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Abstract: Better understanding of the mechanisms of antifouling compounds is recognized to be of
high value in establishing sensitive biomarkers, allowing the targeted optimization of antifouling
compounds and guaranteeing environmental safety. Despite vigorous efforts to find new antifouling
compounds, information about the mechanisms of antifouling is still scarce. This review summarizes
the progress into understanding the molecular mechanisms underlying antifouling activity since 2012.
Non-toxic mechanisms aimed at specific targets, including inhibitors of transmembrane transport,
quorum sensing inhibitors, neurotransmission blockers, adhesive production/release inhibitors
and enzyme/protein inhibitors, are put forward for natural antifouling products or shelf-stable
chemicals. Several molecular targets show good potential for use as biomarkers in future mechanistic
screening, such as acetylcholine esterase for neurotransmission, phenoloxidase/tyrosinase for the
formation of adhesive plaques, N-acyl homoserine lactone for quorum sensing and intracellular
Ca2+ levels as second messenger. The studies on overall responses to challenges by antifoulants
can be categorized as general targets, including protein expression/metabolic activity regulators,
oxidative stress inducers, neurotransmission blockers, surface modifiers, biofilm inhibitors, adhesive
production/release inhibitors and toxic killing. Given the current situation and the knowledge gaps
regarding the development of alternative antifoulants, a basic workflow is proposed that covers the
indispensable steps, including preliminary mechanism- or bioassay-guided screening, evaluation of
environmental risks, field antifouling performance, clarification of antifouling mechanisms and the
establishment of sensitive biomarkers, which are combined to construct a positive feedback loop.

Keywords: antifouling compounds; molecular mechanisms; specific targets; general targets;
degradation; toxicity

1. Introduction

To deter the undesirable colonization of artificial structures by marine organisms, which is referred
to as biofouling, it is in common use to coat the submerged surfaces with antifouling paint incorporating
biocidal compounds and releasing them at a controlled rate [1,2]. With increasing public awareness
and concern for environmental protection, it is generally recognized that the organotin, metals and
supplementary booster biocides (e.g., Irgarol 1051, Diuron, copper pyrithione, chlorothalonil, SeaNine
211 and dichlofluanid) constitute a substantial threat to marine ecosystems through environmental
pollution and high toxicity [3–5]. Therefore, their gradual phase-out is foreseen. As the pressure
to find environmentally benign and effective alternatives increases, researchers turn to isolating
natural antifouling compounds from a broad array of biological sources (e.g., terrestrial plants, algae,
coral, sponge and microbes), as these natural products may possess higher specificity against fouling
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organisms [6,7]. In addition, improved understanding of settlement cues allows the selection or
synthesis of shelf-stable compounds with known modes of action and explores their antifouling
potential based on their effects on signaling pathways crucial for settlement (e.g., neurotransmitter
signaling, quorum sensing and adhesive production).

Until now, various compounds with potential antifouling activity have been identified from
a library of natural products or shelf-stable chemicals. Although the mechanisms are still poorly
understood, current findings document that these promising antifoulants appear to affect settlement
through distinct patterns, which can be classified roughly into several categories such as inhibitors
of ion channel function, inhibitors of quorum sensing, blockers of neurotransmission or inhibitors
of adhesive production or release [5]. Furthermore, for some antifouling compounds, specific target
molecules in fouling organisms have been determined, such as blue mussel phenoloxidase, which is
necessary for byssus production; acetylcholine esterase (AChE), which is involved in cholinergic
neural signaling during the settlement of barnacle cyprids; and N-acyl homoserine lactone (AHL),
which mediates quorum sensing during the formation of biofilms. The discovery of these molecular
targets has established sensitive biomarkers, facilitating more efficient and accurate screening of
antifouling compounds and also highlighting the need to continue to investigate the mechanisms
through which antifoulants take effect.

As proposed by the Biocidal Products Regulation (BPR) of the European Union [8], studies to
elucidate antifouling mechanisms are regarded as a prerequisite for the registration of any novel
antifoulant. A clear understanding of the mode of action of antifouling compounds will help
to identify the molecules or pathways that are essential for the settlement of fouling organisms.
This understanding will allow the establishment of more sensitive and targeted biomarkers, in turn
accelerating preliminary screening. Researchers can also further improve the functional groups of
antifouling compounds to improve the coupling with molecular targets, thus achieving more efficient
and better targeted antifouling compounds. Therefore, investigation of antifouling mechanisms will
certainly not delay the development of antifoulants, but will provide a positive feedback loop through
which both will benefit. Since our last review of antifouling mechanisms, new and informative
molecular insights have emerged continuously, meriting a summary of new understandings to give
an overview of recent progress in antifouling molecular mechanisms. In this review, studies indicating
both specific targets and also general responses to the pressure of antifoulants are both included.

