 2. Introduction of the thirteen data sets for evaluation.

Data Set Number of
Attributes Number of Classes Number of Instances

Crohn 22,283 2 127
Myeloma 12,625 2 173

Arcene 10,000 2 200
MicroMass 1300 10 360
Parkinsons 753 2 756

Activity 561 6 1000
Voice 310 2 126

Facial Expression 301 2 1062
Seizure 178 2 4600

ALL 80 2 180
Heart 72 4 124

Ionosphere 33 2 253
Wdbc 30 2 569

5.2. Parameter Settings

We compare the proposed PSO variants against fifteen baseline methods, i.e., five
classical search algorithms, i.e., PSO, DE, SCA, DA, and GWO, and ten advanced PSO
variants, i.e., CSO, HPSO-SSM, BPSO, MBPSO, CatfishBPSO, GPSO, MPSOELM, MFOPSO,
BBPSOVA, and ALPSO. The parameter settings of each baseline method employed in this
study are set in accordance with the recommendations in their original studies. The de-
tailed parameters of the proposed PSO models and fifteen baseline methods are presented
in Table 3.
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Table 3. Parameter settings of each algorithm.

Algorithm Parameters

PSO [22]
cognitive component c1 = 2, social component c2 = 2, inertial weight
w = 0.9−m× ((0.9− 0.4)/max_iter, where m and max_iter denote the
current and maximum iteration numbers, respectively.

DE [59] differential weight F ∈ (0, 1), crossover parameter Cr = 0.4.

SCA [60] r1 = a−m× a/max_iter, where a = 3. r2 = 2π × rand, r3 = 2× rand,
and r4 = rand.r1, r2, r3 and r4 are four main search parameters.

DA [61]
separation factor = 0.1, alignment factor = 0.1, cohesion factor = 0.7,
food factor = 1, enemy factor = 1,
inertial weight = 0.9−m× ((0.9− 0.4)/max_iter.

GWO [62]
A = 2× a× r1 − a, where a is linearly decreasing from 2 to 0, and
r1 ∈ (0, 1). C = 2× r2, where r2 ∈ (0, 1). A and C are both
coefficient vectors.

CSO [52] r1, r2, r3∈ (0, 1), where r1, r2, and r3 are search parameters randomly
selected within [0, 1]. controlling parameter Φ = 0.1.

HPSO-SSM [19]

cognitive component c1 = 2, social component c2 = 2, inertial weight
w = Logistic map. R1 = 1/(1 + exp(a× (−min(SP)/max(SP)))t, where
SP is the particle position vector, while t is the current iteration, and a = 2.
R2 = 1− R1.

BPSO [63] cognitive component c1 = 2, social component c2 = 2, wmax = 0.9,
wmin = 0.01, inertial weight w = wmax −m× (wmax − wmin)/max_iter.

MBPSO [53]
cognitive component c1 = 2, social component c2 = 2, inertial weight
w = 1.4, mutation probability rmu = 1/Nt, where Nt represents the
dimensionality of the problem domain.

CatfishBPSO [54] cognitive component c1 = 2, social component c2 = 2, inertial weight w = 1,
replacing rate = 0.1.

GPSO [41] inertia weight = 0.9, cognitive component c1 = 2.6, social component
c2 = 1.5, crossover probability = 0.7, mutation probability = 0.3.

MPSOELM [45] time-varying acceleration coefficients and an adaptive inertia weight.
MFOPSO [44] inertia weight=0.9, cognitive component c1 = 2, social component c2 = 2.
BBPSOVA [42] search coefficients yielded by Logistic map.
ALPSO [27] inertia weight=0.6, search parameters produced by helix functions.

Prop. PSOVA1
cognitive component c1 = 2, social component c2 = 2, inertial weight
w = Logistic map, mutation probability threshold rmu = 0.9,
F = Sinusoidal map.

Prop. PSOVA2
switching probability for exemplar adoption = 0.4, initial weight for
gbest = 0.4, search coefficients implemented using exponential, sine, cosine,
and hyperbolic tangent functions.

5.3. Results and Discussion

A comprehensive evaluation on the proposed PSO variants is established. Specifically,
we adopt four different performance measures, i.e., classification accuracy, the F-score
measure, number of selected features, and convergence performance, in our experiments.
A total of 30 runs are conducted in each experiment, and the average results are computed
for comparison. Tables 4 and 5 summarise the classification accuracy rates, F-scores, and
their corresponding standard deviation results, respectively, while Table 8 presents the
numbers of selected features for all the search methods. The best results are marked in
bold accordingly.
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Table 4. The mean results of the classification accuracy rates over 30 runs.

Data Sets Metrics PSO DE SCA DA GWO CSO HPSO-SSM Catfish-BPSO Prop.
PSOVA1

Prop.
PSOVA2

Crohn
mean 0.7556 0.7624 0.7479 0.7427 0.7786 0.7197 0.7675 0.7803 0.8128 0.8333
std. 6.74E-02 3.10E-02 3.18E-02 3.28E-02 3.07E-02 7.16E-02 3.10E-02 3.73E-02 2.90E-02 3.09E-02

Myeloma mean 0.7096 0.7288 0.7013 0.7032 0.7212 0.6917 0.7128 0.6910 0.7442 0.7545
std. 2.60E-02 2.29E-02 2.03E-02 2.42E-02 2.37E-02 6.01E-02 2.48E-02 1.56E-02 2.68E-02 2.66E-02

Arcene
mean 0.7217 0.7244 0.7372 0.7183 0.7211 0.7372 0.7122 0.7100 0.7411 0.7694
std. 2.66E-02 2.78E-02 3.98E-02 3.71E-02 2.95E-02 3.79E-02 3.28E-02 3.77E-02 2.81E-02 3.58E-02

MicroMass
mean 0.5897 0.6052 0.6061 0.5933 0.6124 0.5409 0.5903 0.5836 0.6455 0.6612
std. 4.34E-02 3.85E-02 5.13E-02 4.07E-02 4.38E-02 2.79E-02 4.12E-02 3.92E-02 4.59E-02 4.38E-02

Parkinsons
mean 0.7949 0.7990 0.7922 0.7862 0.7940 0.7985 0.8000 0.7994 0.8115 0.8094
std. 1.74E-02 1.63E-02 2.48E-02 2.15E-02 1.91E-02 1.30E-02 1.77E-02 1.56E-02 1.88E-02 1.60E-02

Activity mean 0.8813 0.8919 0.8826 0.8785 0.8929 0.8876 0.8860 0.8785 0.9025 0.9117
std. 1.64E-02 1.55E-02 1.86E-02 2.23E-02 1.44E-02 1.60E-02 1.95E-02 1.42E-02 1.28E-02 1.53E-02

Voice
mean 0.8237 0.8149 0.8202 0.8272 0.8219 0.7789 0.8237 0.8193 0.8526 0.8632
std. 5.00E-02 5.58E-02 4.66E-02 5.83E-02 5.42E-02 8.37E-02 5.09E-02 3.95E-02 4.28E-02 4.37E-02

Facial
Expression

mean 0.7187 0.6748 0.6891 0.6635 0.6844 0.6861 0.6914 0.6998 0.7351 0.7340
std. 4.64E-02 4.70E-02 4.05E-02 3.37E-02 4.68E-02 5.14E-02 3.86E-02 4.21E-02 4.60E-02 4.24E-02

Seizure
mean 0.8459 0.8590 0.8543 0.8577 0.8655 0.8490 0.8461 0.8516 0.8698 0.8860
std. 5.08E-03 6.69E-03 1.12E-02 1.00E-02 2.01E-02 9.22E-03 5.28E-03 8.12E-03 5.13E-03 6.12E-03

ALL
mean 0.8951 0.9167 0.9037 0.9025 0.8858 0.8728 0.8944 0.9123 0.9185 0.9241
std. 2.84E-02 2.69E-02 2.21E-02 1.91E-02 4.25E-02 5.59E-02 4.76E-02 3.28E-02 3.23E-02 3.26E-02

