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Astrocytes and oligodendrocytes are main players in the brain to ensure ion and
neurotransmitter homeostasis, metabolic supply, and fast action potential propagation
in axons. These functions are fostered by the formation of large syncytia in which mainly
astrocytes and oligodendrocytes are directly coupled. Panglial networks constitute on
connexin-based gap junctions in the membranes of neighboring cells that allow the
passage of ions, metabolites, and currents. However, these networks are not uniform
but exhibit a brain region-dependent heterogeneous connectivity influencing electrical
communication and intercellular ion spread. Here, we describe different approaches to
analyze gap junctional communication in acute tissue slices that can be implemented
easily in most electrophysiology and imaging laboratories. These approaches include
paired recordings, determination of syncytial isopotentiality, tracer coupling followed by
analysis of network topography, and wide field imaging of ion sensitive dyes. These
approaches are capable to reveal cellular heterogeneity causing electrical isolation of
functional circuits, reduced ion-transfer between different cell types, and anisotropy of
tracer coupling. With a selective or combinatory use of these methods, the results will
shed light on cellular properties of glial cells and their contribution to neuronal function.

Keywords: patch clamp, paired recordings, astrocyte syncytial isopotentiality, tracer coupling, wide field imaging

INTRODUCTION

Gap junction channels connect the cytosol of neighboring cells and allow the exchange of ions
and small molecules, such as metabolites (Giaume et al., 2010, 2020). Gap junctions form,
when two connexons in the membrane of neighboring cells align. Connexons in turn are
hexamers that are formed by connexins (Cx; Figure 1A). There are 21 Cxs identified so far
of which 11 are expressed by neurons and glial cells in the CNS that differ in their mass
(Bedner et al., 2012) and expression profile (including developmental and cell type specificity)
(Dahl et al., 1996; Kunzelmann et al., 1999; Nagy et al., 1999; Nagy and Rash, 2000; Augustin
et al., 2016; Wadle et al., 2018). The composition of gap junctions with different connexons
and Cxs defines their properties, for example selectivity and permeability (Bukauskas and
Verselis, 2004; Harris, 2007; Abbaci et al., 2008). In addition, post-translational modifications
further regulate gap junctional communication (Goodenough and Paul, 2009; Axelsen et al.,
2013; Aasen et al., 2018). Homocellular coupling between astrocytes and oligodendrocytes is
mediated by homotypic gap junctions (Figure 1B; Giaume and Theis, 2010; Maglione et al.,
2010). Furthermore, heterocellular (panglial) coupling is observed between both cell types using
heterotypic gap junctions (Wasseff and Scherer, 2011; Griemsmann et al., 2015; Augustin et al.,
2016; Moshrefi-Ravasdjani et al., 2017; Claus et al., 2018; Wadle et al., 2018; Xin et al., 2019).
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FIGURE 1 | Principle of gap junctional coupling. (A) Structural organization of gap junctions. Gap junctions are integral membrane proteins that connect the cytosol
of neighboring cells. Two pairs of connexons (hexamers of connexins; Cx) form a pore enabling diffusion for ions and small molecules. EL, extracellular loop; CL,
cytoplasmic loop; M, transmembrane helix. (B) (Pan-/)glial coupling. Astrocytes mainly express Cx43 and Cx30, whereas oligodendrocytes mainly express Cx47 and
Cx32. Homotypic gap junctions couple astrocytes (Cx43:Cx43, Cx30:Cx30) and oligodendrocytes (Cx47:Cx47, C30:Cx30). Heterotypic gap junctions are formed by
different connexons connecting astrocytes and oligodendrocytes (Cx43:Cx47, Cx30:Cx32).

In the corpus callosum, astrocytes and NG2 glia form panglial
networks (Moshrefi-Ravasdjani et al., 2017). However, in many
other brain regions—like the hippocampus, the cortex, and the
medial nucleus of the trapezoid body—NG2 glia are neither
tracer nor electrically coupled to other glial cells (Wallraff et al.,
2004; Houades et al., 2008; Muller et al., 2009; Xu et al., 2014;
Bedner et al., 2015; Griemsmann et al., 2015).

Gap junctional coupling is important for homeostasis of K+
(Wallraff et al., 2006; Pannasch et al., 2011; Breithausen et al.,
2020; MacAulay, 2020), Na+ (Langer et al., 2012; Augustin et al.,
2016; Moshrefi-Ravasdjani et al., 2017; Wadle et al., 2018), Cl−
(Egawa et al., 2013), and neurotransmitters (Pannasch et al., 2011;
Chaturvedi et al., 2014). Furthermore, regulated gap junctional
coupling is mandatory for activity-dependent redistribution of
metabolites, such as glucose (Cruz et al., 2007; Rouach et al.,
2008; Giaume et al., 2010). In addition, Cx expression and gap
junctional communication are altered under pathophysiological
conditions (Cotrina et al., 1998; Nakase et al., 2006; Giaume et al.,
2010, 2019, 2020; Xu et al., 2010; Bedner et al., 2015; Lee et al.,
2016; Wang Q. et al., 2020). Thus, the basic knowledge about glial
gap junctional communication is fundamentally important for
our further understanding of the complex neuron-glia interaction
in healthy and diseased brains.

