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Abstract

Tasks that measure correlates of prosocial decision-making share one common feature: agents can make choices that
increase the welfare of a beneficiary. However, prosocial decisions vary widely as a function of other task features. The
diverse ways that prosociality is defined and the heterogeneity of prosocial decisions have created challenges for interpret-
ing findings across studies and identifying their neural correlates. To overcome these challenges, we aimed to organize the
prosocial decision-making task space of neuroimaging studies. We conducted a systematic search for studies in which partic-
ipants made decisions to increase the welfare of others during functional magnetic resonance imaging. We identified shared
and distinct features of these tasks and employed an unsupervised graph-based approach to assess how various forms of
prosocial decision-making are related in terms of their low-level components (e.g. task features like potential cost to the
agent or potential for reciprocity). Analyses uncovered three clusters of prosocial decisions, which we labeled as cooperation,
equity and altruism. This feature-based representation of the task structure was supported by results of a neuroimaging
meta-analysis that each type of prosocial decisions recruited diverging neural systems. Results clarify some of the existing
heterogeneity in how prosociality is conceptualized and generate insight for future research and task paradigm development.

Key words: prosocial decision-making; meta-analysis; cooperation; equity; altruism

Introduction

Prosocial decisions—choices that increase the welfare of
others—are universal across cultures (Henrich et al., 2005) and
are integral for supporting interpersonal relationships at mul-
tiple scales, including between dyads (Rusbult and Van Lange,
2003; Declerck et al., 2013), among groups and social networks
(Fehr et al., 2002; Fehr and Fischbacher, 2003; Fehr and Camerer,
2007; de Waal, 2008; Fowler and Christakis, 2010; Feldman-
Hall, 2017) and within societies (Nowak, 2006). And, while
largely conserved across species (de Waal, 2008; Burkart et al.,

2014; Hare, 2017), the prevalence and variety of prosociality
exhibited by humans is unique (Zaki and Mitchell, 2013; Fehr
and Schurtenberger, 2018). Although cognitive and neural pro-
cesses underlying various forms of prosociality have been stud-
ied extensively across disciplines spanning psychology, neuro-
science, economics and biology, the heterogeneity of prosocial
decisions has led to inconsistencies in how they are operational-
ized and categorized (Fehr and Schmidt, 1999; Fehr et al., 2002;
Rilling et al., 2002; Batson and Powell, 2003; de Waal, 2008;
Declerck et al., 2013; Rand and Nowak, 2013; Ruff and Fehr, 2014;
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Tricomi and Sullivan-Toole, 2015; Marsh, 2016; Parnamets et al.,
2020). This can create challenges when interpreting findings
across neuroimaging studies or when attempting to understand
how different types of prosocial decisions vary in terms of their
underlying processes.

Derived from the Latin stem pro and root socius, signifying
‘for a companion’, prosocial decision-making refers to ‘decisions
made for the benefit of another’ (Houghton Mifflin Harcourt,
2000). Laboratory tasks that measure correlates of prosocial
decision-making share one common feature: allowing deciding
participants (or agents) to make choices that increase the wel-
fare of a beneficiary. However, prosocial decisions vary widely
as a function of other task features. For example, although
choosing to forgo resources (usually money) to alleviate the suf-
fering of a stranger (in a charitable donation task) vs choosing
to contribute money to maximize equity among known mem-
bers in a group (in a public goods game) both share a com-
mon prosocial core of increasing the welfare of others, these
decisions diverge along multiple other characteristics. In the
first example, a prosocial agent sacrifices resources in response
to another person’s distress with the understanding that they
will not receive anything in return—suggesting a likely role for
empathic concern and planning for prosocial action without
any anticipation of reward. In the second example, all proso-
cial agents are relying on the decisions of others and are hoping
to increase the total pool of resources for everyone involved.
This suggests a role for monitoring the expected actions of oth-
ers’ decisions and includes the anticipation of self-rewarding
outcomes.

In addition to charitable donation tasks and public goods
games, other common prosocial paradigms include dictator
games, prisoner’s dilemmas and trust games. Such tasks can be
implemented with multiple variations, and the vast number of
combinations of task features is a major source of heterogene-
ity. This heterogeneity raises the question of whether common
mechanisms underlie all prosocial choices. One possibility is
that prosocial decisions in each distinct task are supported by
distinct mechanisms. But it is more likely that taxonomic clus-
ters exist within the task space of prosocial decision-making
that reflect common underlying neural processes (Cutler and
Campbell-Meiklejohn, 2019). One way to identify such clusters
would be via a bottom-up approach aimed at characterizing the
task structure of prosocial decision-making by analyzing the
way specific tasks cluster according to their low-level features.
In other words, developing one level of a formal representa-
tion (or ontology) of cognitive tasks and their inter-relationships
(Turner and Laird, 2012; Poldrack and Yarkoni, 2016). The first
goal of this paper was to clarify how different prosocial tasks are
inter-related and how their low-level features give rise to broad
categories of prosocial decisions. Then, using this information
across various studies, we employed an unsupervised graph-
based approach to generate a preliminary characterization of
the neuroimaging task space comprised of the distinct and
shared task features of prosocial decision-making paradigms.
Finally, we conducted an functional magnetic resonance imag-
ing (fMRI) meta-analysis to identify patterns of distinct and
overlapping neural activation that correspond to the identified
clusters of prosocial processes.

Breaking prosocial decision processes down into their rel-
evant task features may allow a better understanding of how
prosocial decisions are inter-related, and how they diverge. In
general, the features that distinguish these tasks involve those
related to the beneficiary (Is the beneficiary a real or imaginary
person (or persons) or an organization like a charity? Is their

identity apparent to the agent? Is their need or distress known
to the agent?), to the interaction (Does the beneficiary also make
decisions that will affect ultimate outcome? Will the agent and
beneficiary interact only once or more than once?) and to the
outcomes of the agent’s decision (What is the magnitude of the
benefit to the beneficiary? Will the decision result in reward-
ing outcomes for the agent? Will it be costly? Will the decision
conform to social norms, such as equity? How certain is the out-
come?). Multiple combinations of these features likely shape the
context, motivations and outcomes of prosocial decisions and
thus should recruit diverging neural systems.

Features related to the beneficiary

Various features related to the beneficiary of a prosocial deci-
sion are known to influence such decisions. Beneficiaries can
include specific people, such as close or familiar others (Sharp
et al., 2011; Telzer et al., 2011; Fareri et al., 2015; Hill et al., 2017;
Schreuders et al., 2018) or in-group members (Balliet et al., 2014;
Telzer et al., 2015; Hackel et al., 2017; Wills et al., 2018) or can be
hypothetical or even non-human (e.g. computers) (Delgado et al.,
2005; Fareri et al., 2012). Across contexts, agents are typically
more willing to help people than computers (Fareri et al., 2015)
and aremore willing to help people close to them than strangers
(Jones and Rachlin, 2006, 2009; Safin et al., 2013; Strombach
et al., 2015). Neural activation during decisions that affect real vs
imaginary beneficiaries (e.g. computer) is increased in regions
important for theory of mind or inferring the mental states of
others such as the temporoparietal junction (TPJ) (FeldmanHall
et al., 2012).