2. Antifouling Compounds with Proposed Specific Targets

Specific targets are particular molecules or pathways that previous research has proposed to be
directly affected by antifouling chemicals to initiate deterrence of settlement. Current knowledge of
such specific targets can be divided into five major groups: inhibitors of transmembrane transport,
quorum sensing inhibitors, neurotransmission blockers, adhesive production/release inhibitors and
enzyme/protein inhibitors (Table 1).
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Table 1. Molecular mechanisms and bioactivity of antifouling compounds with proposed specific targets.

Proposed Molecular
Mechanism and Targets Compounds Activity Category Sources Toxicity References

Inhibitors of Transmembrane Transport

Blocking selectively the sodium channel
to paralyze the peripheral

neuromuscular system
Crude toxin extracts Antifouling in paint Natural product

Puffer fish Amblyrhynchotes
hypselogenion and

Lagocephalus sceleratus
Toxic [9]

Triggering algal cellular Ca2+ efflux
Gramine, 6-chloroindole,

7-chloroindole, 6-bromoindole Antibacterial and anti-algae Shelf-stable Halogenated indole derivatives Non-toxic [10,11]

Removing Ca2+ from the cell membrane
and causing cell death

Polyphosphate Antibacterial Shelf-stable Orthophosphate polymer Non-toxic [12]

Affecting tryptophan amino acid import
through membrane

Alkylated guanidinium
compounds

Antimicrobial
(yeast Saccharomyces cerevisae) Shelf-stable Synthetic in lab Non-toxic [13]

Quorum Sensing Inhibitors

Inhibiting quorum sensing Furanosesterterpenes Antibacterial Natural product Spong Ircinia felix Non-toxic [14]

Quorum sensing inhibition 2-Dodecanoyloxyethanesulfonate Antibacterial Natural product Red alga Asparagopsis taxiformis Non-toxic [15]

Inhibiting biofilm formation through
interference with quorum sensing Secochiliolide acid Antifouling (diatom, algae,

bryozoan, tubeworm, ascidian) Natural product Patagonian shrub
Nardophyllum bryoides Non-toxic [16]

Quorum sensing inhibition Crude extract
Antibacterial; antifouling

(diatom, bryozoan
Bugula neritina)

Natural product Invasive brown macroalga
Sargassum muticum Non-toxic [17]

Inhibiting quorum sensing Crude extract Antibacterial Natural product Macroalgae from the
Brazilian coast Non-toxic [18]

Bacteiral quorum-sensing inhibitory activity Diketopiperazines Antibacterial Natural product
Microorganism Marinobacter sp.
SK-3 and Rheinheimera japonica

KMM 9513T
Non-toxic [19,20]

Potent quorum-sensing attenuation to
inhibit the growth of biofilms

A low molecular mass
compound Antibacterial Natural product Coral-associated bacterial isolates Non-toxic [21]

Quorum-sensing inhibitory activity
A combination of fungal

secondary metabolites and
fatty acids

Antibacterial Natural product Marine endophytic fungal isolates
from coral Diploria strigosa Non-toxic [22]

Quorum-sensing inhibition Ethanol extracts Antibacterial Natural product
Gorgonian corals Pseudopterogorgia

americana, P. acerosa, and
Pseudoplexuara flexuosa

Non-toxic [23]

Quorum-sensing inhibition and
biofilm inhibition Cembranoid diterpenes Antibacterial Natural product Caribbean gorgonian

Eunicea knighti Non-toxic [24]
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Table 1. Cont.