Astrocytes can be identified by several approaches. Many
astrocytes express marker proteins such as GFAP, S100β,
GLAST, or GLT-1 (Eng et al., 2000; Zhou et al., 2006;
Kafitz et al., 2008; Schreiner et al., 2014). However, there
are subpopulations of astrocytes, which for example do not
express GFAP (Kafitz et al., 2008). Additionally, a fraction of
NG2 glia are characterized by expression of GFAP and S100β

(Nolte et al., 2001; Matthias et al., 2003; Karram et al., 2008).
In 2004, the red fluorescent dye sulforhodamine (SR) 101 was
introduced as a marker for astrocytes (Nimmerjahn et al.,
2004), which allows the a priori identification of classical
astrocytes in various brain regions, for example, in hippocampus,
cortex, and auditory brainstem (Nimmerjahn et al., 2004;
Kafitz et al., 2008; Stephan and Friauf, 2014; Ghirardini
et al., 2018). Additionally, the use of SR101 is particularly
advantageous in astrocyte imaging experiments as it can be
combined with ion sensitive dyes such as Fura-2 and sodium-
binding benzofuran isophthalate (SBFI; Kafitz et al., 2008;
Langer et al., 2012).

Another approach for a priori identification of astrocytes
is the utilization of reporter mice, such as GFAP-eGFP mice
(Nolte et al., 2001). However, the transcript labels only a
subset of astrocytes (Nimmerjahn et al., 2004) and, moreover,
the transcript is also weakly expressed by NG2 glia (Matthias
et al., 2003). Alternatively, ALDH1L1-eGFP mice can be used
to identify astrocytes (Heintz, 2004; Yang et al., 2011). These
reporter mice exhibit a more accurate labeling pattern of astrocyte
populations (Cahoy et al., 2008). Aside this, reporter mice are
available to a priori identify other glia, such as oligodendrocytes
(PLP-GFP mice; Fuss et al., 2000) or NG2 glia (NG2-eYFP mice;
Karram et al., 2008). It is worth mentioning that all these reporter
mice are suitable to be combined with imaging of ion-sensitive
dyes (Moshrefi-Ravasdjani et al., 2017).

A hallmark of classical astrocytes is their large K+
conductance (Stephan et al., 2012), which results in a
highly negative membrane potential (Zhou et al., 2006;
Kafitz et al., 2008). Further, astrocyte properties are less
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constant as the expression of many astrocyte-typical proteins
is regulated during early postnatal development (Felix et al.,
2020b). For example, the expression of inwardly rectifying
k+ channels (Kir4.1) and two-pore domain K+ channels
(K2P) increases (Seifert et al., 2009; Nwaobi et al., 2014;
Lunde et al., 2015; Moroni et al., 2015; Olsen et al., 2015)
causing a strong decrease in membrane resistance (RM ; Zhou
et al., 2006; Kafitz et al., 2008; Stephan et al., 2012; Zhong
et al., 2016). Simultaneously, the detectable amount of KV
channel-mediated currents decreases, which together alters the
astrocytic current-voltage relationship from non-linear to linear
(Zhou et al., 2006; Kafitz et al., 2008; Zhong et al., 2016). In
contrast to NG2 glia, astrocytes do not express NaV channels
(Matthias et al., 2003; Zhou et al., 2006; Kafitz et al., 2008;
Zhong et al., 2016).

ANALYSIS OF GAP JUNCTIONAL
COUPLING

There are many different techniques available to study gap
junctions. These include but are not limited to whole-cell
patch-clamp (paired recordings, analysis of isopotentiality,
tracer injection), genetic approaches (FRAP, PARIS, StarTrack,
transgenic mice), imaging of ion-sensitive dyes (e.g., SBFI), and
expression studies (immunohistochemistry, western blotting)
(Abbaci et al., 2008; Giaume and Theis, 2010; Bedner et al.,
2012; Langer et al., 2012; Griemsmann et al., 2015; Droguerre
et al., 2019; Eitelmann et al., 2019; Gutierrez et al., 2019; Wu
et al., 2019; Du et al., 2020; McCutcheon et al., 2020). Here, we
focus on approaches to analyze gap junctional communication
that can be implemented easily in most electrophysiology and
imaging laboratories.

Patch Clamp-Based Approaches
Electrophysiological methods are commonly used to detect
gap junctional coupling of cells. In 1966, the first evidence
that astrocytes are intercellularly coupled was provided by
an electrophysiological study of amphibian optic nerve by
Kuffler et al. (1966). In their report, an elegant triple-
sharp-electrode recording mode was used to reveal a “low-
resistance connection” between neuroglia, which we know
now as the gap junctional coupling of fibrous astrocytes in
optic nerves. This electrophysiological method was continually
used until the 1980s for glial physiology study. For example,
Kettenmann and Ransom used it to record cultured astrocytes
and oligodendrocytes, confirming that gap junctions were
indeed the molecular identities for the functional coupling
of these glial subtypes (Kettenmann and Ransom, 1988;
Ransom and Kettenmann, 1990).

The advent of patch-clamp in the 1990s ushered
electrophysiological studies into a new era. Since the patch-
clamp system is able for simultaneous current injection and
membrane potential recording, now only two electrodes are
used for paired recording. Here, we will limit our discussion
to this advanced paired recording mode and its application to
analyze the functional connectivity of neighboring astrocytes.

Until now, this technique has been used by several research
laboratories for study of gap junctional coupling in native
astrocytes in brain slices and freshly isolated astrocytes (Muller
et al., 1996; Meme et al., 2009; Xu et al., 2010, 2014; Ma
et al., 2016; Zhong et al., 2016; Kiyoshi et al., 2018). These
studies demonstrated the paired recording mode as a highly
sensitive method for revealing the functional coupling of
astrocytes in situ and in pairs of freshly dissociated astrocytes.
To address the electrical role of gap junctional coupling
for astrocyte syncytium, a single electrode method was
developed in 2016 with details described in the following
“Astrocyte Syncytial Isopotentiality” section. Together with
computational modeling, this method allows for monitoring
dynamical changes in the coupling strength of an astrocyte
syncytium (Ma et al., 2016; Kiyoshi et al., 2018). Another
way to assess gap junctional coupling is to add a tracer to
the internal solution of patch pipettes and to visualize gap
junction-coupled cells. In the following section, we will first
discuss the rationale, application, advantage, and limitation
of the commonly used paired recording model and the newly
developed syncytial isopotentiality measurement. Thereafter,
we will highlight, how the addition of gap junction-permeable
tracers to the pipette solution can be used to visualize cell-to-
cell coupling and to subsequently analyze the topography of
tracer-coupled networks.