Heart
mean 0.5963 0.6435 0.6620 0.5537 0.6398 0.5713 0.6444 0.5769 0.6731 0.7241
std. 8.33E-02 5.18E-02 5.56E-02 6.13E-02 6.35E-02 4.34E-02 4.83E-02 7.16E-02 4.63E-02 5.42E-02

Ionosphere mean 0.8171 0.8285 0.8320 0.8101 0.8197 0.8184 0.8189 0.8066 0.8351 0.8434
std. 2.70E-02 3.10E-02 2.94E-02 2.62E-02 2.28E-02 2.89E-02 2.60E-02 2.89E-02 2.49E-02 2.16E-02

Wdbc
mean 0.9520 0.9534 0.9191 0.9458 0.9386 0.8828 0.9261 0.9497 0.9571 0.9585
std. 1.04E-02 1.60E-02 4.19E-02 2.36E-02 3.30E-02 3.33E-02 3.60E-02 1.67E-02 1.33E-02 9.59E-03

Data sets Metrics BPSO MBPSO GPSO MPSO-ELM MFO-PSO BBPSO-VA ALPSO Prop.
PSOVA1

Prop.
PSOVA2

Crohn
mean 0.7427 0.7795 0.7504 0.7479 0.7726 0.7684 0.7889 0.8128 0.8333
std. 3.00E-02 2.25E-02 1.86E-02 3.45E-02 3.67E-02 3.00E-02 3.08E-02 2.90E-02 3.09E-02

Myeloma mean 0.6942 0.7051 0.7045 0.6917 0.7154 0.7128 0.7051 0.7442 0.7545
std. 2.13E-02 1.94E-02 2.30E-02 2.56E-02 2.24E-02 2.81E-02 1.94E-02 2.68E-02 2.66E-02
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Table 4. Cont.

Data Sets Metrics PSO DE SCA DA GWO CSO HPSO-SSM Catfish-BPSO Prop.
PSOVA1

Prop.
PSOVA2

Arcene
mean 0.7111 0.7117 0.7022 0.7106 0.7372 0.7200 0.7161 0.7411 0.7694
std. 3.53E-02 2.79E-02 3.54E-02 3.18E-02 3.62E-02 4.23E-02 2.80E-02 2.81E-02 3.58E-02

MicroMass
mean 0.5758 0.5785 0.6052 0.5879 0.5915 0.6118 0.5994 0.6455 0.6612
std. 3.58E-02 4.01E-02 3.46E-02 4.31E-02 4.77E-02 3.99E-02 5.30E-02 4.59E-02 4.38E-02

Parkinsons
mean 0.7988 0.7962 0.7953 0.7890 0.7822 0.7907 0.7950 0.8115 0.8094
std. 1.97E-02 1.97E-02 1.85E-02 1.84E-02 2.49E-02 1.97E-02 2.00E-02 1.88E-02 1.60E-02

Activity mean 0.8725 0.8775 0.8864 0.8785 0.8806 0.8848 0.8810 0.9025 0.9117
std. 1.59E-02 1.15E-02 1.23E-02 1.54E-02 1.80E-02 1.52E-02 1.74E-02 1.28E-02 1.53E-02

Voice
mean 0.8263 0.8246 0.8526 0.8298 0.8377 0.8439 0.8175 0.8526 0.8632
std. 4.43E-02 4.72E-02 5.07E-02 3.83E-02 7.03E-02 5.72E-02 6.19E-02 4.28E-02 4.37E-02

Facial
Expression

mean 0.7170 0.7274 0.7177 0.7234 0.7031 0.7061 0.7032 0.7351 0.7340
std. 3.56E-02 3.93E-02 4.33E-02 4.67E-02 5.89E-02 4.62E-02 4.40E-02 4.60E-02 4.24E-02

Seizure
mean 0.8370 0.8388 0.8492 0.8400 0.8519 0.8496 0.8430 0.8698 0.8860
std. 4.74E-03 4.41E-03 5.62E-03 5.84E-03 5.14E-03 6.87E-03 7.06E-03 5.13E-03 6.12E-03

ALL
mean 0.8938 0.8988 0.9068 0.8981 0.9000 0.9019 0.9025 0.9185 0.9241
std. 1.97E-02 3.32E-02 2.68E-02 2.78E-02 2.64E-02 2.25E-02 2.62E-02 3.23E-02 3.26E-02

Heart
mean 0.5815 0.5750 0.5944 0.5991 0.6426 0.6250 0.6333 0.6731 0.7241
std. 5.91E-02 6.50E-02 5.67E-02 7.30E-02 8.86E-02 6.87E-02 7.29E-02 4.63E-02 5.42E-02

Ionosphere mean 0.8276 0.8110 0.8189 0.8140 0.8171 0.8228 0.8197 0.8351 0.8434
std. 2.60E-02 3.27E-02 2.03E-02 3.18E-02 2.83E-02 2.30E-02 2.26E-02 2.49E-02 2.16E-02

Wdbc
mean 0.9501 0.9454 0.9517 0.9481 0.9509 0.9540 0.9501 0.9571 0.9585
std. 1.10E-02 2.12E-02 9.18E-03 1.63E-02 1.31E-02 1.06E-02 1.24E-02 1.33E-02 9.59E-03
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Table 5. The mean results of the F-score measures over 30 runs.

Data Sets Metrics PSO DE SCA DA GWO CSO HPSO-SSM Catfish-BPSO Prop.
PSOVA1

Prop.
PSOVA2

Crohn
mean 0.8202 0.8052 0.7943 0.7906 0.8236 0.7765 0.8137 0.8263 0.8550 0.8585

std. 3.69E-02 2.42E-02 2.44E-02 2.52E-02 2.42E-02 5.71E-02 2.39E-02 2.90E-02 2.24E-02 2.43E-02

Myeloma mean 0.8219 0.8411 0.8091 0.8105 0.8286 0.8026 0.8229 0.8034 0.8500 0.8551
std. 1.64E-02 1.45E-02 1.27E-02 1.47E-02 1.40E-02 4.68E-02 1.58E-02 1.01E-02 1.57E-02 1.63E-02

Arcene
mean 0.6759 0.6757 0.6963 0.6780 0.6783 0.6959 0.6646 0.6574 0.6977 0.7130
std. 3.85E-02 3.87E-02 4.94E-02 4.89E-02 3.31E-02 5.40E-02 4.60E-02 5.14E-02 3.16E-02 4.18E-02

MicroMass
mean 0.6349 0.6469 0.6428 0.6314 0.6445 0.5982 0.6350 0.6275 0.6759 0.6967
std. 4.26E-02 3.48E-02 4.79E-02 3.94E-02 4.36E-02 2.17E-02 4.21E-02 3.88E-02 4.19E-02 4.03E-02

Parkinsons
mean 0.8691 0.8712 0.8670 0.8631 0.8686 0.8701 0.8720 0.8719 0.8798 0.8783
std. 1.15E-02 1.10E-02 1.73E-02 1.41E-02 1.33E-02 8.93E-03 1.13E-02 1.01E-02 1.32E-02 1.02E-02

Activity mean 0.8864 0.8962 0.8874 0.8833 0.8971 0.8930 0.8901 0.8838 0.9067 0.9131
std. 1.53E-02 1.49E-02 1.76E-02 2.16E-02 1.37E-02 1.65E-02 1.90E-02 1.34E-02 1.24E-02 1.44E-02

Voice
mean 0.7180 0.7381 0.7265 0.7316 0.7208 0.6890 0.7339 0.7328 0.7764 0.7852
std. 9.23E-02 7.09E-02 8.03E-02 1.07E-01 9.79E-02 1.06E-01 8.13E-02 7.23E-02 6.94E-02 7.54E-02