In tasks that include real beneficiaries who are previously
unknown to the agent, the beneficiary may be another partic-
ipant in study (Weiland et al., 2012) or an anonymous stranger
(Bault et al., 2014; Hutcherson et al., 2015; Strombach et al., 2015)
who the agent may have briefly met before the task (Shaw et al.,
2018; Abe et al., 2019) or seen in a photograph (Genevsky et al.,
2013; Park et al., 2017). Receiving any identifying information
about a beneficiary generally increases prosociality, in line with
the identifiable victim effect (Jenni and Loewenstein, 1997; Kogut
and Ritov, 2005; Lee and Feeley, 2016). This effect also results
in greater prosociality toward single individuals vs collectives
(Kogut and Ritov, 2005; Lee and Feeley, 2016), including char-
itable organizations, whether predetermined (Greening et al.,
2014), of the agent’s choosing (Kuss et al., 2013) or from a list
of charities (Hare et al., 2010; Izuma et al., 2010; Tusche et al.,
2016). Increases in prosocial decision-making are particularly
robust when the need or distress of the beneficiary is salient
(Genevsky et al., 2013; FeldmanHall et al., 2015; Kuss et al., 2015;
Tusche et al., 2016). Cues that signal need or distress typically
elicit empathic concern, which motivates the desire to allevi-
ate it (Preston and de Waal, 2002; de Waal, 2008; Batson, 2011;
Marsh, 2016). This form of empathy is supported by activity
in neural regions including the anterior insula, anterior cingu-
late cortex (ACC) and pre-supplementary motor area (pre-SMA)
(Lamm et al., 2011; Jauniaux et al., 2019; Fallon et al., 2020; Kogler
et al., 2020; Schurz et al., 2020) and empathic neural respond-
ing predicts prosocial decision-making both in and out of the
laboratory (Tusche et al., 2016; Vekaria et al., 2020).

Features related to the interaction

Aspects of the interaction between agents and beneficiaries (or
other agents) in prosocial tasks also influence agents’ decisions,
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particularly when agents can learn about those with whom
they are interacting. In some interactions, only one agent can
influence the outcome. For example, in dictator games, agents
unilaterally allocate resources between themselves and a benefi-
ciary (Engel, 2011). In others, multiple agents can shape the out-
come. For example, in social dilemmas or trust games, agents
can choose to cooperatewith others in order to increase the total
pool of available resources for everyone involved or can defect to
obtain better outcomes for self (Balliet et al., 2011). Alternatively,
in ultimatum games, agents receive feedback about their deci-
sions from beneficiaries, who can accept or reject the offer (Güth
et al., 1982).

Some prosocial decisions involve repeated interactions,
which, unlike one-shot interactions, provide opportunities
to reciprocate or respond to feedback about prior choices
(Thielmann et al., 2020). When repeated interactions are
expected, it typically motivates cooperation, with agents moti-
vated to pay short-term cooperation ‘costs’ to increase future
reciprocity from a partner (Milinski et al., 2001; Rand and Nowak,
2013) and more willing to cooperate with partners who have
cooperated previously (Fehr and Schurtenberger, 2018). This
may be related to the ability to update expectations of others’
likely behavior, a type of social learning is supported by the
subgenual ACC (Christopoulos and King-Casas, 2014). During
these repeated interactions, agents may also act to influence
interaction partners to reciprocate, for example, when a coop-
erative exchange is broken and partners coax others back into
cooperation via generosity (Bendor et al., 1921; King-Casas et al.,
2008).

Features related to outcomes

Across interaction types, prosocial decisions are also shaped by
their anticipated outcomes. In some cases, prosocial decisions
may benefit the agent directly. In prisoner’s dilemmas or public
goods games, for example, decisions to cooperate increase the
probability of future reciprocity. In such tasks, agents also take
on the role of beneficiaries (Chaudhuri, 2011; Rand and Nowak,
2013) and, thus, must arbitrate between their own and others’
rewards. These tasks often recruit neural systems that support
subjective valuation and reward expectancy, such as the ventro-
medial prefrontal cortex (PFC) and ventral striatum (Wills et al.,
2018, 2020; Parnamets et al., 2020). These tasks also carry an
element of uncertainty (Bellucci et al., 2017), with the agent’s
outcome often dependent on a beneficiary or trustee’s choices
(Mayer et al., 1995). Uncertainty during these decisions may be
reflected through activation in the dorsal ACC (Aimone et al.,
2014).

Prosocial choices may also yield more abstract rewards,
such as conformity to desirable social norms like maximiz-
ing equity among multiple parties (via, for example, a 50–
50 split of resources) (López-Pérez, 2008; Krupka and Weber,
2013; Fehr and Schurtenberger, 2018). In some cases, agents
may choose to act prosocially and forgo resources to avoid
deviating from desirable norm, which is known as disadvan-
tageous inequity aversion (Tricomi and Sullivan-Toole, 2015).
Equitable interpersonal decisions are thought to engage neu-
ral structures involved in a computing subjective value such as
the medial PFC and ventral striatum and thus may be moti-
vated through increased intrinsic value placed on the decision
(Zaki and Mitchell, 2011), perhaps via their goal of produc-
ing increased subjective happiness for agents and beneficiaries
(Tabibnia et al., 2007; Tabibnia and Lieberman, 2007). In tasks
with repeated interactions, these decisions may also reflect the
maintenance of abstract, norm-based rules regarding fairness

or reciprocity, in that repeated interactions can enable norms
to become established among the interacting parties and main-
tained in dorsolateral PFC (van den Bos et al., 2009; Guroglu et al.,
2014).

In other prosocial decision-making tasks (such as dictator
games or charitable giving tasks), agents can forgo resources
(including money, time, effort or safety) solely to benefit oth-
ers. In this case, prosocial choices are made despite certain
concrete costs to the agent, often to alleviate the beneficiary’s
distress or need. As described above, such decisions are thought
to be driven by activation in regions like anterior insula, which
represent negative affective states (e.g. pain or distress) of the
beneficiary (FeldmanHall et al., 2015; Tusche et al., 2016). Such
choices also may yield indirect gains, including increases in
mood or well-being (Dunn et al., 2008; Aknin et al., 2012; Curry
et al., 2018), possibly related to the vicarious reward of improv-
ing the beneficiary’s welfare (Mobbs et al., 2009); such vicarious
reward may be supported by activity in ventral striatum and
ventromedial PFC.

Given the diversity of extant prosocial decision tasks, two
recentmeta-analytic studies have been very valuable in describ-
ing the neural correlates of prosocial behaviors aggregated
across tasks that reflect divergent constellations of the above
variables. Bellucci et al. (2020) aggregated across a wide range
of tasks in which participants made decisions about others,
rated others’ traits or judged others’ behaviors in an effort
to find neural activation overlap among prosociality, empathy
and mentalizing. They found four regions to be preferentially
engaged across the tasks they incorporated: dorsolateral PFC,
ventromedial PFC, dorsal posterior cingulate cortex (PCC) and
middle cingulate cortex (MCC). Of these regions, they found
a conjunction in dorsal PCC activation during tasks involving
prosocial behavior and tasks involvingmentalizing (understand-
ing another person’s needs and inferring goals across contexts);
they also found a conjunction in MCC activation across tasks
involving prosocial behavior and tasks involving empathy (res-
onating with another’s needs) (Bellucci et al., 2020). Activation
during prosocial behavior in the dorsolateral PFC and ventrome-
dial PFC did not overlap with activation during mentalizing or
empathy tasks. This work identified common neural patterns
underlying a range of behaviors related to prosociality, but, by
not considering key differences among types of prosocial deci-
sions, it was not able to identify whether they are supported
by distinct processes. Cutler and Campbell-Meiklejohn (2019)
provided preliminary evidence that distinct neural regions do
indeed support different forms of prosocial decision-making,
finding diverging patterns of activation for prosocial behaviors
that do not provide an opportunity to gain extrinsic rewards
(and thus likely are intrinsically motivated) vs those with the
probability of gaining an extrinsic reward. For example, extrin-
sically motivated decisions recruited greater activity in stri-
atal regions relative to intrinsically motivated decisions. In
contrast, intrinsically motivated decisions recruited increased
activation in ventromedial PFC relative to extrinsically moti-
vated decisions. Activation in ventromedial PFC also differ-
entiated these types along a posterior (intrinsic) to anterior
(extrinsic) axis.

