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Mutations play a fundamental role in the development of cancer, and many create targetable

vulnerabilities. There are both public health and basic science benefits from the determina-

tion of the proportion of all cancer cases within a population that include a mutant form of a

gene. Here, we provide the first such estimates by combining genomic and epidemiological

data. We estimate KRAS is mutated in only 11% of all cancers, which is less than PIK3CA

(13%) and marginally higher than BRAF (8%). TP53 is the most commonly mutated gene

(35%), and KMT2C, KMT2D, and ARID1A are among the ten most commonly mutated driver

genes, highlighting the role of epigenetic dysregulation in cancer. Analysis of major cancer

subclassifications highlighted varying dependencies upon individual cancer drivers. Overall,

we find that cancer genetics is less dominated by high-frequency, high-profile cancer driver

genes than studies limited to a subset of cancer types have suggested.
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It has long been recognized that sequencing the genomes from
cancer patients would identify those genes relevant to human
health and disease1. Genomic sequencing of DNA from cancer

patient tumor samples has now characterized the relative abun-
dances of mutations for all genes and for many different forms of
cancer2–7. The identification of commonly mutated genes has
been important for drug development because several oncopro-
teins have proven to be valuable drug targets8–14.

A better understanding of which genes are most commonly
mutated across all cancers, and at what frequency, could help
prioritize genes and pathways in a manner that increases public
health benefits. For example, the RAS oncogenes are widely
believed to be mutated in ~ 30% of all human cancers. The
National Cancer Institute created its Ras Initiative to focus upon
RAS because of the perceived, high, unmet burden of RAS mutant
cancers15. Along these lines, a better understanding of the burden
from known cancer drivers may help better prioritize research
funding.

An improved understanding of how common different muta-
tions are in cancer patients could also benefit drug development
and personalized medicine. Clinical trials are increasingly
employing a basket-trial format16,17 in which mutated forms of a
protein are treated equivalently across different types of cancer.
For example, larotrectinib and entrectinib both received FDA
approval, in part, on the basis of basket-trial data that demon-
strated efficacy across a variety of tumor types17–19. Additionally,
pembrolizumab received FDA approval based on basket-trial
data17,20,21. As FDA approvals may be increasingly based upon
mutation in a cancer-type agnostic manner18,20, the benefit of
finding mutations that are collectively common across different
tissues increases. Progress in personalized medicine is also being
made through the off-label utilization of FDA-approved agents in
attempts to inhibit targetable variants in forms of cancer other
than those specified in the current approval(s)22–25. An improved
characterization of the overall prevalence of mutations in targe-
table genes may help with the design of such personalized med-
icine clinical trials.

Although the proportion of patient tumor samples with a gene
mutation is readily available for many specific types of cancer and
also from multiple pan-cancer studies that combine samples from
a variety of cancers26–28, the field does not yet have estimates for
the overall percentage of cancer patients in a population that
harbor a mutated form of a specific gene. That accurate mutation
prevalence values across all cancers are not available may be
surprising at first glance because it may seem that this informa-
tion is readily available in resources like cBioPortal29,30,
COSMIC31, TCGA26,27, AACR GENIE32, and MSKCC impact33.
Although several of these resources can provide a value for the
percentage of samples with a mutation in a given gene, the
representation of different cancers in these resources is not
designed to be proportional to the relative burden of those can-
cers within the population.

If the frequencies of mutations for each gene within individual
types of cancer were weighted by the relative abundances of each
cancer it would be possible to calculate the overall proportion of
cancers within a population that have a gene mutated. (Note: we
will use the term mutation proportion to refer to this population-
level probability of observing a mutation within a cancer patient’s
tumor.) The National Cancer Institute (NCI) Surveillance, Epi-
demiology, and End Results (SEER) Program has tracked cancer
incidence within the USA since the mid 1970’s34. These data are
utilized in the annual cancer epidemiology survey reported by the
American Cancer Society35. However, it is not possible to simply
weight mutation frequencies from cancer genomics studies by the
number of cases of that same cancer observed epidemiologically
due to a lack of consistency in cancer classification system

utilization in genomics and epidemiology (Fig. 1). SEER char-
acterizes each cancer by two International Classification of Dis-
eases for Oncology, third revision (ICD-O-3) codes36. One
specifies the anatomical location of the site of origin, and the
other specifies the tumor histology, and many cancers require
both to be uniquely classified. In contrast, many cancer genomics
studies do not provide ICD-O-3 codes for their samples but
rather describe their pathological diagnosis with broad general
terms, such as breast cancer or pancreatic adenocarcinoma.

Here, we calculate and present the estimated proportion of all
cancers that harbor one or more mutations within each gene of
the genome. We do this by integrating epidemiological and
genomic data. We overcome the obstacle created by a lack of
consistency in cancer classification systems by developing and
then implementing a process for mapping between these two data
types. Our results reveal that specific cancer driver mutations are
much less common than believed, with several high-profile
oncogenes being much less common than routinely stated.