Paired Recording Mode
The rationale behind the design of the paired recording model lies
in the basic properties of gap junction channels. Gap junctions
are large aqueous pores, 8–16 Å, filled with electrolytes that
make them ideal electrical conductors for the flow of ionic
currents between coupled cells (Weber et al., 2004). In the
adjacent cells, the easiness of the ionic current flow is determined
by the number of gap junctions aggregated on the plaques
in the interface of the adjacent cells, or the intercellular gap
junctional resistance (Rgap). Accordingly, the paired recording
mode is designed to examine the Rgap through the passing
of injected currents in one of the two coupled cells and to
measure subsequently the size of remaining transjunctional
voltage arriving at the second cell (Figures 2A,B; Bennett,
1966; Bennett et al., 1991; Ma et al., 2016). There are unique
characteristics associated with paired recordings. It is known
that the gap junctions formed by different Cxs differ in their
permeability properties for endogenous compounds, therefore,
differentially regulate the intercellular transfer of metabolites,
i.e., glucose, and signaling molecules, such as ATP, glutamate,
and IP3 (Goldberg et al., 1999, 2002; Niessen et al., 2000).
It is also known that Cxs vary in pore size and conductivity
(∼30 to ∼300 pS) (Hille, 2001). However, the Cxs ubiquitously
exhibit high selectivity to the major intracellular monovalent
cation K+ and Na+ in the order of K+ > Na+ (Wang and
Veenstra, 1997), and these ions are charge carriers that mediate
current flow between coupled cells. Thus, independent of Cx
isoforms, transjunctional voltage measurements stand out as
an universal readout of gap junctional coupling (Veenstra
et al., 1995; Veenstra, 1996). Additionally, paired recordings
are featured by their high detection sensitivity conferred by the
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FIGURE 2 | Analysis of electrical coupling. (A) Paired recording of two neighboring astrocytes from hippocampal CA1 region. (B) In whole-cell current-clamp mode,
the current steps, shown in the inset, were alternately delivered to one of the cells in a pair, termed the stimulated cell (Cstim), and that induced membrane potential
changes in the Cstim meanwhile induced transjunctional voltages (V transjunc) in the coupled neighbor. (C) A pair of freshly dissociated hippocampal astrocytes,
identified by their SR101 staining, was recorded with K+ free/Na+ containing electrode solution. (D) The current injections into one of them induced comparable size
of the membrane voltage displacements in both cells, indicating a strong coupling coefficient (CC) at an estimated value of 94%. Panels (A) and (B) modified from
Zhong et al. (2016), and Panels (C) and (D) modified from Ma et al. (2016).

state-of-the-art electronic engineering technology of the patch-
clamp amplifier, allowing detection of the ionic currents at the
picoampere scale.

Experimentally, two adjacent astrocytes are sequentially
recorded in whole-cell mode (Figures 2A,B). Subsequently, the
current can be alternately injected into one of the recorded
cells, defined as the stimulated cell (Cstim.), whereas the
transjunctional voltage is recorded in the neighboring recipient
cell (Creci.). Although the Rgap can be calculated from the
basic membrane properties and the current-induced membrane
voltages, the coupling strength is commonly expressed as the
coupling coefficient (CC)—the ratio of voltages measured from
the Creci./Cstim. The higher a CC value, the stronger the cell-to-
cell coupling (Bennett, 1966; Bennett et al., 1991; Ma et al., 2016).

A major advantage of paired recordings is their high
sensitivity, which is determined by the open probability that is
universally high among gap junctions in the range of 0.6–0.9;
whereas the sensitivity of tracer coupling is mostly determined
by the pore selectivity that varies among gap junctions (Nielsen
et al., 2012). Consequently, in simultaneous transjunctional
voltage and dye coupling measurements, it is common to see
measurable transjunctional voltages in an absence of detectable
dye coupling (Murphy et al., 1983; Ransom and Kettenmann,
1990; Sontheimer et al., 1991; Xu et al., 2010). An example
that paired recordings have a higher sensitivity was shown in a
study carried out in hippocampal astrocytes in situ (Xu et al.,
2010). Incubation of brain slices with a gap junction inhibitor,
meclofenamic acid (MFA, 100 µM), was able to inhibit astrocyte
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gap junctional coupling by 99% (Ma et al., 2016). Interestingly,
in the presence of 100 µM MFA, the cross-diffusion of two
tracers, Lucifer Yellow (LY) and biocytin, separately loaded into
two recording electrodes, were completely inhibited, whereas
the transjunctional voltages remained intact (Xu et al., 2010).
In the barrel cortex, the Cx43 expression was found to be
enriched within the barrels, but largely absent in the inter-
barrel space (septa), and this was associated with a restricted
dye coupling inside the barrels (Houades et al., 2006). To
examine whether such segregated dye coupling indeed indicates a
complete absence of gap junctional of astrocytes between barrels
and their surrounding septa, the paired recording was carried
out between a pair of astrocytes, one inside another outside of
the barrel. The results showed that in the transjunctional voltage
measurement, astrocytes do communicate inside and outside
of the barrels and, therefore, are gap junctional coupled into
a syncytium (Kiyoshi et al., 2018). Therefore, the existence of
gap junctional coupling can be more sensitively inspected by
this method.