However, the distinction between extrinsic and intrinsic
motivationwas determined in advance, rather than being driven
by objective features of the data. This is also only one of many
possible distinctions among forms of prosocial behavior. An
alternative means of investigating neural substrates of various
prosocial decision tasks could instead take a more bottom-up
approach that identifies distinct clusters of tasks that emerge
from statistical variation in their objective features or outcomes.
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For example, a recent behavioral study analyzed the behav-
ioral outcomes of different economic prosocial tasks (such as
the percentage of prosocial decisions during each task, the ratio
of other-regarding to self-regarding decisions in each, average
monetary donations or summary scores of self-reported mea-
sures). Using factor analysis, they determined that the prosocial
tasks clustered into four factors that the authors termed: altru-
istically motivated prosocial behavior, norm-motivated proso-
cial behavior, strategically motivated prosocial behavior and
self-reported prosocial behavior (Böckler et al., 2016).

We sought to use a similar bottom-up approach to meta-
analytically investigate the neural correlates of prosocial
decision-making during fMRI. We focused on objective features
that distinguish the tasks themselves, which included features
related to outcomes of decisions, to the beneficiaries of the deci-
sion and to the interaction between agents and beneficiaries.
We first compiled data from 43 unique fMRI studies of prosocial
decision-making (including 25 maps and 18 coordinate tables
across 1423 participants). We then dummy-coded task features
related to the beneficiary, interaction and outcome of each
decision and employed a data-driven, graph-based approach to
identify clusters of studies based on their overlapping vs distinct
task features. As described in detail below, this approach indi-
cated that the prosocial decision-making task-space comprises
three clusters, which we labeled as cooperation, equity and
altruism.We next used ameta-analytic approach that combined
group-level statistical parametric images with reported peak-
coordinates to identify divergent neural activation patterns
across these clusters of studies. In so doing, the present study
resolves some discrepancies in how prosocial decisions are con-
ceptualized, expands understanding regarding how prosocial
decisions are related and distinct and generates insight for
future research.

Method

Literature search and study selection

A literature search using PubMed identified research published
prior to June 2019 using keywords either (‘fMRI’ or ‘neur*’) and
one of the following: (‘prosocial’, ‘altruis*’, ‘trust game’, ‘fair-
ness’, ‘reciproc*’, ‘cooperat*’, ‘charitable’, ‘public goods’, ‘dicta-
tor’, ‘ultimatum’, ‘prisoner*’).1 The search returned 201 articles.
We removed 124 articles that did not meet key criteria, such
as non-neuroimaging studies, neuroimaging studies that did
not use fMRI and literature reviews or meta-analyses. Indepen-
dently, we identified 123 potential articles from the reference
lists of the remaining 77 articles. After removing all duplicate
titles from the combined lists, 146 articles remained. We then
selected only articles that reported novel whole-brain fMRI data
(i.e. data only published once) that were collected while partici-
pants made decisions that benefitted another individual (proso-
cial decisions). We also limited our search to include only data
from studies that were able to examine differences in activation
during prosocial decisions relative to decisions that benefited
the agent alone (selfish decisions). In some cases, this was a
contrast between prosocial choices and selfish choices within
a task condition or parametric modulation of the amount given.
For other studies, the contrast was between decisions during a

1 After conducting this initial search, we conducted an additional PubMed
search using the criteria [(“fMRI” OR “neur*”) AND “equity”] and did not
identify any studies published prior to 2019 that would have been eligible
for the study and were not already included.

prosocial condition and a self-only condition. We did not include
contrasts involving alternate control conditions (e.g. rest and
visuomotor controls), even when these were available, due to
significant variation in brain activation (Cutler and Campbell-
Meiklejohn, 2019). Upon review of the remaining 146 articles, 69
were identified that met our inclusion criteria.

We sent emails to the corresponding authors of all included
studies to request unthresholded, group-level t-statistic map(s)
from the study that best fit our criteria. For studies that included
pharmacological manipulations or clinical populations, we
requested data from only the control group. If maps were not
available, we requested coordinates for contrasts of interests or
extracted them frommanuscripts. If a coordinate table reported
Z-scores or Talaraich coordinates, peak valueswere transformed
to t-statistics and Montreal Neurological Institute (MNI) coordi-
nates, respectively. If the contrast of interest was reported in
both directions (e.g. cooperate>defect and defect > cooperate),
the selfish contrast peaks were assigned as negative t-values.
Ultimately, we obtained the necessary data from 43 unique
fMRI studies, including 25 maps and 18 coordinate tables that
included data from 1423 subjects (Table 1).

Identifying task features across studies

Wefirst reviewed the details of themethodologies of all available
tasks and identified 13 distinct task features that varied among
existing prosocial decision-making tasks across neuroimaging
studies (Figure 1). These task features can be broken down into
those that vary as a function of the beneficiary, the interac-
tion and the outcome. Although in theory features related to
the agent can also vary, all participants included in the present
studywere healthy control adults andwe did not identify consis-
tent features related to these participants—for example, consis-
tent individual difference measures—in the available literature.
Four independent raters dummy coded (‘present’ or ‘absent’) the
13 features during the prosocial decision phase for the available
contrast in each studywith high initial agreement among coders
(ICC=0.82, CI95% = [0.79, 0.84]). Discrepancies in the initial cod-
ing were then resolved through a consensus agreement across
each of the four coders.

Identifying clusters within the task structure of
prosocial decision-making

To assess differential clusters of prosocial decisions based on
their task features, we next applied an unsupervised, graph-
based approach. Importantly, we selected an approach that
allowed us to identify potential clusters of studies among tasks
that all shared a common feature of ‘producing a rewarding out-
come to the beneficiary’ (a crucial criterion for inclusion in our
meta-analysis). Thus, we sought to construct a fully connected,
weighted graphwith studies as nodes and the degree of overlap-
ping task features asweighted edges. To accomplish this, we first
used the identified features to construct a bipartite graph. This
graph contained two sets of nodes: nodes representing the 13
different task features and nodes representing the 43 different
prosocial decision study contrasts. In this graph, an edge exists
between a feature node and a study node if the study contrast
contained the task feature (Figure 1 depicts this graph in matrix
form). Next, we projected this bipartite graph onto a weighted
network of studies, where edge weights between studies repre-
sented the Dice similarity coefficient (Dice, 1945) or the degree
of overlapping task features relative to the total possible task
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Fig. 1. Bipartite feature x study incidence matrix.