Results
Development of ROSETTA. In order to integrate cancer geno-
mic data with SEER epidemiological data, we developed an
approach to interconvert between the different nomenclatures
used to label cancer diagnoses. We did this by creating ROSETTA
(Reclassification Of Sequencing and Epidemiological Tumor Type
Annotations). ROSETTA is effectively an alternative classification
system that maps to each of the other two classification systems,
and it thereby enables the integration of epidemiological and
genomic data (Supplementary Document 1; Supplementary
Software 1). ROSETTA categories were created by grouping
similar ICD-O-3 classifications within a single category, just as a
cancer genomics study may focus on one general form of cancer
(i.e., lung adenocarcinoma) where the collection of samples pools
from 25 or more of the detailed ICD-O-3 adenocarcinoma sub-
types that are utilized in epidemiological records.

Our ROSETTA categories have both biological and pragmatic
influences. Groupings are based on biological factors that are
already incorporated into the overall organization of ICD-O-3
codes. The granularity of a grouping is also influenced by choices
that were made in previous cancer sequencing studies. For
example, ROSETTA categories map broadly onto SEER categories
when the corresponding sequencing studies are very broad and
cannot be subdivided on the basis of metadata. When genomic
studies can be further subdivided on the basis of included
metadata, multiple ROSETTA classification terms may be utilized
for a single genomics study to increase the resolution of the
mapping between data sets. Our approach results in 370 different
cancer classification categories of varying levels of granularity.
The mixed granularity with how finely cancers are subdivided in
ROSETTA suggests that the number of ROSETTA categories
should not be used as a metric of the number of types of cancer at
any one level of detail but should rather be considered a metric of
the scale of this tool that enables genomic and epidemiological
integration.

Reclassification of epidemiological data by ROSETTA. We
utilized SEER epidemiological data that tracks malignant cancer
diagnoses between the years 2000 and 2017, with a regional dis-
tribution that covers approximately 25% of the US population34

(Fig. 2a). We considered the proportions of cancers diagnosed in this
population to be a reasonable estimate of the proportions of cancers
diagnosed across the entire US population; supporting our assertion
is that the annual ACS epidemiological estimates for nationwide
cancer incidence35 correlate very well with these data, with Pearson’s
r= 0.98 and p < 0.00001 (Fig. S1). Overall, this SEER dataset
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comprises more than seven million different cancer diagnoses, with
each diagnosis specified by one of 670 ICD-O-3 malignant cancer
histology (morphology) codes and by one of more than 100 ICD-O-3
site (anatomical location or topography) codes (Fig. 2a). We re-
classified the histological diagnoses from epidemiological studies in
accordance with ROSETTA and performed quality control checks at
different intervals of processing to ensure the validity of our data
processing (Fig. S2).

After ROSETTA reclassification, we found the total cancer
incidence for each cancer and formatted these values as a vector
that provided the proportion of all cancers within each
ROSETTA category (Supplementary Data 1). The five most
common cancer types were breast carcinoma, prostate cancer,
colorectal adenocarcinoma, lung adenocarcinoma, and malignant
melanoma, which together comprised more than 50% of all

cancer diagnoses. The ten most abundant categories comprised
68.7% of all cancer diagnoses. Of note, some pan-cancer studies
do not include samples from each of the ten most abundant types
of cancer26,37.

Reclassification of genomic studies by ROSETTA and pooled
analysis. For cancer sequencing data, we included exomes from
19,181 cancer patients that were a part of 139 different cancer
sequencing studies (Fig. 2a). We obtained mutation calls for
exome-based genomic studies that were previously performed on
samples from human cancer patients. A complete list of studies
utilized is provided in Supplementary Data 2. We manually
curated and assigned ROSETTA codes to sequenced samples on
the basis of the attached metadata that revealed the finer histo-
pathology of the sample (Fig. S2). We then automated the
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recording of which genes were mutated at least once with either a
missense mutation, nonsense mutation, or short indel for each
sample, maintaining these counts within each sample’s assigned
ROSETTA classification. As our goal was to tabulate the pro-
portion of cancer patients who have a gene mutated (or not), we
counted the patient sample as mutated whether it had a single
mutation or multiple mutations within that same gene. When
multiple samples from the same patient had been sequenced, we
included only the original sample in our analysis. Further, some
cancer genomics studies aggregate previously published samples
along with their new samples. To avoid double counting of the

same sample, we identified overlapping samples between studies
on the basis of patient and sample identification classifiers, and
we only included mutation calls from the most recent study in
our analysis.