Nevertheless, there are also technical challenges and
limitations. First of all, still, only a handful of experimenters
successfully employed paired recordings in their research. The
technical complexity of paired recordings to monitor junctional
coupling has limited more researchers to take advantage of this
powerful tool in their glial physiology study. The second obstacle
that impedes the application of paired recordings is the low RM
of astrocytes at an estimated level of 6.4 M� (Du et al., 2015).
As a result, the “leaky“ membrane shunts most of the injected
currents, making it impossible to estimate the current passing
through gap junctions resulting in erroneous CC calculation
(Du et al., 2020). To make the matters worse, astrocytes are
coupled into a syncytial network; each astrocyte is typically
directly coupled to 7–9 nearest neighbors across the brain (Xu
et al., 2010; Ma et al., 2016; Kiyoshi et al., 2018). Consequently,
the injected currents to one of the recorded astrocytes should
be redistributed into coupled astrocytes at unknown ratios (in
a parallel electrical circuit) (Cotrina et al., 1998). Therefore,
the leaking membrane and syncytial coupling make it next to
impossible to calculate the actual CC in brain slice recordings.
Consequently, rather low CC values in the range from 1.6% to
5.1% were reported from hippocampal astrocytes in situ (Meme
et al., 2009; Xu et al., 2010).

To solve this problem, the innovative use of paired recordings
was applied to freshly dissociated pairs of astrocytes to
avoid extensive coupling. To circumvent the shunt of injected
currents through abundantly expressed membrane K+ channels,
the physiological K+ content in the electrode solution was
substituted equimolarly by Na+; hence, the electrode Na+
equilibrating with the recorded pair of astrocytes will not leak
through the membrane K+ channels, and measured currents
will therefore better reflect junctional coupling (Figures 2C,D).
Under these conditions, a strong coupling CC of 94% was
revealed. Based on this CC, there was an estimate of 2.000
gap junctions aggregated at the interface of two neighboring
astrocytes, and a calculated Rgap at 4.3 M� (Ma et al., 2016),
which is even lower than the astrocytic RM of 6.4 M� (Du et al.,
2015). These results together indicate that the electrical barrier
between astrocytes is nearly absent. Recently, ultrastructural

details of astrocyte-astrocyte contacts have been revealed that
explain how such a low inter-astrocytic resistance could be
biophysically achieved (Kiyoshi et al., 2020).

In summary, the rationale for paired recordings is based on
an uniform feature of high open probability of gap junction
channels for two intracellular monovalent cations, K+ and Na+.
Therefore, it offers a rather universal readout to study the
functional gap junctional coupling at high sensitivity. For brain
slice studies, however, the paired recordings are most valuable
for inspecting the existence of functional gap junctional coupling,
but are of limited value for quantitative analysis of the CC
between astrocytes due to the low RM and syncytial coupling.
Combinatory use of freshly dissociated pairs of astrocytes and
non-physiological Na+ or Cs+ electrode solution is a powerful
alternative to circumvent the above obstacles.

Astrocyte Syncytial Isopotentiality
As mentioned above, the Rgap between astrocytes is even lower
than astrocytes’ RM , suggesting that two neighboring astrocytes
are able to constantly equalize their membrane potentials and
therefore electrically behave as one cell. By extension, the gap
junction coupled astrocytes should then be able to balance
their membrane potentials to comparable levels so that a
syncytial isopotentiality could be achieved. In fact, this possibility
was postulated in the past (Muller, 1996) and was discussed
by Richard Orkand and his colleagues to be a necessity for
the operation of K+ spatial buffering in the brain (personal
communication with Dr. Serguei Skatchkov). This syncytial
isopotentiality was experimentally demonstrated in 2016 (Ma
et al., 2016), and a system-wide existence of this feature in the
astrocyte networks was confirmed soon after that (Huang et al.,
2018; Kiyoshi et al., 2018; Wang W. et al., 2020).

The rationale for the methodological design is based on a
basic feature of astrocytes. Physiologically, an astrocyte behaves
as a perfect K+ electrode (Kuffler et al., 1966; Ransom and
Goldring, 1973). Therefore, one can experimentally substitute the
intracellular K+ concentration ([K+]i) through dialysis of the
recorded cell with electrode solution containing equimolar (i.e.
140 mM) Na+ (or Cs+) (Ma et al., 2016; Wang W. et al., 2020).
This, in turn, alters the VM of the recorded astrocyte from K+
equilibrium potential (EK , -80 mV) to Na+ equilibrium potential
(ENa, ∼ 0 mV) according to the prediction from the Goldman-
Hodgkin-Katz (GHK) equation. In single freshly dissociated
astrocytes, the VM indeed shifts to∼ 0 mV (Figure 3A) (Kiyoshi
et al., 2018). However, should the Rgap be sufficiently low, the
associated syncytium can then instantaneously act to compensate
for the loss of physiological membrane potential (VM) in the
recorded cell, and the level of the compensation should be
determined by the coupling strength and the number of directly
nearest coupled neighbors (Ma et al., 2016; Kiyoshi et al., 2018).