Note. Studies were labeled with task features to construct a bipartite graph where edges (black boxes in incidence matrix) exist between a feature node and study node
if the study contrast contained the task feature. The final row in this matrix represents each of three clusters, which were labeled by the researchers as cooperative
(red), equitable (yellow) and altruistic (blue) decisions based on the task features shared within each cluster.

features (Figure 2). We then ran the Louvain community detec-
tion algorithm (Blondel et al., 2008)—a common unsupervised
clustering algorithm used across the biological, psychological
and social sciences that detects clustering of nodes in a fully-
connected, weighted graph (Matthews et al., 2016; Ito et al., 2017;
Gonzalez-Castillo et al., 2019; Miele et al., 2019; Paquola et al.,
2019; Allegra et al., 2020; Tian et al., 2020; Wang et al., 2020).
This approach assigned study nodes to clusters in two steps.
First, the algorithm finds small clusters of studies by optimiz-
ing local modularity. Second, it aggregates studies of the same
cluster in a hierarchical fashion and builds a newnetworkwhose
nodes are these clusters. These steps were repeated iteratively
until the global modularity was maximized (i.e. global modu-
larity is achieved when the connections between studies within
the same clusters are strongest and connections between nodes
in different clusters are weakest). The resulting hierarchy of
studies across clusters in the study network is depicted in Sup-
plementary Figure S1. To assess the stability of the identified
three-cluster solution, we implemented a Jackknife sensitivity
analysis, which exhaustively left one study out prior to gen-
erating the study network and applying Louvain community
detection. We then computed (i) the percentage of iterations
that yielded the same number of clusters (three clusters) in the
study network and (ii) the proportion of studies that switched to
a different cluster.

Neuroimaging preprocessing and meta-analyses

We next conducted meta-analyses combining reported peak
information (coordinates and t-statistics) with original statis-
tical parametric maps using the anisotropic effect size signed
differential mapping software (AES-SDM, version 5.141; Radua
et al., 2014). We selected this analytical technique rather than
alternatives, such as coordinate-based activation likelihood
(Turkeltaub et al., 2002; Eickhoff et al., 2009), because this
approach enabled the utilization of precise, continuous esti-
mates of effect sizes, assessment of between-study hetero-
geneity and identification of potential publication bias (Radua
et al., 2012). Using AES-SDM, within-study, voxel-level maps
of effect sizes (Hedge’s g) and their variances were re-created
for each study. When only reported coordinates and statistics
were available for a study, we calculated the effect size at each
peak and estimated effect sizes in neighboring voxels based on
the Euclidean distance between voxels and the peak using a
20mm full-width at half maximum (FWHM) Gaussian function

(Radua et al., 2012, 2014). This method of estimation is similar to
the estimation of activation likelihood used in peak-probability
meta-analytic methods, but the use of effect sizes in the cal-
culation increases the accuracy of estimation of the true signal
(Radua et al., 2012). When the t-statistics of the peak coordinates
were unknown (one study: Delgado et al., 2005), we imputed the
effect size with the extent threshold reported in the study.

We used three random-effects models to compute a meta-
analytic activation for each prosocial category identified using
the Louvain community detection algorithm. Each individual
study was weighted by the inverse sum of its variance plus
the between-study variance as obtained by the DerSimonian–
Laird estimator of heterogeneity (DerSimonian and Laird, 1986).
Within this random-effects framework, studies with larger sam-
ple sizes or lower variability contribute more and effects are
assumed to randomly vary between study samples. To assess
statistical significance, we implemented a modified permu-
tation test that empirically estimated a null distribution for
each meta-analytic brain map. We thus tested the hypothe-
sis that each map’s true effect sizes were not the result of
a random spatial association among studies within a proso-
cial category. We applied a threshold of P<0.005 as recom-
mended by Radua et al. (2012) to optimally balance specificity
and sensitivity while yielding results approximately equiva-
lent to P<0.05 corrected for multiple comparisons. Reported
z-scores are specified as SDM-Z, as they do not follow a
standard normal distribution. We also conducted three pair-
wise comparisons of activation maps across each of the three
prosocial categories, which followed the same procedures
(Supplementary Table S1).

The effect size maps were imported into Analysis of Func-
tional NeuroImages (AFNI) (Cox, 1996), and a conjunction anal-
ysis was conducted to examine the overlap of consistently acti-
vated regions across altruism, cooperation and equity. Conjunc-
tion was determined using 3dcalc by overlaying the thresholded
meta-analytic maps for each category to determine activation
overlay.

Results

Clustering tasks into categories of prosocial
decision-making

The Louvain clustering algorithm revealed three clusters of
prosocial decision-making tasks (Figure 2). Upon inspection,
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Fig. 2. Graph depiction of study network generated from overlapping task features.

Note. The bipartite graph was projected onto a weighted study network, where wider edge weights between studies represented a larger Dice similarity coefficient
(or greater similarity according to task features). A community detection algorithm revealed three clusters of studies, which were then labeled by the researchers as
cooperative (red), equitable (yellow) and altruistic (blue) decisions based on the task features shared within each cluster. For visualization purposes, the depicted graph
was thresholded to only display edges with a Dice similarity coefficient greater than 0.70 (note that the actual graph was fully-connected).

we labeled these clusters based on the task features (or lack
of features) shared among decisions within each cluster. Deci-
sions in the first cluster (red; N=19; 8 maps, 11 coordinate
tables) involved multiple agents acting prosocially to maximize
resources. These decisions were characterized by features like
outcomes depended on the decisions of others and decisions in
conditions of uncertainty. Tasks included prisoner’s dilemmas,
public goods games, ultimatum games played by proposers,
trust games and non-economic cooperative tasks. We labeled
this cluster as cooperative decisions. A second cluster of decisions
(yellow; N=10; 7 maps, three coordinate tables) were those in
which unilateral decisions to apportion resources equally were
possible. These decisions were characterized by features like
adherence to social norms such as producing equitable out-
comes for the agent and beneficiary and unilateral decisions
made by a single agent (and that thus resulted in no uncer-
tainty). Tasks included dictator games inwhich 50–50 splits were
possible. We labeled this cluster as equitable decisions. Finally,
a third cluster of decisions (N=14; 10 maps, four coordinate
tables) was those in which agents made unilateral decisions to
forgo resources for others. These decisions were characterized
by losseswithout receiving anything in return and decisions that
were made in response to the need or distress of the beneficia-
ries. Tasks included charitable donation tasks, dictator games

in which 50–50 splits were not possible, your pain, my gain
tasks and assistance tasks. We labeled this cluster as altruis-

tic decisions. We will refer to each cluster using these terms,

with the recognition that alternate descriptions for each cluster
could also be appropriate. For example, the cluster of tasks we
labeled as ‘cooperative’ could alternately be labeled as ‘strate-
gic’ (Böckler et al., 2016). Crucially, sensitivity analyses (iter-

atively leaving one study out prior to generating the network

and applying community detection) revealed that 100% of iter-
ations yielded a three-cluster solution. The stability of these

clusters was also high with 97.7% of nodes in the study net-

work remaining in the same cluster; only one study (van den
Bos et al., 2009) out of the forty-three studies ever switched
from the cluster labeled as ‘cooperative’ to the cluster labeled
as ‘equity’.

Meta-analyses

Neural correlates of cooperative decisions. In the coopera-
tive decision cluster, prosocial decisions (in contrast to self-
ish decisions) were associated with increased activation in
right inferior frontal gyrus, bilateral subgenual ACC, left ven-
tral striatum (including caudate nucleus), bilateral insula,
bilateral MCC, left supramarginal gyrus extending to supe-
rior temporal gyrus (STG), left lateral postcentral gyrus, bilat-
eral ventral tegmental area (VTA), left thalamus, left pre-
cuneus, right cerebellum lobule VIII and bilateral occipital cor-
tex. We did not find significantly increased activation in any
region during selfish vs cooperative decision-making (Figure 3,
Table 2).