Facial
Expression

mean 0.6458 0.6191 0.6288 0.6175 0.6287 0.5670 0.6292 0.6342 0.6572 0.6562
std. 3.18E-02 3.10E-02 2.51E-02 1.86E-02 3.14E-02 1.92E-01 2.54E-02 2.81E-02 3.02E-02 2.87E-02

Seizure
mean 0.8197 0.8384 0.8359 0.8364 0.8486 0.8434 0.8199 0.8279 0.8526 0.8759
std. 7.33E-03 8.96E-03 1.50E-02 1.41E-02 2.90E-02 9.36E-03 8.21E-03 1.11E-02 8.08E-03 8.76E-03

ALL
mean 0.9204 0.9345 0.9250 0.9266 0.9084 0.9037 0.9168 0.9331 0.9361 0.9408
std. 2.28E-02 2.17E-02 1.62E-02 1.37E-02 3.93E-02 4.34E-02 4.37E-02 2.51E-02 2.67E-02 2.60E-02

Heart
mean 0.6039 0.6502 0.6661 0.5616 0.6436 0.5823 0.6513 0.5881 0.6783 0.7271
std. 8.59E-02 5.25E-02 5.68E-02 6.81E-02 6.72E-02 4.53E-02 4.88E-02 7.28E-02 4.63E-02 5.49E-02

Ionosphere mean 0.8439 0.8516 0.8550 0.8375 0.8427 0.8418 0.8452 0.8371 0.8562 0.8625
std. 2.06E-02 2.48E-02 2.33E-02 2.04E-02 2.23E-02 2.52E-02 2.05E-02 2.18E-02 2.05E-02 1.77E-02

Wdbc
mean 0.9340 0.9355 0.8836 0.9246 0.9146 0.8286 0.8957 0.9308 0.9415 0.9432

std. 1.47E-02 2.34E-02 6.53E-02 3.57E-02 4.84E-02 5.04E-02 5.38E-02 2.47E-02 1.94E-02 1.31E-02

Data sets Metrics BPSO MBPSO GPSO MPSO-ELM MFO-PSO BBPSO-VA ALPSO Prop.
PSOVA1

Prop.
PSOVA2

Crohn
mean 0.7889 0.8220 0.7945 0.7937 0.8188 0.8153 0.8306 0.8550 0.8585

std. 2.19E-02 1.68E-02 1.35E-02 2.53E-02 2.89E-02 2.29E-02 2.40E-02 2.24E-02 2.43E-02

Myeloma mean 0.8057 0.8189 0.8186 0.8031 0.8248 0.8234 0.8189 0.8500 0.8551
std. 1.32E-02 1.23E-02 1.41E-02 1.58E-02 1.39E-02 1.74E-02 1.22E-02 1.57E-02 1.63E-02
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Table 5. Cont.

Data Sets Metrics PSO DE SCA DA GWO CSO HPSO-SSM Catfish-BPSO Prop.
PSOVA1

Prop.
PSOVA2

Arcene
mean 0.6573 0.6590 0.6460 0.6602 0.6985 0.6732 0.6673 0.6977 0.7130
std. 4.56E-02 3.58E-02 4.65E-02 4.13E-02 4.78E-02 5.20E-02 2.36E-02 3.16E-02 4.18E-02

MicroMass
mean 0.6219 0.6200 0.6451 0.6360 0.6308 0.6449 0.6444 0.6759 0.6967
std. 4.05E-02 3.59E-02 3.05E-02 3.95E-02 4.30E-02 3.92E-02 5.00E-02 4.19E-02 4.03E-02

Parkinsons
mean 0.8716 0.8702 0.8695 0.8656 0.8612 0.8662 0.8688 0.8798 0.8783
std. 1.30E-02 1.31E-02 1.26E-02 1.22E-02 1.70E-02 1.32E-02 5.02E-02 1.32E-02 1.02E-02

Activity mean 0.8783 0.8824 0.8913 0.8842 0.8854 0.8895 0.8854 0.9067 0.9131
std. 1.55E-02 1.14E-02 1.16E-02 1.47E-02 1.61E-02 1.45E-02 1.70E-02 1.24E-02 1.44E-02

Voice
mean 0.7368 0.7399 0.7804 0.7398 0.7598 0.7656 0.7272 0.7764 0.7852
std. 7.58E-02 7.76E-02 7.78E-02 6.51E-02 1.06E-01 8.83E-02 5.07E-02 6.94E-02 7.54E-02

Facial
Expression

mean 0.6527 0.6556 0.6372 0.6537 0.6404 0.6360 0.6371 0.6572 0.6562
std. 2.63E-02 2.93E-02 3.04E-02 3.50E-02 4.15E-02 2.97E-02 4.81E-02 3.02E-02 2.87E-02

Seizure
mean 0.8066 0.8094 0.8243 0.8111 0.8282 0.8251 0.8155 0.8526 0.8759
std. 6.61E-03 6.33E-03 7.72E-03 8.31E-03 6.98E-03 9.39E-03 9.87E-03 8.08E-03 8.76E-03

ALL
mean 0.9195 0.9241 0.9283 0.9237 0.9244 0.9215 0.9253 0.9361 0.9408
std. 1.55E-02 2.44E-02 2.07E-02 2.02E-02 1.96E-02 1.94E-02 3.53E-02 2.67E-02 2.60E-02

Heart
mean 0.5904 0.5788 0.6006 0.6166 0.6442 0.6319 0.6381 0.6783 0.7271
std. 6.62E-02 7.86E-02 6.33E-02 7.14E-02 8.75E-02 6.94E-02 7.52E-02 4.63E-02 5.49E-02

Ionosphere mean 0.8521 0.8380 0.8452 0.8419 0.8426 0.8476 0.8453 0.8562 0.8625
std. 1.82E-02 2.51E-02 1.50E-02 2.44E-02 2.45E-02 1.89E-02 3.31E-02 2.05E-02 1.77E-02

Wdbc
mean 0.9312 0.9239 0.9338 0.9286 0.9325 0.9366 0.9321 0.9415 0.9432
std. 1.55E-02 3.10E-02 1.29E-02 2.33E-02 1.85E-02 1.53E-02 9.79E-03 1.94E-02 1.31E-02
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5.3.1. Classification Performance

With respect to classification accuracy in Table 4, PSOVA1 and PSOVA2 achieve
the highest accuracy scores on all thirteen classification tasks. They outperform all the
fifteen baseline algorithms consistently. Specifically, PSOVA1 produces the highest accuracy
scores on two datasets, i.e., Parkinsons and Facial Expression, while PSOVA2 yields the best
accuracy scores on the remaining eleven datasets. Moreover, the empirical results reveal
the advantages of the proposed models over fifteen baseline methods, especially on data
sets with high dimensionalities, e.g., Crohn (22,283), Myeloma (12,625), and MicroMass
(1300), as well as data sets with fuzzy boundaries and small inter-class variations, e.g.,
Heart (72).

Specifically, on the Heart data set, PSOVA2 outperforms the top three best classical
search methods, i.e., SCA, HPSO-SSM, and DE, by 6.21%, 7.97%, and 8.06%, respectively.
On the MicroMass data set, PSOVA2 outperforms the top three best search methods, i.e.,
GWO, BBPSOVA, and SCA, by 4.88%, 4.94%, and 5.51%, respectively. Evident performance
gaps can also be observed between PSOVA1 and fifteen baseline methods. The effectiveness
of both proposed PSO models is further ascertained by the F-score measure, as shown in
Table 5. Similar to the accuracy measures, the proposed PSO models achieve the highest
F-score performances on all thirteen data sets and outperform fifteen baseline methods with
significant performance gaps, especially on feature selection tasks with high complexities,
e.g., MicroMass and Heart data sets. Moreover, in comparison with those of fifteen baseline
models, our proposed PSO variants demonstrate smaller or similar standard deviation
results with respect to both the accuracy and F-score measures. This indicates the relia-
bility of the proposed PSOVA1 and PSOVA2 models in producing superior classification
performances across the employed feature selection tasks with various dimensionalities.
The reliability of the proposed PSO variants will be further examined using the Wilcoxon
statistical test.