Experimentally, the syncytial isopotentiality can be detected
by the substitution of endogenous K+ by a 140 mM Na+/K+-
free electrode solution ([Na+]P) (Figures 3A,B) and recording
the astrocyte in current-clamp mode. The breakthrough of
the membrane patch shifted the VM immediately to a resting
membrane potential of -78 mV (Figures 3A,B). Over time, the
VM reaches a stationary level of -73 mV. This is in sharp contrast
to the anticipated depolarization to 0 mV as predicted by the
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FIGURE 3 | Analysis of syncytial isopotentiality. (A) In a single freshly dissociated astrocyte, the K+ free/Na+ containing electrode solution ([Na+]p) progressively
substituted the endogenous K+ content in whole-cell recording, leading to a VM depolarization toward 0 mV as predicated by Nernstian equation. (B) The VM

recorded from an astrocyte in situ with the [Na+]p disobeys the Nernstian prediction. Instead, the steady-state VM (VM,SS) maintained at a quasi-physiological level
as a result of voltage compensation by the physiological VM of the coupled neighbors. (C) The relationship between VM,SS and coupling strength (S) predicted by
computational modeling. (D) According to this modeling shown in (C), the VM,SS can be shifted toward a more hyperpolarizing VM of neighboring astrocytes due to
a stronger syncytial coupling (S) or due to a weaker coupling strength (S), the VM,SS toward the GHK predication for the VM of [Na+]p at 0 mV. VM,I stands for initial
VM recorded immediately after break-in of cell membrane, reflecting the resting VM of the recorded astrocyte. Figure modified from Kiyoshi et al. (2018).

GHK equation for K+-free electrode solution (Figure 3A). The
initial VM recording (VM,I) reflects the true resting VM of an
astrocyte (Ma et al., 2016; Kiyoshi et al., 2018). In hippocampal
astrocyte syncytium, the steady-state VM (VM,SS) in [Na+]P
recordings is∼5 mV more depolarized than VM,I .

The Ionic Mechanisms Engaged in the Establishment of
VM,SS
To biophysically explain how the quasi-physiological VM,SS is
established, different size of syncytia, i.e., syncytia containing
varying number of astrocytes, were used for VM,SS recordings,
and computational modeling was used to simulate the underlying
ionic mechanisms (Ma et al., 2016). The rupture of an
astrocyte with [Na+]p initiates dialysis of Na+ to the recorded
astrocyte and associated syncytium (Figure 3B1). In the
recorded cell, the Na+ dialysis dissipates the endogenous K+
content hence abolishes the physiological VM established by
the across membrane K+ gradient. To the coupled syncytium,
the Na+ dialysis generates a Na+ gradient and current flow

across gap junctions that depolarizes neighboring astrocytes
and hyperpolarizes the recorded cell. The latter is the major
contributor to the quasi-physiological VM,SS. Additionally, the
dissipation of K+ content in the recorded cell attracts an influx
of K+ from neighboring astrocytes. The accumulated K+ has the
potential to establish a hyperpolarizing potential in the recorded
cell therefore additionally contributes to the totality of the quasi-
physiological VM,SS (Ma et al., 2016). As shown in Figure 3B2,
these two ionic flows take approximately 5 min to reach a steady-
state after rupture of whole-cell recording (Figure 3B2).

How does the strength of syncytial isopotentiality influence
the intensity of the Na+ and K+ current flows? As noted above,
in the [Na+]p recorded astrocyte, there are two ionic current
flows in opposite directions and collectively contribute to the
measured VM,SS; the outward-going Na+ current from recorded
cell to the coupled cells, and inward-going K+ current flow
from the coupled astrocytes to the recorded cell. To simplify the
analysis, we take the outward-going Na+ (INa,out) to one of the
coupled astrocytes as an example, the proximity of the potentials
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in these two cells can be expressed as the difference of the
voltages between the Na+-loaded astrocyte (VNa) and a coupled
neighbor (VN)

(VN − VNa) = Rgap ∗ INa,out

where (VN - VNa) = 0 mV is a theoretically ideal isopotentiality
achieved between the two cells. Assuming INa,out is a constant
determined by its chemical gradient down the neighboring cell,
then a higher strength of isopotentiality, i.e., lower (VN –
VNa), is correlated to a lower junctional resistance (Rgap).
Secondly, as (VN – VNa) approaches the ideal isopotentiality
of 0 mV, the INa,out also diminishes to ∼ 0 pA. By extension,
closer proximity of potentials between the recorded cell and its
associated astrocytes, the less outward-going Na+ current flow
from [Na+]p recorded astrocyte toward its associated syncytium.

Likewise, the intensity of the inward-going K+ current
(IK,in) and syncytial coupling strength follows with the same
relationship:

(VN − VNa) = Rgap ∗ IK,in

where the inward-going K+ current is impeded by increasing
proximity of the VNa to VN. It should be noted that K+ cannot
be substantially buildup due to efflux of K+ through membrane
K+ channels in the [Na+]p recorded astrocyte; consequently, less
hyperpolarizing potential can be built up to make a significant
contribution to the recorded VM, SS.

In summary, we described a method that uses [Na+]p
to disrupt the continuity of a syncytial isopotentiality, and
that in turn informs of the existence and the strength of
the isopotentiality in an astrocyte syncytium. Biophysically,
gap junctional ionic movement occurs during the equalization
of the potential differences in a syncytium, therefore a
strong syncytial isopotentiality means a less ionic movement
inside a syncytium. Additionally, a larger syncytium has a
greater capacity to minimize the ionic movement, which has
been simulated in a computational model (Ma et al., 2016).
Functionally, in the event of local extracellular environment
changes, e.g., neuronal firing induced high K+, syncytial
isopotentiality provides a sustained driving force to individual
astrocytes for high efficient K+ uptake, spatial transfer and
release of K+ to regions where neuronal activity is low
(Terman and Zhou, 2019).