Neural correlates of equitable decisions. In the equitable deci-
sion cluster, prosocial decisions (in contrast to selfish decisions)
were associated with increased activation in bilateral orbital
frontal cortex (OFC), bilateral ventrolateral PFC, bilateral dorso-
lateral PFC, bilateral medial PFC including rostral ACC, bilateral
ventral striatumand caudate and left occipital cortex. Activation
was increased during selfish relative to equitable decisions in
left dorsolateral PFC, medial portion of left precentral gyrus, lat-
eral portion of bilateral precentral gyrus, left thalamus, bilateral
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Fig. 3. Thresholded results from meta-analyses.

Note. Results from each of three mixed-effects models displaying the main effects of decision-making category (cooperative: red; equitable: yellow; altruistic: blue).
SDM-Z maps are corrected using a threshold of P<0.005 and k>10.

supramarginal gyrus, left inferior temporal gyrus, bilateral pos-
terior superior temporal sulcus (STS) and bilateral occipital
cortex (Figure 3, Table 2).

Neural correlates of altruistic decisions. In the altruistic deci-
sion cluster, prosocial decisions (in contrast to selfish decisions)
were associated with increased activation in several regions
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including left ventromedial PFC, bilateral ACC and paracingulate
gyrus, bilateral pre-SMA, bilateral anterior insula, right ven-
trolateral PFC, left bilateral dorsolateral PFC, thalamus, right
ventral striatum, right precuneus and bilateral interior parietal
gyrus.

We also found increased activation during selfish decision-
making, in contrast to altruistic decision-making, in several
regions including right dorsolateral PFC, right ventrolateral PFC
right putamen, bilateral posterior insula, bilateral precentral
gyrus, right middle temporal gyrus (MTG), STG, right STS left
parahippocampal gyrus, right superior parietal gyrus, bilateral
middle occipital gyrus and left cerebellum crus I and II (Figure 3,
Table 2).

Pairwise meta-analytic map comparisons

Pairwise comparisons confirmed that the meta-analytic maps
derived from each cluster of studies were distinct from one
another. When comparing activation for cooperative relative to
equitable decisions, we found increased activation in regions
that included left ventrolateral PFC, left SMA, right caudate, left
hippocampus, bilateral thalamus, left VTA, left supramarginal
gyrus and left superior parietal gyrus (Supplementary Figure
S2A). We did not find increased activity in any region for equi-
table relative to cooperative decisions. When comparing acti-
vation for equitable relative to altruistic decisions, however,
we found increased activation for equitable relative to altruis-
tic decisions in regions that included right ventrolateral PFC,
bilateral posterior insula and right STG (Supplementary Figure
S2B).

When comparing activation for altruistic relative to equi-
table decisions, we found increased activation in regions that
included dorsolateral PFC, bilateral pre-SMA, left anterior insula,
bilateral caudate, left thalamus and left hippocampus (Supple-
mentary Figure S2C). Finally, when comparing activation for
altruistic relative to cooperative decisions, we found increased
activation in regions that included left dorsolateral PFC, left
SMA, left MTG and left angular gyrus (Supplementary Figure
S2D). We did not find increased activity in any region for cooper-
ative relative to altruistic decisions. Supplementary Table S1 for
results.

Conjunction across meta-analytic maps

Conjunction analyses identified overlapping regions of activa-
tion for altruism ∩ equity and cooperation ∩ equity. Overlapping
activation for altruism ∩ equity was observed in bilateral dor-
solateral PFC (BA9/46; left: [−44, 34, 20], k=19; right: [46, 40,
24], k= 24), left ventrolateral PFC (BA10; [−42, 44, −4], k=32)
and left visual cortex (BA18, [−20, −96, −8], k=34). Overlapping
activity for equity ∩ cooperation was observed in bilateral ven-
tral striatum (left: [−2, 4, −8]; right: [4, 4, −8]; k=4). We did not
find overlapping activation for cooperation ∩ altruism nor did
we find overlapping activation across all three clusters of studies
(cooperation ∩ equity ∩ altruism).

Discussion

Using data from 43 unique fMRI studies that included 25 sta-
tistical maps and 18 coordinate tables across 1423 subjects, we
identified 13 features that distinguish prosocial decisions tasks.
We used these features to generate a feature-based representa-
tion of prosocial decision tasks that classified prosocial decisions
into three sub-clusters that we subsequently labeled as coop-
eration, equity and altruism. The feature-based structure we
generated identified conceptually and motivationally coherent

categories of prosocial decisions. This conclusion is supported
by the results of our fMRI meta-analysis, which found evidence
suggesting that each category of decision recruits diverging neu-
ral systems. The first cluster of decisions (which we labeled
as cooperative) primarily recruited regions such as dorsal and
ventral striatum, VTA and subgenual ACC. A second cluster of
decisions (whichwe labeled as equitable) recruited neural regions
such as ventral striatum, dorsolateral PFC and ventromedial
PFC. A third cluster of decisions (which we labeled as altruistic)
recruited neural regions such as ventral striatum, dorsolateral
PFC, ventromedial PFC, pre-SMA, dorsal ACC and anterior insula.

Our approach demonstrates that the dozens of tasks that
have been used to assess the neural correlates of prosocial deci-
sions generally cluster together according to specific shared
features. These tasks are adaptations of those used in stud-
ies of prosocial decision-making outside the scanner and more
broadly. We identified key features that distinguish prosocial
decisions, including features related to the identity of the bene-
ficiary, the nature of the interaction between agents and ben-
eficiaries and various outcomes associated with the decision.
Then, using an unsupervised graph-based approach, we iden-
tified three clusters of tasks that tend to share common core
features. For example, cooperative decisions included outcomes
that depended on the decisions of others (e.g. ‘beneficiaries
make choices that affect the outcome’) and decisions in con-
ditions of uncertainty. Features shared by equitable decisions
included adherence to social norms such as producing equal
outcomes and unilateral decisions made by a single agent and
that thus resulted in no uncertainty. Features shared by altruis-
tic decisions included outcomes that did not produce any benefit
to the deciding agent and unilateral decisions that weremade in
response to the need or distress of the beneficiaries. Of note, the
prosocial decision-making tasks included in this meta-analysis
were described by the original authors using at least 10 differ-
ent terms that did not consistently correspond to the features
of the tasks being used—including cooperation, collaboration,
reciprocity, trust, equity, fairness, prosocial behavior, interper-
sonal behavior, charitable behavior and altruism—reinforcing
the value of a clearer and more consistent prosocial decision-
making task space.

Supporting the identified task structure, the clusters yielded
by our approach map closely onto the results of a previ-
ous behavioral characterization of prosocial paradigms that
applied factor analysis to the behavioral outcomes of these
paradigms (Böckler et al., 2016). These outcomes included the
percentage of prosocial decisions during tasks, the ratio of other-
regarding vs self-regarding decisions, average monetary dona-
tions or summary scores of self-reported measures. Using a
similar bottom-up, but otherwise completely distinct approach
across 329 participants who completedmultiple tasks-assessing
prosocial behavior, the authors identified clusters of proso-
cial tasks that correspond to those we identified: altruisti-
cally motivated prosocial behavior (corresponding to the cluster
labeled as altruistic decisions), norm-motivated prosocial behav-
ior (corresponding to the cluster labeled as equitable decisions)
and strategicallymotivated prosocial behavior (corresponding to
the cluster labeled as cooperative decisions). They also identified
self-reported prosocial behavior (a category not included in our
meta-analysis) as comprising a fourth distinct cluster.