There are a wide variety of ways that a gene can be mutated,
including mutations both to intronic and exonic regions38,39. In
our present analysis, we focus on mutations that alter gene coding
and can be reliably detected at a high rate in exome data,
including missense, nonsense, and indel mutations. We highlight
that our use of the term mutation in this study is limited to these
types of mutations, and that we are not including gene fusions,
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intronic (e.g., splice site) mutations, or copy number mutations
(i.e., amplifications or deletions). Now that we have developed
and presented ROSETTA, our same approach for integrating
epidemiological data with genomic data could be applied to other
types of genomic data and to other forms of mutations in future
studies.

Evaluation of cancer-type coverage and comparison with pre-
vious pan-cancer studies. With both SEER and cancer genomics
re-classified according to ROSETTA, it was possible to integrate
these data. We estimated the overall proportion of mutations to
any gene within the cancer patient population as the sum of
products of the gene mutation proportion in a cancer type with
the percentage of all cancer incidences that is due to that cancer
type (Fig. S2).

Even though there are many different types of cancer, the more
common forms of cancer make up a disproportionately large
fraction of all cancers. We found that we had sequencing data
representative of 93% of cancer cases (Fig. 2B). In our estimates
provided here, we consider the epidemiologically weighted
mutation proportion from this 93% of diagnoses to approximate
the mutation frequencies for the remaining 7% of cancer
diagnoses for which genomic sequencing data is not readily
available. We note that a similar but stronger assumption is
implicit to other pan-cancer and pooled analyses that do not
weigh for epidemiological rates of cancer and that include a
smaller percentage of cancer types. We also note that further
sequencing of the additional 7% of cancer diagnoses will
eliminate the need for this assumption, and will reveal whether
this assumption had a biologically meaningful impact on overall
estimates.

We compared our weighted mutation proportions to two
(unweighted) TCGA pan-cancer analyses of gene mutation inci-
dences. The first pan-cancer TCGA analysis by Kandoth et al.26 had
representative sequencing data for 52% of cancer cases (Fig. 2b). The
number of samples per cancer had poor proportionality to overall
cancer frequencies (Fig. 2c). We compared mutation frequencies of
the 125 protein-coding genes for which the Kandoth et al. analysis
concluded were cancer driver genes and also provided pan-cancer
mutation frequencies26. Although there is good general agreement
between the proportions of samples with mutations in their dataset
and our epidemiologically weighted estimates, a comparison of each
study’s results revealed that one would be making an error if one
considered the unweighted pan-cancer analysis to be representative
of the mutation proportions in the general cancer patient population.
For example, the unweighted studies found VHL and BRAF
mutations incident at 7 and 2%, respectively, while our weighted
study estimates these genes to be mutated in 1 and 8% of the cancer
population. These differences most likely follow from the fact that the
TCGA pan-cancer dataset was not designed to be proportional to
cancer incidence, and cancers with these mutations were over-
represented and underrepresented, respectively, relative to other
cancer types (Fig. 2d).

The more recent TCGA pan-cancer analysis by Bailey et al.27 had
representative sequencing data for 85% of cancer cases (Fig. 2b), and
the number of sequenced samples of each cancer was a more
proportionate representation of cancer diagnosis frequencies (Fig. 2c).
We compared mutation frequencies of the 299 genes that the Bailey
et al. analysis concluded were cancer driver genes and also presented
pan-cancer mutation frequencies27. Although there is good general
agreement between the unweighted pan-cancer mutation frequencies
and our epidemiologically weighted mutation proportions, many
individual genes had mutation rates that differed between the
approaches. For example, this unweighted study found KRAS, APC,
and IDH1 mutations at frequencies of 7, 6, and 6%, respectively,

while our weighted study finds them to be mutated at rates of 11, 10,
and 1%, respectively (Fig. 2e). Thus, although the Bailey et al. study
had improved cancer-type coverage and improved relative propor-
tional representation, considering these values as estimates for the
actual mutation frequencies could still lead to relatively large errors
for some commonly mutated genes.

Of note, there is no gold standard against which we can
compare our ROSETTA-based estimates. However, pan-cancer
gene mutation frequencies would be anticipated to be better
estimates for true frequencies as the coverage of cancer types and
the proportional representation of different cancers improve.
Such a trend is seen between these pan-cancer studies and our
ROSETTA-based estimates. This provides some additional
validation for our methodology and its implementation.

Cancer incidence mutation frequency estimates. We focused on
the calculated population-level mutation proportions for genes in
the COSMIC Cancer Gene Census list (Tier 1) (Fig. 3a; Table 1;
and Supplementary Data 3)31. TP53 was the most commonly
mutated cancer driver gene, which we estimate to be mutated in
35% of new cancer diagnoses. Even though KRAS is widely
believed to be the most commonly mutated proto-oncogene40–42,
our epidemiologically weighted estimates found KRAS mutations
(11%) to be less common than PIK3CA mutations (13%). The
BRAF oncogene was found to be mutated in 8% of cancers, which
is only marginally less common than KRAS. Three epigenetic
modifiers (KMT2C, KMT2D, and ARID1A) were among the ten
most frequently mutated cancer driver genes, highlighting the
frequency of epigenetic dysregulation in cancer43. Overall, it was
surprising that the most frequently mutated cancer-associated
genes were mutated in only a small proportion of all cancers. As
our analysis includes both driver and passenger mutations and is
simply looking at the total number of mutations found within the
genes in the Cancer Gene Census, this suggests that the overall
occurrence of driver gene mutations in human cancer is even less
than the values we present here.