We subsequently analyze the performance gaps pertaining to the challenges posed
by some example data sets as well as the superiority of both proposed models, as follows.
With respect to ALL, the proposed models have successfully identified the clinical features
critical to ALL diagnosis, e.g., cytoplasm and nucleus areas, ratio between the nucleus
and cytoplasm areas, form factor, compactness, perimeter, and eccentricity [42,67]. These
features are commonly selected more than 15 times out of 30 trials by both proposed models.
Specifically, as an important indicator of cell irregularity and eccentricity, the inclusion
of the ratio between the nucleus and cytoplasm areas in the selected feature subsets can
make a significant difference to accurate diagnosis of ALL. However, the baseline models
often fail to consider the interactive impact between cytoplasm and nucleus owing to
the negligence of either of them in the selected features. Overall, the feature selection
results further indicate the effectiveness of both proposed models in identifying the most
discriminatory characteristics to ALL diagnosis. In comparison, the baseline models often
partially identify these important discriminative features, or overlook some aspects of
sophisticated feature interactions, owing to the stagnation at local optima. Likewise, with
respect to the diagnosis of coronary heart disease with three different severity levels [69],
the feature subsets generated by the proposed PSO models reveal a number of key features,
e.g., chest pain type, serum cholesterol, maximum heart rate, and ST depression. These
have been identified as critical clinical features for the diagnosis of heart disease in existing
studies [70].

The Wilcoxon rank sum test is conducted based on the mean classification accuracy
rates, in order to further indicate the statistical difference of both proposed PSO models
against the baseline methods. As illustrated in Tables 6 and 7, most of the test results
are lower than 0.05, ascertaining that both proposed PSO models outperform the fifteen
baseline models on most of the data sets, significantly. Comparing with PSOVA1, PSOVA2
achieves a better statistical superiority. Specifically, PSOVA1 outperforms all the baseline
methods for five data sets (Crohn, Myeloma, MicroMass, Parkinsons, and Activity), while
PSOVA2 outperforms all the baseline methods for eight data sets (Crohn, Myeloma, Arcene,
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MicroMass, Parkinsons, Activity, Seizure, and Heart), with statistical significance. Out of
180 evaluations (12 data sets × 15 baseline algorithms), PSOVA1 does not show statisti-
cally significant differences in eighteen instances with respect to the baseline methods, as
compared with eleven instances from PSOVA2.

The top three baseline models with the most competitive performances in comparison
with those of our proposed PSO variants are DE, BBPSOVA, and SCA. Specifically, PSOVA1
shows similar result distributions to those of DE on ALL, Ionosphere, and Wdbc, to those
of BBPSOVA on Voice, Ionosphere, and Wdbc, as well as to those of SCA on Arcene,
Heart, and Ionosphere data sets, whereas PSOVA2 demonstrates similar performance
distributions to those of DE on ALL and Wdbc, to those of BBPSOVA on Voice and Wdbc,
as well as to those of SCA on Ionosphere data set.

The advantages of the proposed PSO models become more apparent on classifica-
tion tasks with higher dimensionalities and sophisticated class distributions, i.e., Crohn
(22,283), Myeloma (12,625), Micromass (1300), Parkinson (753), and Activity (561). PSOVA2
depicts statistically significant superiority against all the baseline methods for these high-
dimensional data sets. This is because of the adoption of diverse exemplars to guide the
search in each dimension, as well as the employment of versatile search trajectories to
rectify particle positions.

Table 6. The Wilcoxon rank sum test results of the proposed PSOVA1 model.

Data Sets PSO DE SCA DA GWO CSO HPSO-SSM Catfish-BPSO

Crohn 2.25E-04 4.45E-07 5.04E-09 4.90E-10 9.82E-05 4.42E-08 2.14E-06 6.80E-04
Myeloma 1.35E-05 3.40E-02 1.25E-07 1.26E-06 9.24E-04 8.59E-05 7.27E-05 6.63E-10

Arcene 1.53E-02 3.53E-02 8.75E-01 2.44E-02 1.93E-02 6.16E-01 1.48E-03 4.41E-04
MicroMass 2.47E-04 7.55E-03 8.69E-03 3.50E-04 4.11E-02 1.05E-09 2.12E-04 2.90E-05
Parkinsons 1.65E-03 3.15E-02 6.60E-03 1.99E-05 2.38E-03 3.35E-02 4.69E-02 4.52E-02

Activity 3.93E-06 6.61E-03 1.27E-04 1.40E-05 1.19E-02 4.51E-05 1.05E-03 1.49E-07
Voice 3.21E-02 6.20E-03 9.98E-03 4.48E-02 2.78E-02 9.85E-04 3.35E-02 4.04E-03
Facial

Expression 5.24E-01 8.72E-05 1.23E-03 1.75E-06 5.63E-04 4.14E-05 5.06E-04 4.69E-03

Seizure 3.07E-11 1.16E-03 3.33E-05 2.05E-04 5.49E-01 1.23E-08 7.52E-11 1.23E-07
ALL 7.85E-03 7.75E-01 4.79E-02 2.92E-02 3.45E-03 1.35E-03 3.82E-02 4.76E-01

Heart 1.44E-04 2.16E-02 2.94E-01 2.20E-09 3.15E-02 1.21E-09 3.84E-02 1.29E-06
Ionosphere 1.16E-02 6.10E-01 8.11E-01 1.15E-03 4.18E-02 3.82E-02 2.77E-02 2.06E-04

Wdbc 2.48E-02 5.23E-01 3.02E-05 1.30E-02 3.54E-02 5.44E-09 1.84E-04 1.84E-02

Data sets BPSO MBPSO GPSO MPSOELM MFOPSO BBPSOVA ALPSO

Crohn 1.45E-09 2.47E-05 2.25E-10 7.14E-09 2.94E-05 3.11E-06 4.13E-03
Myeloma 1.44E-08 5.89E-07 1.00E-06 2.53E-08 1.14E-04 1.73E-04 4.49E-07

Arcene 6.08E-04 6.28E-04 5.12E-05 6.38E-04 8.34E-01 2.15E-02 3.18E-03
MicroMass 5.30E-06 1.13E-05 5.31E-03 1.38E-04 6.88E-04 1.99E-02 4.66E-03
Parkinsons 3.93E-02 3.31E-02 4.74E-03 4.31E-04 4.41E-05 3.81E-04 6.72E-03

Activity 1.07E-08 2.12E-08 3.99E-05 2.71E-07 6.55E-06 4.71E-05 9.65E-06
Voice 2.91E-02 1.83E-02 8.87E-01 3.84E-02 4.52E-01 6.03E-01 1.61E-02
Facial

Expression 1.92E-02 3.40E-01 3.56E-02 3.28E-01 4.65E-02 1.45E-02 4.03E-02

Seizure 2.92E-11 2.91E-11 4.85E-10 2.89E-11 3.40E-09 2.96E-09 4.62E-11
ALL 1.98E-03 3.11E-02 1.29E-01 1.77E-02 2.38E-02 3.03E-02 4.75E-02

Heart 2.87E-07 1.26E-07 1.56E-06 4.88E-05 4.85E-02 2.28E-03 9.35E-03
Ionosphere 7.87E-01 4.58E-03 2.04E-02 3.37E-02 2.40E-02 1.22E-01 3.59E-02

Wdbc 1.82E-02 4.16E-03 2.61E-02 4.01E-02 4.90E-02 2.13E-01 4.50E-02
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Table 7. The Wilcoxon rank sum test results of the proposed PSOVA2 model.