Our findings also extend this work by showing that tasks
cluster similarly even when completed by different participants
across tasks. This suggests task features are crucial in deter-
mining the category of a prosocial decision and has implica-
tions for comparing results across different tasks, such as in
previous meta-analyses. In addition, our findings suggest that
even within a type of task, specific features may determine the
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Table 2. Results from the meta-analyses

Cooperative> selfish decisions
(increased activity)

Region
Brodmann
Area SDM-Z P Voxels MNI-x MNI-y MNI-z

Inferior frontal gyrus, tri-
angular part extending to
insula (R)

48 3.824 0.000581 11 34 24 10

Ventral striatum extending
to caudate and subgenual
cingulate (L)

4.682 0.000021 89 −6 16 −2

Subgenual anterior cingu-
late cortex extending to
olfactory cortex (R)

25 3.650 0.001053 28 4 12 −10

MCC extending to paracin-
gulate gyri (L, R)

24 3.853 0.000523 45 −2 4 32

Insula (L) 48 3.497 0.001740 14 −38 −4 12
Hippocampus (L) 3.408 0.002305 11 −16 −12 −12
VTA (L) 4.102 0.000212 51 −10 −24 −28
VTA (R) 30 3.814 0.000600 30 12 −24 −22
Postcentral gyrus, lateral
part (L)

3 3.861 0.000509 14 −50 −24 60

Supramarginal gyrus
extending to STG (L)

48 3.888 0.000464 95 −60 −26 22

Thalamus (L) 50 3.931 0.000400 42 −14 −28 −6
White matter (middle
cerebellar peduncles)

3.614 0.001188 13 14 −30 −34

Precuneus (L) 3.744 0.000764 14 −14 −50 58
Cerebellum lobule VIII (R) 3.568 0.001378 15 8 −62 −34
Middle occipital gyrus (L) 19 4.292 0.000103 49 −22 −88 18
Middle occipital gyrus (L, R) 18 3.736 0.000785 11 −28 −98 −6

Equitable > selfish decisions (increased activity)
Inferior frontal gyrus,
triangular part (L)

45 2.366 0.000113 305 −48 42 8

Middle frontal gyrus (R) 45 2.093 0.000468 205 48 40 20
Middle frontal gyrus extend-
ing to superior orbital
gyrus (R)

10, 11 2.391 0.000098 234 30 38 −12

Anterior cingulate cortex
extending to paracingulate
gyri (L, R)

11 2.731 0.000014 488 −2 32 −10

Inferior frontal gyrus, orbital
part (L)

11 2.302 0.000158 24 −24 26 −16

Superior frontal gyrus,
medial part (R)

8 1.957 0.000904 18 8 26 48

Inferior frontal gyrus,
opercular part (R)

44 1.996 0.000748 36 60 16 14

Striatum (L) 1.994 0.000752 68 −6 −6 −8
Middle occipital gyrus (L) 18 2.390 0.000099 113 −18 −98 −2

Equitable < selfish decisions (decreased activity)
Middle frontal gyrus (L) 46 −2.534 0.000820 125 −22 42 26
Rolandic operculum (L) −2.341 0.001943 36 −52 0 16
Inferior temporal gyrus (L) 20 −2.548 0.000771 15 −48 −2 −32
Precentral gyrus (R) 6 −2.533 0.000827 32 48 −4 40
SMA (L) 6 −2.831 0.000197 252 −6 −4 68
Precentral gyrus (L) 6 −2.546 0.000778 27 −50 −8 52
Precentral gyrus (L) 6 −2.518 0.000883 17 −38 −12 40
Caudate nucleus (R) −3.431 0.000007 91 18 −16 24
Precentral gyrus (L) 6 −2.355 0.001822 34 −30 −18 60
Inferior temporal gyrus (L) 20 −2.449 0.001206 12 −44 −18 −24
Thalamus extending to
caudate (L)

−3.007 0.000079 288 −14 −20 20

Posterior insula (R) −3.078 0.000054 27 32 −28 18
Supramarginal gyrus (R) 48 −2.651 0.000474 70 54 −36 28

(continued)
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Table 2. (Continued)

Cooperative> selfish decisions
(increased activity)

Region
Brodmann
Area SDM-Z P Voxels MNI-x MNI-y MNI-z

PCC, ventral portion (R) 30 −2.347 0.001894 10 14 −38 6
Posterior STS (R) 39 −3.021 0.000073 65 48 −40 −2
Supramarginal gyrus (L) 48 −2.581 0.000663 84 −50 −40 28
Inferior temporal gyrus (L) 20 −3.117 0.000043 105 −42 −44 −10
Posterior STS (R) 39 −2.428 0.001329 11 44 −48 12
Postcentral gyrus (L) 5 −2.937 0.000113 182 −20 −52 64
Posterior STS (L) 39 −2.592 0.000627 27 −40 −60 12
Extrastriate cortex extend-
ing to parahippocampal
gyrus (R)

36 −3.239 0.000021 211 30 −62 6

Primary visual cortex (L) 17 −2.488 0.00101 57 −24 −68 8

Altruistic > selfish decisions (increased activity)
Middle orbital gyrus (L) 3.397 0.000130 200 −38 44 0
Middle frontal gyrus (R) 45 2.827 0.001091 31 46 40 28
Anterior cingulate cortex
extending to paracingulate
gyri and pre-SMA (L, R)

32 3.871 0.000021 1278 10 36 22

Gyrus rectus, ventromedial
(L, R)

11 2.564 0.002750 10 −2 30 −18

Middle frontal gyrus (L) 44 3.761 0.000031 568 −40 24 32
Anterior insula (L) 48 3.961 0.000014 203 −34 20 8
Anterior insula (R) 48 2.923 0.000773 64 30 18 6
Inferior frontal gyrus, orbital
part (L)

38 2.982 0.000624 12 −24 12 −24

Ventral striatum (R) 3.150 0.000331 50 14 2 −8
Thalamus (L) 2.814 0.001146 40 −6 −6 0
Thalamus (L) 2.803 0.001191 23 −14 −30 16
Inferior parietal (exclud-
ing supramarginal and
angular) gyri (L)

40 3.917 0.000017 705 −40 −54 50

Inferior parietal (exclud-
ing supramarginal and
angular) gyri (R)

40 3.105 0.000394 219 42 −56 52

Precuneus (L) 7 2.830 0.001082 13 −4 −60 38
Precuneus (R) 7 2.960 0.000673 26 6 −70 44
Middle occipital gyrus (L) 18 2.761 0.001381 194 −22 −96 0
Inferior occipital gyrus (R) 18 2.594 0.002483 65 24 −96 −6

Altruistic < selfish decisions (decreased activity)
Superior frontal gyrus,
dorsolateral (R)

9 −2.602 0.002379 13 18 50 30

Inferior frontal gyrus, pars
triangularis part (R)

48 −3.033 0.000539 104 48 34 6

Rolandic operculum (L) 6, 48 −3.372 0.000147 38 −56 0 8
Posterior insula (L) 84 −2.627 0.002198 15 −42 0 8
Anterior STS (R) −3.524 0.000080 69 48 −2 −14
Putamen (lenticular nucleus)
(R)

48 −2.541 0.002913 10 30 −8 2

Posterior insula (R) 48 −3.902 0.000016 780 42 −10 2
Superior frontal gyrus,
dorsolateral (R)