Protein kinases with pathogenic mutations have proven to be
valuable drug targets for which multiple FDA-approved small
molecule inhibitors have been developed8–14,44. We therefore,
considered the overall mutation frequency across all protein
kinases (Fig. 3b, Supplementary Data 3). We found the two
most commonly mutated kinases to be TTN (30%) and OBSCN
(9%). TTN and OBSCN encode two of the largest proteins to
have a kinase domain (approximately 34,000 and 8,000 amino
acids, respectively), and the large size of these genes likely
contributes to their high frequency of mutation45. Although
there may be some theoretical arguments that a fraction of the
mutations in very large genes may not be passenger
mutations46, mutations in these kinases are commonly assumed
to be passenger mutations, and these two genes are not included
on the COSMIC Cancer Gene Census list31. In contrast, BRAF
and ATM are both well-established cancer driver genes, and
these two kinase-containing genes were found mutated in 8 and
5% of cancers, respectively. All other protein kinases were
estimated to be mutated in < 5% of all cancers. That kinase
genes like BRAF and ATM with strong selective pressure for a
cancer-promoting mutation would be so much less commonly
mutated than large genes with no (or low) selective pressure
may suggest that each driver gene’s selective pressures is not
present in every tissue, and/or may suggest that the selective
pressure is influenced by co-occurring mutations. Again, we
note that the mutation proportions we calculated are for all
mutations and are not limited to those mutations most likely to
be pathogenic. Additionally, it is important to note that not all
mutant forms to a driver gene kinase are equally targetable47.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26213-y ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5961 | https://doi.org/10.1038/s41467-021-26213-y | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Thus, these values will overestimate the frequency with which
potentially targetable pathogenic mutations will be found in
these kinases.

We also considered the genes defined to be members of the
RAS pathway by the NCI RAS Initiative40. The Ras pathway has a
clear role in human cancer, with mutations in this pathway
capable of conferring multiple hallmarks of cancer48,49. Addi-
tionally, the scientific literature commonly estimates 30–33% of
all cancers have a mutation in either KRAS, NRAS, or HRAS50–52.
In contrast, our integrated genomic-epidemiology approach
provides a revised estimate of 15% of cancers harboring a KRAS,
NRAS, or HRAS mutation – less than half of those previously
reported estimates. Our findings on the proportion of all cancers

with a RAS gene mutation are consistent with a recent analysis
that performed a simpler weighted analysis of KRAS, NRAS, and
HRAS mutations. This study, which also included copy number
variants, estimated that 19% of all cancer patients have a
mutation in one of these RAS genes53.

Ongoing cancer driver gene discovery efforts have identified
many new drivers within the RAS pathway27,54,55. Like our
analysis of previously designated cancer drivers and protein
kinases, our analysis of RAS pathway gene mutations finds a
handful of commonly mutated genes followed by a long-tail of
less frequently mutated genes (Fig. 3C; Supplementary Data 3).
Thus, although it is possible that more genes in the RAS pathway
will be classified as cancer driver genes, it does not appear that
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there are pan-cancer high prevalence RAS pathway drivers
remaining to be discovered. Altogether, our analyses suggest that
cancer genomics is less dominated by common, high-frequency,
driver gene mutations than studies of individual cancers have
implied.

Pan-adenocarcinoma and pan-squamous cell carcinoma ana-
lysis. Cancers can be grouped into higher-level groupings on the
basis of shared histology, such as adenocarcinomas, lymphomas,
and gliomas. Within ICD-O-3, the different histology codes are
organized within such higher-order categories36. Our ROSETTA
implementation pragmatically employed varying levels of gran-
ularity within the different higher-order categories as part of our
effort to make accurate population-level estimates on the basis of
the available sequencing data. We next analyzed the sequencing
data at the level of these higher-level groupings to evaluate how
the patterns of gene mutation proportions varied between the
more general cancer classifications.