Data Sets PSO DE SCA DA GWO CSO HPSO-SSM Catfish-BPSO

Crohn 5.69E-05 2.58E-07 4.33E-09 8.51E-10 4.23E-05 2.57E-08 1.19E-06 2.44E-04
Myeloma 2.30E-07 5.30E-04 1.13E-09 1.12E-08 8.27E-06 2.13E-06 6.73E-07 5.56E-11

Arcene 1.83E-06 5.23E-06 1.85E-03 3.00E-06 2.25E-06 7.92E-04 6.24E-07 1.48E-06
MicroMass 1.43E-06 4.26E-05 2.06E-04 6.32E-06 6.27E-04 5.29E-11 2.36E-06 3.98E-07
Parkinsons 1.48E-03 2.70E-02 2.87E-03 6.40E-05 1.92E-03 1.06E-02 4.84E-02 3.30E-02

Activity 6.47E-08 3.65E-05 1.19E-06 1.79E-07 4.88E-05 1.24E-07 7.41E-06 2.49E-09
Voice 8.81E-03 2.39E-03 3.45E-03 2.01E-02 7.35E-03 1.86E-04 8.08E-03 1.67E-03
Facial

Expression 4.15E-01 2.59E-05 1.04E-03 2.12E-07 3.30E-04 1.14E-04 2.71E-04 6.89E-03

Seizure 2.94E-11 7.60E-11 1.18E-10 1.21E-09 9.69E-04 2.97E-11 2.95E-11 3.98E-11
ALL 2.22E-03 5.08E-01 1.65E-02 1.03E-02 1.00E-03 3.80E-04 1.52E-02 2.86E-01

Heart 6.52E-07 8.33E-07 5.36E-05 1.30E-09 5.29E-06 1.30E-09 1.32E-07 1.09E-08
Ionosphere 2.53E-04 3.50E-02 1.00E-01 7.89E-06 3.26E-04 6.06E-04 5.16E-04 4.17E-06

Wdbc 1.33E-02 3.68E-01 1.84E-05 5.02E-03 1.93E-02 5.09E-09 1.22E-04 1.05E-02

Data sets BPSO MBPSO GPSO MPSOELM MFOPSO BBPSOVA ALPSO

Crohn 1.41E-09 1.23E-05 3.38E-10 6.63E-09 1.64E-05 1.36E-06 1.35E-03
Myeloma 4.06E-10 3.70E-09 1.76E-08 1.21E-09 1.09E-06 3.52E-06 3.78E-09

Arcene 7.05E-07 1.51E-07 1.40E-07 3.06E-07 6.70E-04 4.40E-05 4.58E-07
MicroMass 2.43E-09 9.54E-08 1.13E-05 4.80E-07 9.00E-06 3.26E-04 9.12E-05
Parkinsons 2.97E-02 1.20E-02 5.39E-03 5.00E-05 1.90E-05 2.32E-04 5.81E-03

Activity 6.21E-10 8.34E-10 1.42E-07 4.88E-09 3.97E-08 2.17E-07 6.88E-08
Voice 8.18E-03 7.50E-03 3.97E-01 1.16E-02 1.47E-01 2.22E-01 5.33E-03
Facial

Expression 6.16E-02 4.91E-01 4.89E-02 3.94E-01 4.64E-02 2.83E-02 3.61E-02

Seizure 2.93E-11 2.92E-11 3.04E-11 2.90E-11 2.96E-11 2.95E-11 2.97E-11
ALL 5.91E-04 1.09E-02 5.54E-02 5.70E-03 6.72E-03 1.44E-02 2.55E-02

Heart 5.54E-09 1.76E-08 1.96E-08 1.02E-07 1.10E-04 1.18E-06 1.35E-05
Ionosphere 2.88E-02 5.43E-05 1.26E-04 4.39E-04 2.69E-04 1.66E-03 3.35E-04

Wdbc 4.84E-03 2.25E-03 8.69E-03 1.14E-02 2.00E-02 1.10E-01 1.07E-02

The search strategies in most of the baseline models are monotonous, therefore are
more likely to be trapped in local optima in NP-hard problems, such as feature selection
tasks. Owing to the proposed comprehensive strategies of avoiding the local optima
traps, the search diversity and robustness are significantly enhanced in both proposed PSO
models, therefore the likelihood of ascertaining the global optima. Overall, the statistical
results prove the significant superiorities of both proposed PSO models over the five
classical search methods and ten advanced PSO variants, especially in feature selection
tasks with higher complexities.

5.3.2. Selected Feature Sizes

With respect to the number of selected features, as shown in Table 8, CSO selects the
fewest numbers of features on eight data sets, i.e., Crohn, Myeloma, Arcene, Voice, Facial
Expression, Seizure, ALL and Wdbc, while GWO obtains the smallest feature sizes on
four data sets, i.e., MicroMass, Parkinsons, Activity, and Heart. Owing to the excessive
elimination of essential features, CSO achieves the lowest classification accuracy rates
on the five data sets, i.e., Micromass, Voice, ALL, Wdbc, and Crohn. This indicates that
CSO falls into local optima on the above data sets during training, which leads to the
stagnation in performance. According to the fitness evaluation illustrated in Equation
(28), this phenomenon in turn results in the severe removal of features, in order to further
improve the fitness scores. As such, very small feature subsets are identified during the
feature selection process, which may not be able to capture sufficient characteristics, leading
to a severe performance deterioration in the test stage. On the contrary, the proposed PSO
variants succeed in achieving an efficient trade-off between eliminating redundant features
and improving performance. They select comparatively smaller feature subsets than those
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from many search methods in most of the test cases, while achieving the highest accuracy
rates and the F-score results on all thirteen test data sets. In particular, the proportions of
the eliminated features by PSOVA2 are 65.46%, 66.22%, 65.88%, 63.32%, 63.51%, 66.93%,
64.84%, and 67.54%, on eight high-dimensional data sets, i.e., Crohn, Myeloma, Arcene,
MicroMass, Parkinsons, Activity, Voice, and Facial Expression, respectively. A similar
feature elimination capability is also depicted by PSOVA1. In short, the empirical results
indicate the significant capabilities of the proposed PSO models in removing irrelevant and
noisy features while identifying the most discriminative and effective ones without falling
into local optima traps during the search process.

Table 8. The mean results of the number of selected features over 30 runs.

Data Sets PSO DE SCA DA GWO CSO HPSO-SSM Catfish-BPSO Prop.
PSOVA1

Prop.
PSOVA2

Crohn 9468.8 8942.4 7594.7 8423.4 6292.6 1151.5 8846.2 9364.5 7026.6 7697.6
Myeloma 5654.6 5130.2 4462.9 4740.1 3680.3 1633.5 5236.9 5476.4 4059.0 4264.5

Arcene 3976.1 4046.1 3388.6 3695.4 2770.4 2545.3 3967.2 4424.8 3395.0 3412.4
MicroMass 548.6 527.2 439.8 485.9 330.6 1123.0 554.3 588.8 461.3 476.8
Parkinsons 323.3 310.2 266.3 283.2 209.8 492.0 323.6 361.6 273.1 274.8

Activity 237.6 222.9 184.0 208.2 146.3 394.4 232.7 255.7 194.0 185.5
Voice 128.0 121.4 108.3 118.1 86.7 65.0 122.0 140.2 108.6 109.5

Facial Ex-
pression 131.4 112.8 88.4 72.0 80.7 60.1 84.6 121.6 92.7 97.7

Seizure 61.0 38.4 25.3 33.4 19.7 5.1 58.0 39.7 19.4 12.2
ALL 26.5 23.0 18.4 29.5 12.8 9.5 25.4 28.8 19.0 15.8

Heart 28.8 23.9 20.9 27.8 17.8 56.7 26.4 31.9 21.8 24.6
Ionosphere 12.5 9.3 9.6 11.8 9.4 9.6 11.3 13.1 10.3 6.9

Wdbc 9.9 5.5 3.9 9.4 4.73 3.4 4.7 10.4 9.8 7.9

Data sets BPSO MBPSO GPSO MPSO-
ELM

MFO-
PSO BBPSO-VA ALPSO Prop.