Proposed Molecular
Mechanism and Targets Compounds Activity Category Sources Toxicity References

Quorum Sensing Inhibitors

Non-toxic quorum sensing disruptors Alkyl
triphenylphosphonium Salts

Antimicrobial (marine bacteria,
fungi, diatom); Antifouling

(macroalgae Gayralia oxysperma,
mussel Mytilus galloprovincialis)

Shelf-stable Synthetic in lab Non-toxic [25]

Hydrolysis of N-acyl homoserine lactone
(AHL) autoinducers Acylase Antibacterial Shelf-stable Enzymes Non-toxic [26]

Quorum sensing inhibition by modulating
AHL activity and synthesis

Allylisothiocyanate,
benzylisothiocyanate and

2-phenylethylisothiocyanate
Antibacterial Shelf-stable Isothiocyanates Non-toxic [27]

Inhibitory effect on luxS-encoded
autoinducer 2 signaling Patulin and penicillic acid Antibacterial Shelf-stable Mycotoxin Toxic [28]

Neurotransmission Blockers

Strong inhibitor of
acetylcholine esterase (AChE) Territrem derivatives Antifouling (Balanus amphitrite) Natural product Marine-derived fungus

Aspergillus terreus SCSGAF0162 Non-toxic [29]

Reversible and noncompetitive
AChE inhibitors Pulmonarins A and B Antibacterial Natural product Sub-Arctic ascidian

Synoicum pulmonaria Non-toxic [30,31]

Interruption of cholinergic system through
AChE inhibition

3-Alkylpyridinium oligomers
and polymers (3-APS)

Antimicrobial (bacteria, fungi);
antifouling Shelf-stable Cholinergic antagonist Non-toxic [32]

Competition with acetylcholine to receptors
and inhibition of the cholinergic system Poly-APS analog APS8 Antifouling (B. amphitrite) Shelf-stable Synthetic in lab Non-toxic [33]

Influencing histamine neurotransmitter
signaling for photoreceptors Triprolidine and cetirizine Antifouling (B. amphitrite) Shelf-stable Histamine receptor antagonist Non-toxic [34–36]

Adhesive Production/Release Inhibitors

Strong inhibitors of blue
mussel phenoloxidase

Bromotyrosine
derivative ianthelline

Antibacterial; antifouling
(microalgae, barnacle

B. improvisus, blue mussel
M. edulis)

Natural product Arctic marine sponge
Stryphnus fortis Non-toxic [37]

Potent inhibitors of blue
mussel phenoloxidase Hemibastadin derivatives Antifouling (blue mussel

M. edulis) Shelf-stable Synthetic in lab Non-toxic [38]

Inhibitory activity on tyrosinase for mussel
byssal production

Alkyl
triphenylphosphonium salts

Antimicrobial (marine bacteria,
fungi, diatom); Antifouling
(macroalgae G. oxysperma,
mussel M. galloprovincialis)

Shelf-stable Synthetic in lab Non-toxic [25]
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Table 1. Cont.

Proposed Molecular
Mechanism and Targets Compounds Activity Category Sources Toxicity References

Enzyme/Protein Inhibitors

Inhibiting target DNA modulating enzymes
to block bacterial growth Red pigment prodigiosin

Antibacterial; antifouling
(cyanobacteria Synechococcus sp.;

B. amphitrite)
Natural product Serratia marcescens CMST 07 Non-toxic [39]

Interference with HSP-90 to
inhibit metamorphosis Radicicol and polygodial Antifouling

(ascidian Ciona savignyi) Shelf-stable Allelochemicals Non-toxic [40]

Glucosidase inhibition to affect
energy production Dibutylphthalate Antibacterial Natural product Marine bacterium

R. japonica KMM 9513T Non-toxic [20]

Enzymatic inhibitory activities towards Src
homology 2 domain-containing

phosphotyrosine phosphatase and inosine
monophosphate dehydrogenase

Dicitrinin A Antifouling (B. neritina) Natural product Marine gorgonian-derived fungal
strain Xylariaceae sp. SCSGAF0086 Non-toxic [41]

Inhibitory activity towards cathepsin B Phenol A acid Antifouling (B. neritina) Natural product Marine gorgonian-derived fungal
strain Xylariaceae sp. SCSGAF0086 Non-toxic [41]
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2.1. Inhibitors of Transmembrane Transport