6 −3.119 0.000394 13 18 −10 72

Posterior insula (L) 48 −4.006 0.000010 70 −38 −14 6
Inferior temporal gyrus (L) 20 −3.238 0.000252 12 −42 −14 −28
MTG (R) 21 −4.377 0.000002 232 58 −24 −8
Inferior temporal gyrus
extending to parahip-
pocampal gyrus (L)

20 −3.175 0.000317 32 −42 −26 −18

Postcentral gyrus, medial (R) 3 −2.787 0.001283 15 32 −34 50
Postcentral gyrus, medial (L) 3 −3.018 0.000567 18 −36 −38 56
Fusiform gyrus (L) 37 −3.181 0.000311 88 −22 −44 −18
MTG (R) −3.156 0.000342 195 48 −48 0

(continued)



1226 | Social Cognitive and Affective Neuroscience, 2021, Vol. 16, No. 12

Table 2. (Continued)

Cooperative> selfish decisions
(increased activity)

Region
Brodmann
Area SDM-Z P Voxels MNI-x MNI-y MNI-z

Superior parietal gyrus (R) 5 −3.479 0.000096 195 14 −50 70
MTG (L) 37 −4.052 0.000008 764 −44 −68 6
MTG (R) 37 −3.774 0.000029 136 42 −70 14
Cerebellum, crus I extending
to crus II (L)

−2.648 0.002050 11 −22 −82 −30

category of prosocial decision at hand. For example, dictator
games that offered an option to split available resources equally
(50–50) clustered with equitable decisions, whereas dictator
games with the option to make other prosocial splits clustered
with altruistic decisions. The existence of strong norms related
to equity may explain why 50–50 is the most common non-
selfish split across dictator games when this choice is available
(Engel, 2011). Future analyses of dictator game tasks, particu-
larly those conducted using fMRI, could benefit from considering
that there may be something unique about the decision to split
resources equally (50%) rather than it simply existing as an
option on a parametric continuum between 49 and 51%.

Our approach also yielded several important observations
about the neural substrates of prosocial decisions. Notably, all
three clusters of prosocial decisions recruited the striatum, but
each category of decisions elicited activation in different regions
within the striatum. We found that cooperation recruited the
left caudate and bilateral ventral striatum, equity recruited right
caudate and bilateral ventral striatum and altruism recruited
right ventral striatum. Previous work suggests these differences
may be explained by how tasks in the three clusters vary in value
and uncertainty. Activity in the striatum has been consistently
found to encode action value during learning and decision-
making (Daw and Doya, 2006; Guitart-Masip et al., 2014). In some
tasks (primarily cooperative and equitable decisions), proso-
cial decisions increased the agent’s own welfare. In other tasks
(primarily altruistic and equitable decisions), prosocial decisions
meant forgoing resources. Importantly, in economic games
involving simultaneous decisions by multiple agents, coopera-
tive decisions are usually made with some uncertainty about
the ultimate outcome. It is possible that the striatal activity
observed during cooperative decisions also reflects the uncer-
tainty of decisions, which is recruited during decision-making
under risky or uncertain conditions (Krain et al., 2006; Lopez-
Paniagua and Seger, 2013; Farrar et al., 2018). The only overlap
of striatal activation we identified occurred in a small volume
of four voxels during both cooperative and equitable decisions.
This conjunction may reflect the fact that cooperative and equi-
table decisions benefit both agents and beneficiaries, whichmay
be recapitulated in ventral striatal activity.

This suggests the possibility of an additive effect of striatal
activity—an interpretation consistent with observations of a
parametric effect of striatal activation and reward magnitude
for self (Miller et al., 2014). Ventral striatum is also preferen-
tially engaged in response to rewarding social stimuli relative
to rewarding nonsocial stimuli, for instance, when participants
cooperate with a human partner relative to a computer part-
ner despite identical monetary gains (Rilling et al., 2002, 2004).
This also might explain why we did not observe any consis-
tent regions that were more active during selfish decisions than

cooperative decisions. Cooperative decisions, which yield out-
comes benefiting both the agent and other beneficiaries, are
also potentially more rewarding than decisions that only yield
self-rewarding outcomes. Cooperative decisions also uniquely
recruited activity in bilateral VTA, which projects dopamine to
the ventral striatum in response to positive prediction errors and
reward cues (D’Ardenne et al., 2008), and activity in which likely
reflects the anticipation of both the self- and social-rewards
gained from cooperating with others.

Striatal activation to anticipatory reward cues occurswithin a
larger subjective valuation system, which consistently involves
activity in themedial PFC during reward-based decision-making
(Bartra et al., 2013) and prosocial decision-making (Cutler and
Campbell-Meiklejohn, 2019; Bellucci et al., 2020). As has been
previously found (Cutler and Campbell-Meiklejohn, 2019), we
observed activation in more anterior portions of the ventrome-
dial PFC (including the rostral ACC) during equitable decisions
that produce self-enhancing, norm-based outcomes and acti-
vation in more posterior portions during altruistic decisions.
These results are consistent with a hypothesized spatial gradi-
ent of activation along themedial PFC during prosocial decision-
making (Sul et al., 2015), which may integrate information about
self and others to encode an overall value during a prosocial
decision (Hutcherson et al., 2015).

Activation in both ventral striatum and medial PFC did not
overlap between altruistic decisions and cooperative decisions.
In contrast to altruistic decisions, which recruited the lingual
gyrus portion of left ventromedial PFC, we found activation
in bilateral subgenual ACC during tasks that require agents to
cooperate with others to achieve a common goal. This sug-
gests that altruistic and cooperative decision represent distinct
processes, despite frequent conflation these two categories of
decisions in the literature, for example, when altruistic behav-
ior (choosing to benefit others without any self-gain) is labeled
as ‘cooperation’ (Declerck et al., 2013; Balliet et al., 2014; Gintis,
2014; Peysakhovich et al., 2014; Yang et al., 2019). Because
the subgenual ACC supports prosocial learning computations
(Christopoulos and King-Casas, 2014; Lockwood et al., 2016) as
well as preferences for socially rewarding outcomes (Smith et al.,
2010), it may also play a role in updating expectations of oth-
ers’ actions or the value of others’ outcomes during iterative
cooperative decision-making.

In addition to a subjective-valuation sub-system, altruis-
tic decisions seemed to recruit two other distinct sub-systems
underlying goal-directed behavior and empathy. The goal-
directed sub-system included regions typically implicated in
controlling action and directing goal-directed behaviors, includ-
ing the lateral PFC (Hoshi and Tanji, 2004; Kaller et al.,
2011; Morris et al., 2014). Importantly, activation for equi-
table and altruistic decision-making overlapped in dorsolateral



S. A. Rhoads et al. | 1227

PFC, involved in modulating subjective value representations
(Carlson and Crockett, 2018; Tusche and Hutcherson, 2018)
and in making norm-related decisions (Knoch et al., 2006;
Baumgartner et al., 2011). Thus, it may play an important role
in guiding prosocial action in accordance with abstract, social
rules during social decision-making tasks (Bellucci et al., 2020).