PSOVA1
Prop.

PSOVA2

Crohn 11,134.8 11,106.7 10,030.2 10,188.4 6886.1 9093.0 9178.7 7026.6 7697.6
Myeloma 6298.8 6299.0 5817.9 5924.5 4073.2 5299.6 5191.3 4059.0 4264.5

Arcene 4977.2 4974.0 4484.6 4541.9 3014.3 4078.2 4051.2 3395.0 3412.4
MicroMass 646.2 641.5 611.5 619.5 439.6 562.1 569.5 461.3 476.8
Parkinsons 378.1 374.4 356.4 360.8 260.2 327.0 310.0 273.1 274.8

Activity 277.2 277.8 261.4 272.9 195.1 237.8 241.7 194.0 185.5
Voice 152.9 148.2 140.0 147.3 101.9 131.1 134.4 108.6 109.5

Facial Ex-
pression 146.2 142.0 129.4 135.2 95.7 122.6 115.7 92.7 97.7

Seizure 80.1 74.5 57.2 68.6 38.7 49.9 54.4 19.4 12.2
ALL 35.4 33.3 27.9 33.6 23.1 23.7 31.6 19.0 15.8

Heart 34.0 30.9 32.0 35.0 25.1 27.4 32.0 21.8 24.6
Ionosphere 12.5 10.6 9.1 13.3 8.6 9.1 9.9 10.3 6.9

Wdbc 10.8 6.8 9.1 11.8 7.6 8.6 9.6 9.8 7.9

5.3.3. Convergence Rates and Computational Costs

The mean convergence curves over a set of 30 runs for each search method on two
high-dimensional data sets, i.e., Myeloma and Crohn, respectively, are provided to indicate
model efficiency in the training stage.

As illustrated in Figure 4 (Myeloma) and Figure 5 (Crohn), both proposed PSO mod-
els (two dash lines) achieve promising results. Specifically, the proposed PSO models
illustrate faster convergence rates than those from the baseline models, while maintaining
the momentum to improve the fitness score through the entire search course. PSOVA2
performs better than PSOVA1, especially during the later stage of the search course. The
proposed exemplar breeding mechanisms and diverse attraction operations with non-linear
parameters account for the superior capabilities of PSOVA2 in preserving diversity and
overcoming local stagnation. Moreover, CSO illustrates faster convergence rates than those
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of the proposed models, but at the expense of excessive elimination of a large number of
features. It is likely that CSO is trapped in local optima, and its performance becomes stag-
nant. This is supported by its deterioration in classification accuracy and F-measure results,
as indicated in Tables 4 and 5. On the contrary, the proposed models achieve comparatively
a balanced trade-off between feature elimination and performance improvement.
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Since fitness evaluation is the most time-consuming procedure during the search
cycle, the computational load of PSOVA1 and PSOVA2 primarily hinges on the population
size × the maximum number of iterations. Note that all the search methods employ the
same maximum number of function evaluations during the training stage. As such, all
the search methods have a similar computational cost in principle, which is governed by
the time taken for fitness evaluation. On the other hand, the internal search mechanisms
are different from one algorithm to another, therefore the computational cost of each
algorithm differs slightly. Table 9 depicts the average computational costs during training
with respect to the proposed PSO models and other search methods over 30 runs on the
Crohn, Myeloma, and Seizure data sets. Since they have either high-dimensional features
or large sample sizes, these data sets are selected for computational cost analysis. The
computational costs of all the methods pertaining to other data sets may vary in accordance
with the training sample sizes and dimensions. As indicated in Table 9, in most of the cases,
both proposed PSO models show comparatively lower or comparable computational costs
in comparison with those from most of the baselines methods. CSO, GWO, and PSOVA2
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achieve the most efficient training computational costs for Crohn, Myeloma, and Seizure
data sets, respectively.

Table 9. The mean training computational costs over a set of 30 runs (in seconds).

Data
Sets PSO DE SCA DA GWO CSO HPSO-

SSM
Catfish
BPSO

Prop.
PSOVA1

Prop.
PSOVA2

Crohn 3.60E-01 3.16E-01 3.57E-01 3.50E-01 2.96E-01 2.91E-01 3.18E-01 3.25E-01 3.47E-01 3.17E-01
Myeloma 3.00E-01 2.78E-01 3.10E-01 2.90E-01 2.48E-01 3.00E-01 2.80E-01 2.88E-01 2.90E-01 2.66E-01
Seizure 1.24E+01 1.24E+01 1.25E+01 1.25E+01 1.25E+01 1.25E+01 1.33E+01 1.24E+01 1.26E+01 1.16E+01

Data sets BPSO MBPSO GPSO MPSO-
ELM

MFO-
PSO

BBPSO
VA ALPSO Prop.

PSOVA1
Prop.

PSOVA2

Crohn 3.83E-01 3.55E-01 5.38E-01 3.80E-01 4.90E-01 4.30E-01 4.36E-01 3.47E-01 3.17E-01
Myeloma 3.17E-01 3.09E-01 3.98E-01 3.20E-01 3.59E-01 3.47E-01 3.57E-01 2.90E-01 2.66E-01
Seizure 1.26E+01 1.24E+01 1.27E+01 1.24E+01 1.26E+01 1.25E+01 1.25E+01 1.26E+01 1.16E+01

5.3.4. Evaluation of The Proposed Mechanisms in PSOVA1 and PSOVA2

We subsequently demonstrate the efficiency of each proposed mechanisms in both
PSOVA1 and PSOVA2 using the Seizure and Voice data sets. The mean classification
accuracy rates over 30 runs are shown in Table 10. The empirical results indicate that each
strategy in each proposed model is able to drive the search out of stagnation and enhance
the feature selection performance. The results conform to the principles of the introduced
mechanisms. In particular, the exemplar breeding mechanism and the versatile search
operations using compound sine, cosine, and hyperbolic tangent functions in PSOVA2 are
comparatively more effective than the modified PSO operation with ameliorated optimal
signals and spiral-based local exploitation in PSOVA1. This is primarily owing to the
employment of diverse exemplars to lead the search in each dimension, as well as the
adoption of versatile search courses to rectify the particle positions in PSOVA2.

Table 10. The mean classification accuracy rates over 30 runs for the mechanisms in PSOVA1 and PSOVA2 using the Seizure
and Voice data sets.

PSOVA1
Mean Classification Accuracy Rate

PSOVA2
Mean Classification Accuracy Rate

Seizure Voice Seizure Voice

PSO 0.8459 0.8237 PSO 0.8459 0.8237
PSO + Leader
enhancement 0.8475 0.8281 PSO + Leader

enhancement 0.8463 0.8254

PSO + Leader & worse
solution enhancement 0.8510 0.8316 PSO + Leader & worse

solution enhancement 0.8495 0.8298

Leader & worse
solution enhancement
+ ameliorated signals

0.8672 0.8491
Leader & worse

solution enhancement
+ exemplar breeding

0.8733 0.8535

Leader & worse
solution enhancement

+ ameliorated signals +
spiral search

0.8698 0.8526

Leader & worse
solution enhancement
+ exemplar breeding +
coefficient generation

0.8860 0.8632

In comparison with the original PSO model and PSOVA1, instead of using single
leader or rectified separate global and personal best experiences to guide the search process,
an exemplar generation scheme with adaptive aggregation of the local and global optimal
signals is used in PSOVA2. As such, the impact of the local optimal indicators is more
significant at the beginning stage of the search process and the influence of the global
best solution is more dominating towards the final iterations. Such an exemplar breeding
scheme in PSOVA2 is more capable of overcoming stagnation. Unlike PSOVA1 where
the search mainly focuses on a modified PSO algorithm, PSOVA2 employs four search
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strategies implemented using refined sine, cosine, and hyperbolic tangent formulae for the
position updating procedure to increase search diversification.