The two most common higher-level classes of cancer are
adenocarcinomas and squamous cell carcinomas (SCC) (Fig. 4a).
We calculated pan-adenocarcinoma and pan-SCC mutation
proportions by performing our weighted epidemiological analysis,
but limited to all ROSETTA adenocarcinoma (Fig. 4b, Supple-
mentary Data 4) and all ROSETTA SCC categories, respectively
(Fig. 4c, Supplementary Data 4). We considered the epidemio-
logically weighted proportions of COSMIC Cancer Gene Census
(Tier 1) mutations across all types of adenocarcinoma (Fig. 4d)
and across all forms of malignant squamous cell carcinomas
(Fig. 4e). We also directly compared rates of mutations between
each of these two major subtypes of carcinoma (Fig. 4f). For most
genes, the mutation frequency within adenocarcinomas and
within squamous cell carcinomas were within 5% of each other.
The only two genes that had a net rate of mutation that was more

than 5% higher in adenocarcinoma were KRAS and APC. KRAS is
estimated to be mutated in 14% of adenocarcinomas, but only 1%
of SCC, and APC is calculated to be mutated in 13% of
adenocarcinomas and 5% of SCC. Seven genes favored SCC
with overall mutation rates that were 5% higher than their rate in
adenocarcinoma. TP53 is estimated to be mutated in 63% of
all SCC and 34% of all adenocarcinomas, which makes TP53 the
most frequently mutated Consensus Cancer Gene in each of the
two major classifications of cancer. The other genes that were
much more mutated in SCC (with estimated mutation proportion
in SCC and in adenocarcinoma, respectively) were LRP1B (23%,
10%), KMT2D (16%, 7%), FAT1 (15%, 5%), CDKN2A (12%, 2%),
NOTCH1 (10%, 3%), and NFE2L2 (10% and 1%).

The next two major groupings of cancer within our ROSETTA
subclassification of ICD-O-3 categories are melanomas and
transitional cell carcinomas (Supplementary Data 4). We
evaluated mutation proportions for each of these next most
abundant subclassifications (Fig. 4g, h). The most frequently
mutated gene in melanoma was BRAF, which made melanoma
the only major category of cancer for which TP53 was not the
most commonly mutated gene and for which PIK3CA was not the
most common oncogene. Additionally, transitional cell carci-
noma was notable in that seven of its ten most commonly
mutated genes have direct roles in epigenetic and transcription
factor regulation.

We also considered the mutation proportions of the three RAS
genes (KRAS, NRAS, and HRAS) within these four general
classifications of solid tumors. We found that each was the most
mutated of the three in at least one major type of cancer (Fig. 4i).
KRAS was the most frequently mutated of the three in
adenocarcinoma, and NRAS was the most frequently mutated
in melanoma. Interestingly, HRAS was the most commonly
mutated RAS GTPase in both squamous cell carcinoma and

Table 1 Overall mutation rates for consensus cancer genes.

Gene Mutation proportion (%) The most common cancers to harbor a mutation in this gene (ROSETTA classification, % of all instances of
this mutation)

TP53 34.5 Colorectal Adenocarcinoma (16.0%), Breast Carcinoma (15.2%), Lung Adenocarcinoma (11.6%)
PIK3CA 13.5 Breast Carcinoma (38.0%), Colorectal Adenocarcinoma (19.2%), Endometrial Cancer (10.6%)
LRP1B 13.1 Lung Adenocarcinoma (21.7%), Malignant Melanoma (17.1%), Colorectal Adenocarcinoma (13.1%)
KRAS 10.5 Colorectal Adenocarcinoma (35.0%), Lung Adenocarcinoma (23.1%), Pancreatic Adenocarcinoma (22.7%)
APC 10.1 Colorectal Adenocarcinoma (65.7%), Malignant Melanoma (6.0%), Prostate Cancer (5.1%)
FAT4 9.5 Colorectal Adenocarcinoma (22.6%), Malignant Melanoma (19.3%), Lung Adenocarcinoma (12.9%)
KMT2D 9.2 Colorectal Adenocarcinoma (13.9%), Urothelial Cancer (12.8%), Prostate Cancer (10.1%)
KMT2C 9.1 Breast Carcinoma (14.3%), Colorectal Adenocarcinoma (13.9%), Lung Adenocarcinoma (12.5%)
BRAF 7.6 Malignant Melanoma (35.3%), Colorectal Adenocarcinoma (21.7%), Thyroid Carcinoma (20.6%)
ARID1A 7 Endometrial Cancer (18.0%), Colorectal Adenocarcinoma (15.5%), Urothelial Cancer (15.0%)
FAT1 6.6 Colorectal Adenocarcinoma (16.2%), Lung Adenocarcinoma (14.2%), Malignant Melanoma (10.2%)
PTEN 6 Endometrial Cancer (30.3%), Breast Carcinoma (13.7%), Colorectal Adenocarcinoma (12.0%)
ATM 5.5 Colorectal Adenocarcinoma (21.0%), Lung Adenocarcinoma (12.7%), Prostate Cancer (10.0%)
ZFHX3 5.4 Colorectal Adenocarcinoma (21.4%), Malignant Melanoma (12.6%), Endometrial Cancer (12.5%)
CREBBP 5.3 Follicular lymphoma (15.7%), Colorectal Adenocarcinoma (14.7%), Urothelial Cancer (11.2%)
GRIN2A 5.1 Malignant Melanoma (26.8%), Lung Adenocarcinoma (14.8%), Colorectal Adenocarcinoma (14.3%)
NF1 5 Lung Adenocarcinoma (16.4%), Malignant Melanoma (15.4%), Colorectal Adenocarcinoma (13.2%)
TRRAP 4.9 Colorectal Adenocarcinoma (22.0%), Malignant Melanoma (18.0%), Lung Adenocarcinoma (11.1%)
PDE4DIP 4.9 Colorectal Adenocarcinoma (19.3%), Malignant Melanoma (15.2%), Lung Adenocarcinoma (11.2%)
PTPRT 4.9 Malignant Melanoma (26.5%), Colorectal Adenocarcinoma (18.7%), Lung Adenocarcinoma (16.2%)
RNF213 4.8 Colorectal Adenocarcinoma (25.0%), Malignant Melanoma (12.8%), Lung Adenocarcinoma (8.8%)
PREX2 4.7 Malignant Melanoma (24.5%), Colorectal Adenocarcinoma (16.7%), Lung Adenocarcinoma (10.2%)
SPEN 4.5 Colorectal Adenocarcinoma (16.6%), Malignant Melanoma (14.0%), Breast Carcinoma (12.1%)
KMT2A 4.4 Malignant Melanoma (18.3%), Colorectal Adenocarcinoma (17.6%), Urothelial Cancer (11.8%)
ERBB4 4.4 Malignant Melanoma (18.9%), Colorectal Adenocarcinoma (17.9%), Lung Adenocarcinoma (15.7%)