VM,SS as a Functional Readout of Coupling Strength (S) of
Syncytial Coupling
Based on the discussion above, the VM,SS is established
and regulated by the Rgap and the number of astrocytes
in a coupled syncytium, therefore can lean to a more
hyperpolarizing VM in the neighboring astrocytes, or a more
depolarizing VM established by intracellular Na+. Thus, the
VM,SS serves as a dynamic readout of the strength of
syncytial coupling. To be able to quantitatively correlate the
changes of VM,SS with S, a computational model has been
established (Figures 3C,D) where a stronger syncytial coupling
leads to a stronger compensation of the VM,ss towards the
physiological VM of neighboring astrocytes established by

140 mV [K+]i, whereas a weaker coupling shifts the VM,ss
toward GHK predicted EK for the Na+ electrode solution.
More details about the biophysical principles and assumptions
used to build up this computational model are available
in this publication (Kiyoshi et al., 2018). In addition, this
model can be used for analysis of the dynamic change of
coupling strength, for instance, during neuronal activation
(Kiyoshi et al., 2018).

This method comprises several advantages. First, differing
from paired recordings, VM,SS is measured from single electrode
recordings. Second, this method allows for dynamic monitoring
of the coupling strength of a syncytium over time. Third,
this method can be incorporated with astrocyte syncytial
anatomy studies. For example, ALDH1L1-eGFP reporter mice
were use for a priori astrocyte identification and examination
of syncytial isopotentiality across brain regions. Additionally,
the recorded brain slices were then further processed with
the tissue-clearing method (Susaki et al., 2014, 2015), i.e.,
depletion of the brain lipid content, for high-resolution
confocal imaging study of the cellular morphology and spatial
organization patterns of astrocytes (Kiyoshi et al., 2018).
This study showed that in different layers of the visual
cortex, the anatomy, in terms of cell density, interastrocytic
distance and the number of the nearest neighbors vary in
morphometric analysis. However, S does not differ between
layers. Additionally, S of the visual cortex was found to
be stronger than in the hippocampal CA1 region (Kiyoshi
et al., 2018). Fourthly, this method can be incorporated with
tracer coupling to map the directionality and spatial coupling
of a syncytium (see also “Tracer Coupling”). For example,
in the cerebellum, Bergmann glia and velate astrocytes are
derived from the same progenitor pool but are strikingly
different in their morphology (Kita et al., 2013). Bergmann
glia are characterized by having their cell bodies arranged
in rows alongside with the soma of Purkinje neurons and
extension of their processes along the Purkinje cell layer
toward the pia of the cerebellum. Velate astrocytes are
cerebellar protoplasmic astrocytes that exhibit characteristic
velate sheath processes and are more dispersed in arrangement
(Chan-Palay and Palay, 1972). S is significantly weaker in
Bergmann glia networks than those established by velate
astrocytes at the granular layer. In the tracer coupling analysis,
the injection of tracer revealed the coupling of Bergmann
glia and velate astrocytes. Thus, despite a striking difference
in syncytial anatomy, the syncytial isopotentiality occurs to
syncytial networks established by both subtypes of astrocytes
(Kiyoshi et al., 2018).

A limitation in this method is the inference of a
syncytial isopotentiality based on biophysical principles and
electrophysiological measurements. Significant progress has been
made in the technique of genetically encoded voltage indicator
(Kang et al., 2019). However, this state-of-the-art technique
is still below the threshold to detect the subtle variation of
voltages in an astrocyte syncytium, and therefore, future
optimization of this technique is crucial to recruit advanced
imaging techniques to study the physiology and pathology of
astrocyte syncytial networks.
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Tracer Coupling
Aside this direct measurement of cell-to-cell coupling, tracer
coupling can be utilized to mimic diffusion within in the network.
Tracers are usually loaded for several minutes into a single cell via
the backfill of the patch pipette. Simultaneously, tracers diffuse
within the gap junction network. The tracer concentration is
highest in the patched cell and declines within the network
with increasing distance as it diffuses. There are various tracers
available comprising different advantages and disadvantages
(Table 1; see also Abbaci et al., 2008). An often used tracer
is LY (Kawata et al., 1983). It is a fluorescent dye that allows
direct observation of diffusion within the network. Subsequently,
LY labeling can be combined with immunohistochemistry to
determine the identity of coupled cells (Binmoller and Muller,
1992; Konietzko and Muller, 1994). However, it comprises low
permeability at gap junctions consisting of Cx30 (Rackauskas
et al., 2007). As Cx30 expression increases during early postnatal
development (Nagy et al., 1999; Griemsmann et al., 2015;
Augustin et al., 2016; Wadle et al., 2018), LY will only highlight
a fraction of coupling in more mature tissue. In addition, LY has

a low solubility and tends to clog electrodes. As LY interferes
with endogenous electrophysiological properties, it is rather
not suitable to be combined with electrophysiological analyses
(Tasker et al., 1991). Further fluorophores, e.g., Alexa Fluor
(AF) dyes, can be used for tracing coupled cells as well (Han
et al., 2013). Like LY, spreading of AF dyes can be assessed
directly. However, they do not pass through Cx30 containing
gap junctions and just insufficiently through other gap junctions
requiring administration at high concentration (Weber et al.,
2004). At lower concentrations, there is almost no diffusion to
neighboring cells so that AF dyes can be used to label the patch-
clamped cell (Augustin et al., 2016; Wadle et al., 2018; Eitelmann
et al., 2019). Two other tracers, namely neurobiotin (Nb) and
biocytin (Horikawa and Armstrong, 1988; Huang et al., 1992),
are colorless and require fixation and further processing of the
tissue. Thus, their diffusion cannot be assessed directly. The
two tracers are recognized by streptavidin and avidin (Livnah
et al., 1993). The latter ones can be linked to either fluorophores
or enzymes. Using a fluorophore allows the combination with
further immunohistochemical processing of the tissue (Schools

TABLE 1 | Commonly used tracers for analyzing gap junctional coupling.