The mechanisms proposed in both PSO models work in a collaborative manner to
diversify the search process and mitigate premature convergence. In PSOVA1, when
the modified PSO algorithm with rectified optimal signals becomes stagnant over the
iterations, the local exploitation mechanism based on the spiral search action is able to
further explore the near-optimal regions and drive the search out of stagnation. In PSOVA2,
when the customized sine-based search operation is trapped in local optima, other search
mechanisms such as cosine and hyperbolic tangent oriented search actions are able to
extend the search territory to overcome early stagnation. In short, the empirical results
indicate that the proposed mechanisms in each model offer great efficiency in mitigating
premature convergence, leading to great capabilities in accelerating convergence while
preserving diversity.

Besides the above, we further evaluate the efficiency of each proposed strategy in
PSOVA1 and PSOVA2 for tackling minimization problems using a set of 11 benchmark
functions. They include four multimodal functions (i.e., Ackley, Griewank, Rastrigin,
and Powell) and seven unimodal landscapes (i.e., Dixon-Price, Rotated Hyper-Ellipsoid,
Rosenbrock, Sphere, Sum of Different Powers, Sum Squares, and Zakharov). The definitions
of these benchmark functions are provided in [23,34,50,71]. The following experimental
settings are employed for model evaluation, i.e., population size = 30, dimension = 30,
maximum number of iterations = 500, and trials = 30. Table 11 illustrates the mean,
maximum, minimum, and standard deviation results for all the test functions with the
best results highlighted in bold. As shown in Table 11, both the mean and minimal results
over 30 runs indicate that our models with individual or composite proposed mechanisms
all significantly outperform the standard PSO model. For each of the proposed PSO
variants, sequential aggregation of the proposed mechanisms amounts to better search
efficiencies and capabilities, as evidenced by the enhanced performances. Moreover,
PSOVA2 outperforms PSOVA1 on 9 out of 11 test functions. Overall, the empirical results
of the test functions demonstrate great superiority of the proposed models. The search
mechanisms in PSOVA1 and PSOVA2 work in cooperation to achieve the best performances
owing to the advanced trade-offs between diversification and intensification.
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Table 11. Evaluation results for 11 benchmark functions with dimension = 30.

PSOVA1 PSOVA2

Standard
PSO

PSO+
Mirroring

1 (Leader En-
hancement)

1 + 2 (Worse
Enhancement)

1+2+3 (Diverse
Signals)

1+2+3+4
(Spiral)

1 (Leader En-
hancement)

1 + 2 (Worse
Enhancement)

1+2+3
(Exemplar)

1+2+3+4
(Coefficient)

Ackley

MEAN 1.97E+01 1.76E+01 1.62E+01 7.19E+00 3.12E+00 1.69E+00 9.33E+00 6.79E+00 1.37E+00 9.07E-01
MIN 1.89E+01 1.46E+01 5.98E+00 5.15E+00 2.11E+00 4.92E-01 2.50E+00 3.67E+00 2.29E-01 1.36E-01
MAX 1.98E+01 1.87E+01 1.99E+01 9.47E+00 4.48E+00 2.44E+00 1.44E+01 8.77E+00 2.43E+00 2.11E+00
STD 1.68E-01 9.73E-01 4.81E+00 1.03E+00 4.77E-01 4.95E-01 3.05E+00 1.14E+00 5.90E-01 6.28E-01

Dixon

MEAN 2.22E+05 1.17E+03 7.25E+02 6.81E+01 3.98E+01 9.40E+00 1.12E+02 5.09E+01 1.15E+01 6.49E+00
MIN 1.40E+01 1.58E+02 1.03E+02 4.82E+00 8.32E+00 1.66E+00 2.60E+00 4.67E+00 1.88E+00 1.39E+00
MAX 9.77E+05 2.85E+03 2.91E+03 2.01E+02 1.56E+02 2.72E+01 3.40E+02 3.44E+02 5.45E+01 3.46E+01
STD 2.45E+05 9.10E+02 5.37E+02 4.67E+01 3.29E+01 5.27E+00 1.38E+02 6.81E+01 1.17E+01 6.74E+00

Griewank

MEAN 1.24E+02 1.52E+01 4.54E+00 9.28E-01 4.11E-01 1.76E-01 3.79E+00 9.86E-01 1.76E-02 6.28E-03
MIN 1.04E+00 3.47E+00 1.03E+00 5.99E-01 2.21E-02 2.09E-02 1.40E-01 2.61E-01 4.41E-03 2.21E-03
MAX 2.71E+02 3.16E+01 1.75E+01 1.15E+00 8.34E-01 5.76E-01 9.10E+01 2.13E+00 4.55E-02 1.46E-02
STD 6.48E+01 6.98E+00 3.70E+00 1.66E-01 2.47E-01 1.28E-01 1.65E+01 4.14E-01 1.07E-02 3.45E-03

Rastrigin

MEAN 3.24E+02 2.43E+02 2.23E+02 1.14E+02 8.54E+01 5.79E+01 1.30E+02 1.07E+02 7.71E+01 6.43E+01
MIN 2.69E+02 1.85E+02 1.48E+02 2.28E+01 4.07E+01 2.73E+01 7.59E+01 5.65E+01 4.13E+01 3.45E+01
MAX 3.96E+02 3.09E+02 3.08E+02 2.28E+02 1.31E+02 9.66E+01 1.78E+02 1.70E+02 1.14E+02 9.44E+01
STD 3.64E+01 2.94E+01 4.05E+01 4.59E+01 2.17E+01 1.84E+01 2.63E+01 2.79E+01 1.86E+01 1.47E+01

Rothyp

MEAN 1.02E+05 4.39E+04 1.63E+04 1.04E+04 7.69E+02 5.94E+00 1.30E+04 4.41E+03 5.47E+00 2.11E+00
MIN 1.70E+04 2.12E+04 4.23E+03 2.99E+03 2.52E+02 7.97E-01 3.15E+00 2.00E+01 1.29E+00 4.93E-01
MAX 2.07E+05 8.25E+04 3.35E+04 2.48E+04 1.55E+03 1.98E+01 5.90E+04 2.56E+04 1.86E+01 4.78E+00
STD 6.31E+04 1.51E+04 7.49E+03 4.72E+03 3.21E+02 5.14E+00 1.64E+04 6.36E+03 3.95E+00 1.08E+00

Rosenbrock

MEAN 6.21E+05 2.63E+04 1.12E+04 9.80E+03 3.43E+02 7.43E+01 2.35E+04 2.94E+03 8.48E+01 6.56E+01
MIN 2.84E+05 9.42E+03 3.54E+03 2.76E+03 1.64E+02 2.52E+01 5.20E+01 8.18E+01 3.13E+01 3.10E+01
MAX 1.47E+06 5.45E+04 3.95E+04 2.03E+04 7.57E+02 1.58E+02 8.17E+04 2.52E+04 1.90E+02 2.21E+02
STD 2.32E+05 1.19E+04 8.35E+03 4.72E+03 1.50E+02 4.07E+01 2.90E+04 6.26E+03 4.91E+01 5.24E+01

Sphere

MEAN 2.81E+01 1.42E+01 8.48E+00 4.04E+00 3.76E-01 9.16E-02 3.53E+00 8.80E-01 6.10E-02 4.00E-02
MIN 1.15E-02 5.75E+00 3.17E+00 1.96E+00 1.79E-01 2.90E-02 6.78E-03 3.18E-05 2.70E-02 2.24E-02
MAX 7.87E+01 2.87E+01 1.81E+01 7.26E+00 7.48E-01 2.07E-01 2.63E+01 2.62E+01 1.08E-01 7.52E-02
STD 2.47E+01 5.35E+00 3.33E+00 1.45E+00 1.39E-01 5.02E-02 9.06E+00 4.79E+00 2.26E-02 1.33E-02
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Table 11. Cont.