The twenty-five genes from the Cancer Gene Census, Tier 1, that are most commonly mutated in cancer for the US population. In addition to the mutation proportion, the three types of cancer that
contribute the most to individuals with that gene mutated are listed. For each of the three, the proportion of all estimated incidences of that gene that are from the listed ROSETTA histology is indicated
parenthetically.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26213-y ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5961 | https://doi.org/10.1038/s41467-021-26213-y | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


transitional cell carcinoma. KRAS is commonly considered the
worst of the three RAS GTPases for cancer promotion; our pan-
cancer analysis rather suggests that the issue of which oncogenic
RAS GTPase is most cancer-promoting may be dependent upon
the type of cell in which cancer develops.

Discussion
Overall, this work describes our approach to integrating epide-
miological and genomic data to provide real-world estimates for
the overall proportion of US cancer patients who harbor a coding
exonic mutation in each gene. We focused here on data for cancer
incidence, defined as new cases within a period of time. Epide-
miological data is also available for prevalence (the number of
individuals alive at a given time who have a disease) and mortality
(the number of cancer deaths within a period of time). We chose

not to calculate epidemiologically weighted estimates for mor-
tality and prevalence because clinical outcomes can depend upon
the specific genetic mutations present in the cancer56–58. Here, we
assumed that the likelihood of being sequenced is more a function
of incidence than of survival. However, the decision of which
tumors to sequence is likely influenced by other factors, such as
tumor size and staging. Those choices and practices, which are
beyond the scope of the present work, could introduce biases into
the underlying data that are then reflected in the calculated
mutation proportion estimates. With the ROSETTA framework
now established, it should be possible to adapt this epidemiolo-
gical weighting approach to other types of sequencing data to
investigate copy number alterations, intronic mutations39, gene
fusions59, and methylation patterns60.

We highlight that the gene mutation proportions presented
here, though calculated from high-quality epidemiological and
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genomic data, should still be considered estimates. Cancer
genomic studies may not necessarily be accurate representations
of all individuals within a population who have a specific type of
cancer, whether due to racial, ethnic, and/or geographical
differences61, exposure to carcinogens, and age of onset62.
Additionally, the finer histological subdivisions of a major class of
cancer may not be proportionately represented within the entire
collection of tumor samples for a given form of cancer. Our
ROSETTA mapping is not the only conceivable approach for
integrating epidemiological and genomic data, and others could
employ the same general strategy used here but make different
choices. We anticipate that estimates will continue to improve as
cancer genomics becomes increasingly common, as sequenced
samples are increasingly better annotated, and as rare cancers are
increasingly sequenced. At some point, tumor sequencing may be
so common that sampling is not even necessary, as all cancers
within a population would receive sequencing upon initial
detection. That situation would overcome the need to extrapolate
from a sample to calculate an estimate. It would overcome the
need to make assumptions about the genetics of cancer types that
have not been sequenced. Additionally, that situation would also
overcome possible biases in the data from how and when tumors
are selected to be a representative sample for a form of cancer and
sent to sequencing. Until all patients have their tumors
sequenced, we believe that the values presented here are useful
estimates for cancer researchers who desire to know how com-
monly their gene(s) of interest is (are) mutated in cancer.