Tracer Mass [g/mol] Fluorescence Histology required Advantage Disadvantage Reference(s)

LY 457 X 7 Direct imaging Low Cx30-permeability Alteration of
electrophysiological properties

Tasker et al., 1991
Kawata et al., 1983
Rackauskas et al.,
2007

NB 323 7 (Strept-/) Avidin conjugates Permeable through
all astrocytic Cx

Background labeling of
endogenous biotin

Huang et al., 1992
Livnah et al., 1993

Biocytin 375 7 (Strept-/) Avidin conjugates Permeable through
all astrocytic Cx

Background labeling of
endogenous biotin

Horikawa and
Armstrong, 1988
Livnah et al., 1993

2-NBDG 342 X 7 Imaging of glucose
distribution

Degradation to non-fluorescent
derivative

Yoshioka et al., 1996
Yamada et al., 2000

6-NBDG 342 X 7 Imaging of glucose
distribution

Speizer et al., 1985

LY, Lucifer Yellow; NB, neurobiotin; Cx, connexin; NBDG, deoxy-N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-aminoglucose; AF, Alexa Fluor.
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et al., 2006; Augustin et al., 2016; Eitelmann et al., 2019,
2020). Using peroxidases produces a light-stable product that
is not sensitive to photo-bleaching (Konietzko and Muller, 1994;
D’Ambrosio et al., 1998). Alternatively, fluorescent glucose
analogues can be used (Speizer et al., 1985; Yamada et al., 2000).
They allow to visualize activity-dependent, directed glucose
redistribution in otherwise spherical networks (Rouach et al.,
2008). However, it has to be kept in mind that, for example,
2-NBDG enters the glycolytic pathway and is degraded to a
non-fluorescent derivative (Yoshioka et al., 1996).

Gap junctional coupling is not uniform, e.g., it was shown to
increase developmentally (Binmoller and Muller, 1992; Schools
et al., 2006; Houades et al., 2008; Langer et al., 2012; Griemsmann
et al., 2015). Furthermore, there are many examples of spherical
networks upon radial tracer diffusion in certain brain regions
(Binmoller and Muller, 1992; Houades et al., 2006; Muller et al.,
2009). However, in others—in particular in sensory systems—
tracer spreading is unequal in different directions (Houades
et al., 2008; Augustin et al., 2016; Claus et al., 2018; Condamine

et al., 2018a; Wadle et al., 2018). There, network anisotropy
strongly correlates with anatomical and functional organization
of the underlying neuronal circuitry. The anisotropy of tracer
spreading originates from astrocyte topography (Anders et al.,
2014; Augustin et al., 2016; Ghezali et al., 2018; Wadle et al.,
2018). Interestingly, in the lateral superior olive—a conspicuous
nucleus in the auditory brainstem—absence of spontaneous
cochlea-driven neuronal activity leading to disturbed neuronal
circuitry (Hirtz et al., 2012; Muller et al., 2019) causes altered
astrocyte topography followed by altered orientation of tracer-
coupled networks (Eitelmann et al., 2020). In recent years, several
different approaches were developed to analyze the anisotropy of
tracer-coupled networks (Figure 4). Most approaches are able to
reliably detect network anisotropy; however, some are working
only in certain brain regions (Eitelmann et al., 2019). The
different approaches rely on (1) distance of the farthest cells that
are labeled, (2) labeling intensity, (3) position of all coupled cells,
or (4) a combination of the aforementioned parameters. Most
approaches use the ratio of the diffusion range and/or brightness

FIGURE 4 | Analysis of network topography. (A) Detection of coupled cells. Astrocytes in the lateral superior olive (outlined by dotted magenta line) form large
tracer-coupled networks (A1; green). All identified cells are encircled with a thin gray line. Semi-automated detection of coupled cells is achieved by determining
background fluorescence levels of cells (white boxes) being far located from the tracer-filled cell (arrow). Setting a threshold allows for unbiased selection of coupled
cells (A2; green: coupled cells; gray: not coupled cells). (B) Approaches to study the topography of tracer-coupled networks. Anisotropy is often determined by the
ratio of tracer spread (distance and/or intensity) in two directions that are orthogonal to each other (B1−4,6). Alternatively, a purely vector-based approach can be
used (B5). (C) In case of ratio-based analyses, rotation of the coordinate system allows the precise determination of maximal anisotropy and orientation (C1;
exemplarily shown for vector means, B6). Afterward, results can be gathered in a radar diagram to denote the degree of anisotropy and orientation of networks (C2).
Figure modified from Eitelmann et al. (2019).
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of the tracer in two directions. The most convenient approach
is to measure the extent of tracer spreading in two directions
orthogonal to each other (“YX ratio”). Here, anisotropy is
determined by the four outermost cells showing tracer signal
(Figure 4B1,2; Houades et al., 2006, 2008; Augustin et al., 2016;
Ghezali et al., 2018; Wadle et al., 2018). However, since the

tracer signal is declining with distance to the loaded cell, it can
be difficult to determine the correct extension of the network.
Alternatively, the product of network extension multiplied with
the somatic tracer intensity for two directions orthogonal to each
other can be calculated (“Intensity + coordinates“; Figure 4B3;
Anders et al., 2014). However, elevated somatic signal intensities

FIGURE 5 | Na+ diffusion in glial networks. (A) Cells in the center of the inferior colliculus can be loaded with the fluorescent Na+ indicator SBFI-AM (left). Astrocytes
and bona fide oligodendrocytes can be distinguished by sulforhodamine (SR) 101-labeling. (B) Electrical stimulation results in Na+ load of a single astrocyte (a1).
Subsequently, neighboring astrocytes (a3–a5,a7; SR+) and bona fide oligodendrocytes (a2,a6; SR-), show elevated Na+ transients as well. (C,D) Na+ diffusion can
be elicited by stimulation of both astrocytes (C) and bona fide oligodendrocytes (D). The amplitude of Na+ transients depends on the distance from the stimulated
cell. Figure modified from Wadle et al. (2018).