PSOVA1 PSOVA2

Standard
PSO

PSO+
Mirroring

1 (Leader En-
hancement)

1 + 2 (Worse
Enhancement)

1+2+3 (Diverse
Signals)

1+2+3+4
(Spiral)

1 (Leader En-
hancement)

1 + 2 (Worse
Enhancement)

1+2+3
(Exemplar)

1+2+3+4
(Coefficient)

MIN 1.15E-02 5.75E+00 3.17E+00 1.96E+00 1.79E-01 2.90E-02 6.78E-03 3.18E-05 2.70E-02 2.24E-02
MAX 7.87E+01 2.87E+01 1.81E+01 7.26E+00 7.48E-01 2.07E-01 2.63E+01 2.62E+01 1.08E-01 7.52E-02
STD 2.47E+01 5.35E+00 3.33E+00 1.45E+00 1.39E-01 5.02E-02 9.06E+00 4.79E+00 2.26E-02 1.33E-02

Sumpow

MEAN 7.07E-02 5.68E-02 1.28E-02 4.52E-03 9.81E-05 1.24E-06 3.55E-02 5.02E-03 2.87E-05 2.13E-05
MIN 9.19E-04 1.10E-03 6.47E-04 1.13E-04 2.22E-06 1.37E-09 3.54E-03 1.23E-04 2.27E-06 1.21E-06
MAX 8.16E-01 1.82E-01 6.53E-02 1.36E-02 4.86E-04 1.50E-05 1.80E-01 3.68E-02 1.65E-04 7.90E-05
STD 1.59E-01 4.33E-02 1.67E-02 4.38E-03 9.77E-05 2.85E-06 3.53E-02 8.04E-03 2.98E-05 1.78E-05

Zakharov

MEAN 6.27E+02 4.11E+02 3.25E+02 1.70E+02 1.01E+02 8.27E+01 2.99E+02 1.56E+02 9.61E+01 7.39E+01
MIN 5.53E+02 3.38E+02 2.03E+02 7.22E+01 5.65E+01 5.07E+01 2.00E+02 6.55E+01 5.58E+01 4.81E+01
MAX 7.63E+02 4.52E+02 4.32E+02 2.90E+02 1.52E+02 1.49E+02 3.84E+02 2.19E+02 1.34E+02 1.04E+02
STD 5.56E+01 2.81E+01 6.42E+01 4.41E+01 2.20E+01 2.07E+01 4.57E+01 4.12E+01 1.81E+01 1.46E+01

Sumsqu

MEAN 6.82E+02 4.26E+02 2.38E+02 6.48E+01 5.13E+00 2.95E+00 2.02E+02 4.40E+01 3.99E+00 2.07E+00
MIN 7.92E+01 2.26E+02 1.22E+02 2.56E+01 1.65E+00 6.65E-01 1.09E-02 4.40E-02 1.16E+00 6.20E-01
MAX 1.34E+03 7.25E+02 3.63E+02 1.45E+02 1.04E+01 8.44E+00 4.98E+02 3.47E+02 1.12E+01 9.05E+00
STD 3.35E+02 1.15E+02 7.35E+01 2.83E+01 2.28E+00 1.86E+00 1.39E+02 7.25E+01 2.90E+00 1.67E+00

Powell

MEAN 4.91E+03 2.85E+03 5.03E+02 4.43E+02 3.72E+01 1.91E+01 3.08E+02 2.34E+02 2.63E+01 1.02E+01
MIN 5.46E+02 4.94E+02 4.01E+02 3.20E+02 1.89E+00 9.97E-01 2.87E-01 1.47E+00 7.82E+00 1.83E+00
MAX 8.11E+03 6.87E+03 6.19E+02 5.62E+02 1.34E+02 9.65E+01 2.96E+03 1.88E+03 9.61E+01 3.90E+01
STD 2.21E+03 1.96E+03 5.86E+01 6.24E+01 2.74E+01 1.89E+01 6.18E+02 4.20E+02 1.83E+01 7.72E+00
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5.3.5. Discussion

The empirical results of classification performance, feature elimination effects, as well
as convergence rates all indicate the superiority of the proposed PSO variants over other
baseline methods in undertaking feature selection tasks, i.e., constructing simplified but
valid feature subsets while improving classification performance.

Both proposed PSOVA1 and PSOVA2 models adopt hybrid leader signals and diver-
sified search operations to overcome local optima traps. In essence, PSOVA2 inherits all
merits of PSOVA1. It further endows the particles with a higher degree of freedom in terms
of (1) the choice of destination signals, and (2) the choice of movements to approach the
destination solutions. Besides the generation of the combined best leader by adaptively
incorporating both local and global best signals, PSOVA2 implements multiple movement
operations towards the destination signal where the search coefficients are delivered by
four distinctive yet complementary nonlinear functions. These search mechanisms offer
the choices of either a large jump to propel the convergence or a gradual stroll to intensify
the exploitation, as well as the choices of either marching towards or distancing from the
destination signals. As a result, PSOVA2 is likely to attain global optimality successfully,
while preventing stagnation at the local optima traps effectively.

In contrast, for the employed baseline classical search methods, certain limitations
have been identified in previous studies, as widely discussed in the literature. Specifically,
the search capability of DE can be severely compromised, owing to the failure of gener-
ating promising solutions within a limited number of function evaluations [56]. GWO
demonstrates a strong bias towards the origin of the coordinate system attributed by its
simulated model, as well as stagnation at the local optima traps owing to the poor explo-
ration capability [72]. DA suffers from a poor exploitation capability, owing to the fact that
it does not keep track of the elite solutions [2,61]. In addition, most of the existing PSO
variants are equipped with improvements from the perspective of either exploration or
exploitation, rather than comprehensively taking into account the trade-off between both
operations. Overall, the proposed PSO models demonstrate great superiorities over the
baseline methods in attaining the global optimality, owing to a delicate consideration of
both global exploration and local exploitation. This is realised through distraction with
the elicit solutions as well as detection with diverse steps and possible movement in all
directions, respectively. Therefore, both proposed PSO models are capable of improving
classification performance by identifying the most discriminative features and eliminating
noisy and irrelevant ones, as evidenced by the empirical results along with the statistical
tests. Moreover, PSOVA2 performs better than PSOVA1 in undertaking feature selection
problems owing to the enhanced diversity induced by a greater freedom in choosing the
exemplar signals to guide the search in each dimension, as well as a greater versatility in
ways of approaching such destination solutions.

6. Conclusions

In this research, we proposed two PSO models, namely PSOVA1 and PSOVA2, for
undertaking a variety of feature selection tasks. Each of the proposed models incorporates
a number of distinctive search mechanisms to elevate exploitation of undiscovered search
regions, guided by hybrid leader signals. These formulated strategies in each model work
cooperatively to produce diverse search behaviors in terms of search flights and directions.
In particular, PSOVA2 elevates search diversity by adopting adaptive exemplars as well as
four search operations where the search coefficients are implemented using refined sine,
cosine, and hyperbolic tangent functions to overcome stagnation.

Evaluated using a total of 13 data sets, with diverse dimensionalities from 30 to
22,283, both models outperform five classical search methods and ten advanced PSO
variants significantly in most test cases, as evidenced by the empirical and statistical
test results. Specifically, PSOVA1 outperforms all the baseline methods for five data sets
(Crohn, Myeloma, MicroMass, Parkinsons, and Activity), while PSOVA2 outperforms all
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the baseline methods for eight data sets (Crohn, Myeloma, Arcene, MicroMass, Parkinsons,
Activity, Seizure and Heart), with statistical significance.

In future directions, other hybrid leader breeding mechanisms will be explored to
further enhance performance. Moreover, we also aim to evaluate the proposed models
using complex computer vision tasks, e.g., deep architecture generation for object detection
and classification [51,73–75] as well as image description generation [76,77].
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