RAS mutations have commonly been stated to be found in
30–33% of cancers50–52. We have shown that RAS mutations are
rather found in ~ 15% of all cancers, supporting trends observed in
previous, non-epidemiological weighted pan-cancer analyses26,27,33,
and consistent with a recent, simpler, epidemiologically weighted
RAS mutation estimate53. The discrepancy between historical esti-
mates and the more recent estimates is reasonable when one con-
siders that the two most common cancers, breast, and prostate
carcinoma, which together comprise 29% of all new cancer diag-
noses in the USA, rarely have RAS gene mutations. Additionally,
the relatively common cancer with the highest prevalence of RAS
mutations in pancreatic adenocarcinoma, which has a KRAS
mutation in nearly 90% of all sequenced samples. However, the
impact of pancreatic adenocarcinoma on the population-level esti-
mate is limited because < 3% of new cancer diagnoses in a given
year are for pancreatic adenocarcinoma34,35. Therefore, it appears
that the commonly encountered estimates for RAS mutation pre-
valence failed to account for the fact that the cancers that com-
monly harbor RAS mutations are not as common as the cancers
that rarely have RAS mutations. The importance of obtaining
accurate estimates for RAS genes, as well as for other genes, can be
inferred from two recent, high-profile, high cost research efforts: the
NCI RAS Initiative40 and the DARPA Big Mechanism
program52,63. Both were in part justified by the high abundance of
RAS mutations relative to other oncogenes. Thus, our presentation
of accurate epidemiological estimates may influence future efforts
that aim to focus on the common mutant drivers of cancer.

The lower than expected rate of KRAS mutations also high-
lights that there are few high-frequency mutations in human
cancer when one looks across all cancer cases. This has impli-
cations for drug development, where small molecular targeted
therapies that target common oncogenic mutations have become
a major focus. Although these drugs clearly offer benefits to many
individuals, this analysis suggests that the proportion of all cancer
patients who will benefit from any one targeted therapy designed
to target a specific mutated gene product will be limited. The
surprising dearth of high-frequency pan-cancer drivers also has
important implications for cancer development, as it suggests
cancer may be less dominated by high-frequency drivers than

studies of specific cancers have implied. This further suggests that
other factors not considered here, such as copy number variation,
epigenetic dysregulation other than by mutation of epigenetic
genes, fusion proteins, and microenvironmental cues, may all play
large roles in the convergent cancer phenotype48,49. Approaches
that identify the convergent phenotypes and their targetable
vulnerabilities may offer a better chance to benefit many patients
than efforts that focus only on specific mutations64,65.

Methods
Cancer Histological Reclassification. We developed a mapping between pairs of
ICD-O-3 morphology (histology) and topography (anatomical location) codes and
between the tumor classification descriptors used in cancer genomics that we
termed ROSETTA (Reclassification Of Sequencing and Epidemiological Tumor
Type Annotations). To do this, two medical doctors with training in pathology,
cancer biology, and bioinformatics, systematically and iteratively went through
ICD-O-3 and cancer genomic annotation files to assess what level(s) of cancer
groupings would be needed to resolve the data sets. ROSETTA categories were
developed to serve as a common cancer classification system onto which both
epidemiologic and genomic cancer classifiers could be mapped. We then specified
maps from ICD-O-3 codes to ROSETTA (Supplementary Document 1) on the
basis of our reclassification. Additionally, we developed maps from cancer patient
files to ROSETTA on the basis of patient metadata. ROSETTA categories were
developed to remain consistent with major organizational principles of ICD-O-3.

Epidemiological Data and Processing. Cancer epidemiological data were
obtained from the NCI Surveillance Research Program database SEER using
SEER*Stat software. We utilized the database named: Incidence - SEER Research
Data, 18 Registries, Nov 2019 Sub (2000-2017). We exported data for malignant
diagnoses in table output with rows specified by ICD-O-3 Histo/behave codes and
columns specified by Site recode ICD-O-3/WHO 2008 location codes.

There were multiple steps to processing (Supplementary Document 1). Briefly,
steps included grouping into higher level anatomical location site codes using the
level of resolution employed by the ACS in their annual cancer epidemiology
report35, processing samples with unclear histology and unclear site of origin, and
reclassification by ROSETTA. After each processing step, we would check that the
total number of samples within the study was constant to ensure no loss of data in
our implementation. The output of our processed SEER data was a table where the
rows were 43 sites (anatomical locations) and the columns were 370 ROSETTA
classifications. The values in the table were the estimated counts for each histology
at that location.