Frontiers in Cellular Neuroscience | www.frontiersin.org 10 March 2021 | Volume 15 | Article 640406

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-15-640406 March 4, 2021 Time: 17:3 # 11

Stephan et al. Gap Junctional Coupling

due to expression of endogenous biotin (Bixel and Hamprecht,
2000; Yagi et al., 2002) might result in a distorted ratio. In
another approach, the labeling intensity of somata and processes
is analyzed to determine network anisotropy (“Intensity profiles”;
Figure 4B4; Claus et al., 2018). Here, intensity plot profiles
of two rectangles orthogonal to each other and the ratio of
respective full-width at half-maximum (FWHM) are calculated.
However, cell number or individual positions are neglected
and must be analyzed separately, if required. Finally, there are
two vector-based approaches. The first calculates the “Vector
sum” (Figure 4B5; Condamine et al., 2018a,b). However, it
only works in brain regions with defined borders, i.e., diffusion
barriers resulting from reduced gap junction coupling. Examples
of such brain regions are the trigeminal main sensory nucleus
and the columns of the barrel cortex. In both, gap junction
coupling is stronger within the nucleus and columns compared
to areas outside. However, anisotropic tracer diffusion will be
visualized only if the tracer is injected into an astrocyte that
is not located in the center (Houades et al., 2008; Condamine
et al., 2018a) as the “Vector sum” approach is not capable to
detect the anisotropy of tracer-coupled networks if they are
symmetric with respect to a point (Eitelmann et al., 2019). The
second vector-based approach calculates the “Vector means” in
four 90◦ sectors and the ratio of tracer extension is calculated
(Figure 4B6; Eitelmann et al., 2019, 2020). However, analyzing
the anisotropy of tracer spreading using only two fixed axes
might result in falsified results. For example, if an anisotropic
network is turned by 45◦ from one of the two axes, all ratio-
based approaches will postulate spherical network. Therefore,
a subsequent analysis using a rotating coordinate system will
not only determine the maximal anisotropy of a network, but
will also define the preferred orientation (Figure 4C; Eitelmann
et al., 2019). Taken together, heterogeneity of gap junctional
coupling can be visualized excellently by tracer coupling studies.
However, they often provide only a snap-shot of coupling using a
non-physiological tracer.

Wide Field (Na+) Imaging
Imaging of intracellular ion concentration can be a good tool
to supplement tracer coupling studies. For the interpretation of
ion diffusion within the gap junction network, it is beneficial
to analyze the spread of ions that is less effected by signaling
cascades. Thus, Ca2+ is a less suitable candidate as signaling
to neighboring cells is generated by intra- and extracellular
pathways (Giaume and Venance, 1998; Bernardinelli et al., 2004;
Scemes and Giaume, 2006). However, intercellular Na+ spread
depends on gap junctional coupling as deletion of Cx43 and Cx30
prevents ion exchange between neighboring astrocytes (Wallraff
et al., 2006; Langer et al., 2012). However, it has to be kept in
mind that intracellular Na+ is not completely independent from
signaling cascades as it is linked to Ca2+ via the Na+/Ca2+

exchanger (Felix et al., 2020a). For Na+ imaging, cells are dye-
loaded, e.g., with the membrane-permeable form of SBFI (SBFI-
acetoxymethyl ester). After cleavage by endogenous esterases
SBFI allows ratiometric imaging of [Na+]i (Figure 5; Minta and
Tsien, 1989; Meier et al., 2006). Na+ load into a single cell can
be achieved via direct electrical stimulation. This will result in

Na+ rise in the stimulated and in neighboring cells (Figure 5B;
Langer et al., 2012; Augustin et al., 2016; Moshrefi-Ravasdjani
et al., 2017; Wadle et al., 2018). Measuring the maximal [Na+]i
increase allows for the calculation of the length constant λ

using a mono-exponential function (Figures 5C,D; Augustin
et al., 2016; Moshrefi-Ravasdjani et al., 2017; Wadle et al., 2018),
which demonstrates, how efficient Na+ is redistributed and how
strong gap junctional coupling is. It was shown that spatial
spread of Na+ between astrocytes was halfway far in the corpus
callosum compared to other brain regions, i.e., hippocampus,
lateral superior olive, and inferior colliculus (Langer et al., 2012;
Augustin et al., 2016; Moshrefi-Ravasdjani et al., 2017; Wadle
et al., 2018). Furthermore, Na+ diffusion is stronger within
homocellular networks. In contrast, in heterocellular (panglial)
networks Na+ redistribution is reduced (Figure 5D; Moshrefi-
Ravasdjani et al., 2017; Wadle et al., 2018), which likely results
from a lower permeability of connexons, which are incorporated
into the heterotypic gap junction channels (Bedner et al.,
2006). Taken together, imaging of ion sensitive dyes is a good
supplement to tracer coupling studies to further characterize gap
junctional communication.

CONCLUSION

Gap junctional communication between glial cells is important
for ion and neurotransmitter homeostasis and ensures
stabilization of their membrane potential. Though astrocytes
throughout the brain share similar properties, they exhibit
a considerable amount of region-dependent heterogeneity.
To unravel these particular differences suitable approaches
are necessary. In this review, we summarized and described
well-established and recently developed methods that will allow
electrophysiology and imaging laboratories to analyze gap
junctional coupling in acute tissue slices.
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