The second sub-system comprised regions commonly
involved in representing and empathizing with the distress of
others, and included the dorsal ACC, pre-SMA and anterior
insula (Decety and Lamm, 2006; Lamm et al., 2011; Ashar et al.,
2017). Activation in these regions emerged only during altruis-
tic decisions, consistentwith the theory that affective resonance
with others’ distress give rise to empathic concern and altruistic
motivation, which is a primary motivator of prosocial behav-
ior in the absence of cooperative or equity-maintaining goals
(Batson, 2009, 2011; Decety et al., 2016; Brethel-Haurwitz et al.,
2018; O’Connell et al., 2019). This finding was likely driven by
eight out of the fourteen identified altruistic studies including
stimuli that depicted or implied the need or distress of benefi-
ciaries.We also found activation in the precuneus—akeynode of
the mentalizing system (Koster-Hale et al., 2017)—during altru-
istic decisions. This region has also been found to be active
in response to observing emotional suffering (Immordino-Yang
et al., 2009; Masten et al., 2011; Meyer et al., 2013). Although some
hypothesize the right TPJ—another core region of the mental-
izing system—to be recruited during prosocial decision-making
(Chakroff and Young, 2014; Parnamets et al., 2020), we did not
find differential activation in this region across prosocial relative
to selfish decisions. It is possible that we did not observe dif-
ferences in mean activation because both selfish and prosocial
decisions require the maintenance of others’ beliefs and inten-
tions, whereas studies finding TPJ activation usually contrast
decisions pertaining to other people with hypothetical decisions
pertaining to imaginary people (or computers) (FeldmanHall
et al., 2012) (for further evidence regarding the role of TPJ dur-
ing domain-general social vs self-specific decision-making, also
see: Lockwood et al., 2018, 2020).

Limitations and future directions

These results should be considered in light of some limitations.
We could not obtain complete data from a number of potentially
relevant studies. At least 69 studies would have been eligible for
the analysis if we had been able to retrieve the necessary data.
In addition, while the 13 features we identified captured the dis-
tinctions across the tasks included in our analysis, they may
not be representative of all features that could potentially over-
lap across tasks. With access to more data, future work could
test how clustering algorithms such as the one we employed
can generalize to unseen tasks with different combinations of
features or even generate new tasks with unique sets of task
features. Another limitation of our approach is that we used
a binary coding for our features (1=present and 0=absent),
which did not make any prior assumptions about the features
(e.g. no assumption that featureswere parametricallyweighted).
Therefore, we were unable to test how strongly each feature
contributed to the three-cluster solution (since they were all
weighted equally).

We identified how tasks were inter-related using a bottom-
up feature-based approach (assuming equally important fea-
tures), and how these inter-relationships give rise to overarching
prosocial categories. This is in contrast to the more top-down
approaches based on expert-models that have been used to
map cognitive constructs like creativity (Kenett et al., 2020),
cognitive control (Lenartowicz et al., 2010) or theory of mind

(Schurz et al., 2020) onto tasks. Future work could combine
these approaches to generate a finer grained task space for
prosocial decision-making including all possible levels of its cog-
nitive ontology: the categories identified in the present study,
finer detailed sub-categories, task paradigms and their features
weighted according to their relative importance and contrast
estimates. In so doing, we could go further in solving discrep-
ancies within the prosocial decision-making literature, such
as delineating more specific categories of prosocial decision-
making within the identified task-space, which may only reflect
the top level of a prosocial decision-making hierarchy. Our data
show evidence of such a prosocial decision hierarchy across
clusters of studies (Supplementary Figure S1). However, future
work, with an adequate number of studies on prosocial deci-
sions, will be needed to demonstrate that such a hierarchy can
be recapitulated using meta-analytic brain maps (see Schurz
et al., 2020) (especially with increasing availability of other stud-
ies that prompt prosocial decisions). Other categories of deci-
sions likely also exist within this hierarchy. For example, active
decisions to forgive (Fourie et al., 2020), norm-enforcing deci-
sions (i.e. social influence on agreements or valuation) (Chang
and Sanfey, 2013; Wu et al., 2016; Zinchenko and Arsalidou, 2018;
Yang et al., 2019) and third-party altruistic punishment decisions
for normviolations (Fehr et al., 2004; Buckholtz et al., 2008; Jordan
et al., 2016; David et al., 2017) were not considered in this study
because we sought to only examine decisions that directly ben-
efited another person but may reflect more specific prosocial
decisions under the umbrella of the identified categories.

As with many neuroimaging tasks, prosocial decision-
making tasks adapted for neuroimaging are tightly controlled
and often designed to minimize variability and maximize the
statistical power of detecting effects. However, they are not
designed with high ecological validity and may not map onto
the contexts of real-world prosocial decisions such as holding a
door open, splitting a meal, volunteering or donating blood or
an organ. Instead, they are primarily monetary in nature, repet-
itive and may increase behaviors related to social desirability in
the laboratory (Richman et al., 1999). Recent work has focused
on making neuroimaging paradigms more ‘naturalistic,’ such as
viewing or listening to narratives or interacting in real time with
another person in the laboratory (Hasson and Frith, 2016; Redcay
and Moraczewski, 2019; Redcay and Schilbach, 2019; Wheatley
et al., 2019) or in the real world (Dikker et al., 2021). Other work
has concentrated on characterizing the behavioral and neural
features of individuals who engage in extreme forms of real-
world prosociality (Marsh et al., 2014; Brethel-Haurwitz et al.,
2018; O’Connell et al., 2019; Vekaria et al., 2020). Understanding
the neurobiology underlying more ecologically valid altruistic
decisions will be crucial for understanding the broader picture
of prosocial decision-making.

Related to this, we were not able to consider how individ-
ual differences in phenotypic traits may contribute to the neu-
ral activity patterns observed across prosocial decision-making
tasks due to the limited number of studies that collect or
report consistent data on participant characteristics, yet this
remains an open question. Finally, we only considered uni-
variate maps that contrasted prosocial vs selfish decisions (or
assessed a parametric increase). Due to the high variability
of contrasts across studies, this allowed us to generate con-
sistent neuroimaging contrasts that only indexed activation
during the decision phase across studies. This approach is dis-
tinct fromothermeta-analyticwork compiling coordinate-based
maps across any contrasts in prosocial tasks (Yang et al., 2019;
Bellucci et al., 2020), which run the risk of creating dependence
across experiment maps that negatively impacts the validity of
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meta-analytic results (Müller et al., 2018). Ideally, future work
would incorporate neural activation maps derived from compu-
tational modeling of behavior (Tognoli et al., 2017; Charpentier
and O’Doherty, 2018; Lockwood et al., 2020; Lockwood and
Klein-Flügge, 2020; Suzuki and O’Doherty, 2020), which holds
promise for understanding individual differences in social learn-
ing and decision-making (Patzelt et al., 2018). For example, com-
putational modeling of decisions can identify latent subjective
states (e.g. mood, anxiety), beliefs about others (e.g. trust, moral-
ity) or other subjective biases about agents that are not directly
observable from behavior. Thus, mapping these latent parame-
ters onto the task features that give rise to them and their neural
representations will be a necessary next step in characterizing a
cognitive ontology of prosociality.

Conclusion

Despite limitations, the present study provides a framework
for understanding how prosocial decisions are inter-related and
distinct and can be applied to a variety of experimental task
paradigms. Using a bottom-up approach, we identified a feature-
based representation of the task-space underlying prosocial
decisions. Results revealed that three clusters of prosocial deci-
sions identified this way—cooperative, equitable and altruistic
decisions—recruit neural systems that diverge inways that shed
light on the key motivations andmechanisms that support each
category of prosocial decision compared to selfish decisions.
These findings clarify some of the existing heterogeneity in how
prosociality is conceptualized and generate insight for future
research in task paradigm development and the improvement
of formal cognitive ontologies.
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