Cancer Genomic Data. We utilized public, non-embargoed, and non-provisional
cancer genomics studies that were included on cBioPortal29,30. We included exome
sequencing studies on tissue samples, i.e., not from xenografts or cell lines (Sup-
plementary Data 2). We focused on nonsense and missense mutations, as well as
small indels. Within the cBioPortal notation, we counted a gene within a patient as
mutated if it had one (or more) of the following mutations called: non-
sense_mutation, frame_shift_del, frame_shift, frame_shift_ins, missense_mutation,
missense, nonsense, in_frame_del, in_frame_ins, nonstop_mutation. We did not
include splice site or fusion mutations. We re-annotated Mutation Annotation
Format (MAF) files for each patient sample with the appropriate ROSETTA
annotation. The output of our genomic processing step was a table that listed the
total number of samples with a mutation in each gene, done for every ROSETTA
cancer classification. When a study included longitudinal samples (i.e., where the
same patient was sampled several times) we utilized only the first sample. When
multiple studies included data from the same patient sample, we utilized the
mutation data from the most recent study. As the same gene may be referred to
with different names, we also standardized gene names using a human gene names
map described in the cBioPortal documentation. Cancer genomic data utilized
come from a variety of sources, including the TCGA and TARGET programs. The
results published here are in part based upon data generated by the TCGA
Research Network: https://www.cancer.gov/tcga, and by the Therapeutically
Applicable Research to Generate Effective Treatments (https://ocg.cancer.gov/
programs/target) initiative, phs000218: https://portal.gdc.cancer.gov/projects. A list
of all genomics studies utilized is provided within a table in Supplementary Data 2.
That table also lists which ROSETTA code(s) were assigned to one or more samples
within each of the genomics studies. Text files that map from each sample to a
ROSETTA code are available in the supplementary software. Additional infor-
mation on mapping and software implementation is provided in the “Supple-
mentary Methods”.

Mutation Proportion Estimates. We converted our genomic output table to a
table that listed the observed proportion of sequenced tumors within a ROSETTA
classification that harbor a given gene mutation. In other words, we converted our
genomic output table into an m × n matrix (C), where m is the number of genes
and n is the number of ROSETTA classifications that have been sequenced. In our
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current study, the value of m is 21,271 and the value of n is 73. The values in C
represent the conditional probability that a gene is mutated given the ROSETTA
classification.

We converted our SEER epidemiological output to list the number of all
representative cancers from each ROSETTA code. This resulted in a k × 1 matrix, S,
where k is the number of all ROSETTA classifications (370) and k > n as not all
ROSETTA classifications have representative sequencing data. We had
representative sequencing data for ROSETTA codes that account for 93% of all
observed human cancers. We assume that the weighted proportions of mutations
for the 93% of all cancers are a good estimate for the weighted proportion in all
cancers. We thus converted S to S', an n × 1 matrix by eliminating all rows that
were for a ROSETTA classification where there were no representative genomic
sequencing data. We normalized the vector, so it summed to 100%.

The estimated mutation proportion could then be calculated by summing the
product of the mutation rate in a ROSETTA classification by the proportion of all
cancers that have that ROSETTA classification for all ROSETTA classifications.
Alternatively, C•S=G, where G is an m × 1 matrix that lists the overall, weighted
mutation frequencies of all genes (i.e., Fig. 1, bottom).

We performed statistical analyses with the genomic dataset by constructing in
silico studies of cancer mutation observations. Since typical genomic studies (total
19,181 samples) were two or more orders of magnitude smaller than the
epidemiological studies (total 7,167,808 samples) in any given tissue or histology,
we take the genomic studies to be the primary source of any variations in our
results. We performed statistical analysis with the assumption that Poisson
distributions applied to the cancer cases observed over the study periods. We
generate two thousand Poisson distributed samples for each combination of gene
and histology with central value as calculated from genomic studies included.
Replicates for the proportion of mutated cases for each gene are calculated by
processing each in silico sample through our reweighting (conditional probability)
pipeline (Fig. S2), and 95% confidence intervals were calculated from these
replicates.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
No new data were generated in this study. The input genomic data is publicly available
from www.cbioportal.org, and URLs for all included genomic studies are listed as a table
in the document, supplementary data 2. The input epidemiological data is publicly
available for download via the SEER-Stat program that is available upon registration with
NCI SEER via the website https://seer.cancer.gov/seerstat/. All needed genomic data to
reproduce this work is available as ROSETTA relabeled (processed) genomic data that is
present in the zipped file Genomics_Analysis\interim_files\df_mutfiles.zip in
Supplementary Software 1. All epidemiological data needed to reproduce this work is
available as ROSETTA relabeled (processed) epidemiological data that is present in file
SEER_Analysis/Output_SEER.txt in Supplementary Software 1. All output data described
in the manuscript is provided in the “Supplementary Information/Supplementary data”.

Code availability
The source code used to combine genomics and epidemiological data and generate all of
the figures and tables in the manuscript is present as a supplementary zipped folder and
can also be downloaded from the link, https://github.com/GMendiratta/ROSETTA-for-
Cancer-Mutations. The source code to download and process genomic data and the
source code to process raw SEER data are also included in folders named
Genomics_Analysis/ and SEER_Analysis, respectively. The code is written in python 3
using Jupyter notebook IDE and uses NumPy, pandas, random, and Matplotlib libraries.
This code is provided as-is and may be copied, re-used, edited with a citation to this
manuscript. No additional permission from the authors is necessary.
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