Crude toxin extracted from the Puffer fish Amblyrhynchotes hypselogenion and Lagocephalus sceleratus
demonstrate antifouling activity in the field after incorporation into paints. Tetrodotoxin poisoning is
considered responsible for the in-situ antifouling performance, which selectively blocks the sodium
channel, inducing paralyzing effects during the generation and transmission of electrical impulses
along the peripheral neuromuscular systems [9]. Antifouling compounds also interfere with the
homeostasis of cellular calcium ions (Ca2+) to inhibit the attachment of fouling organisms. For example,
halogenated indole derivatives (i.e., gramine, 6-chloroindole, 7-chloroindole and 6-bromoindole) can
trigger the efflux of Ca2+ from the intracellular environment and the resulting reduction in Ca2+

abundance within cells probably contributes to the inhibition of settlement of fouling organisms
(e.g., bacteria and algae) [10,11]. Polyphosphate, a type of orthophosphate polymer, can attach to
the bacterial cell membrane and chelate the Ca2+ there, resulting in cell death and inhibition of
biofilm growth [12]. In addition, transmembrane transport of the amino acid tryptophan is commonly
influenced by alkylated guanidinium compounds [13]. Because the biosynthesis of tryptophan is
essential for bacterial tolerance to biocides, impaired tryptophan uptake through the membrane is
hypothesized to lead to the antibacterial activity of alkylated guanidinium compounds.

2.2. Quorum Sensing Inhibitors

The quorum sensing mechanism regulates cell-to-cell communication and plays important
roles in the maturation and differentiation of multi-species biofilms. A variety of natural
products and shelf-stable compounds inhibit quorum sensing and biofilm development, such as
furanosesterterpenes from the sponge Ircinia felix [14], 2-dodecanoyloxyethanesulfonate from the red
alga Asparagopsis taxiformis [15], secochiliolide acid from the Patagonian shrub Nardophyllum bryoides [16],
diketopiperazines from the microorganisms Marinobacter sp. SK-3 and Rheinheimera japonica KMM
9513T [19,20], cembranoid diterpenes from the Caribbean gorgonian Eunicea knighti [24], and alkyl
triphenylphosphonium salts synthesized in the laboratory [25]. Besides, even when immobilized
in a coating, acylase can hydrolyze AHL autoinducers through enzymatic activity, thus blocking
the transduction of quorum sensing between bacteria cells [26]. In comparison, three isothiocyanate
derivatives (i.e., allylisothiocyanate, benzylisothiocyanate and 2-phenylethylisothiocyanate) have
the capacity to inhibit quorum sensing by modulating the activity and synthesis of AHL [27].
The mycotoxins patulin and penicillic acid are well-known inhibitors of quorum sensing, whose
effect is attributed to inhibition of luxS-encoded autoinducer 2 signaling [28]. The modification of
biofilm density and composition by these quorum sensing inhibitors is believed to indirectly affect
invertebrate larval attachment. However, it appears that antibacterial activity cannot be directly
extrapolated to antifouling performance.

2.3. Neurotransmission Blockers

Given the role of AChE in the settlement of invertebrate biofouling organisms, the inhibition
of AChE enzymatic activity has been used as a sensitive indicator of antifouling efficacy for diverse
compounds, including territrem derivatives from the marine-derived fungus Aspergillus terreus
SCSGAF0162 [29], pulmonarins A and B from the sub-Arctic ascidian Synoicum pulmonaria [30,31],
and 3-alkylpyridinium oligomers and polymers (3-APS) as cholinergic antagonists [32]. Inhibition
of AChE activity interrupts cholinergic signaling, thereby blocking neurotransmission and reducing
the success of settlement of fouling organisms. In addition, the synthetic poly-APS analog APS8
can compete with acetylcholine at the cholinergic receptors, blocking cholinergic neural signals and
inducing the hormetic response of barnacle cyprids [33]. Furthermore, histamine neurotransmitter
signaling is closely involved in the regulation of the settlement process because histamine receptor
antagonists (e.g., triprolidine and cetirizine) can effectively inhibit the attachment and metamorphosis
of barnacle cyprids [34–36].
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2.4. Adhesive Production/Release Inhibitors

Because phenoloxidase in blue mussel is a key enzyme involved in both the crosslinking and
formation of the adhesive plaques necessary to provide a firm anchor to substrata, inhibition of the
activity of this enzyme has frequently been used as a sensitive and efficient biomarker to test antifouling
performance. Bromotyrosine derivative ianthelline from the Arctic marine sponge Stryphnus fortis [37]
and synthetic hemibastadin derivatives [38] strongly inhibit the catalytic activity of blue mussel
phenoloxidase, implying their ability to deter settlement of this invertebrate. In addition, synthetic
alkyl triphenylphosphonium salts display broad-spectrum antifouling activity against both micro- and
macro-fouling together by inhibiting tyrosinase, another model enzyme that is essential for byssus
production in mussels [25].

2.5. Enzyme/Protein Inhibitors

The red pigment prodigiosin extracted from Serratia marcescens CMST 07 is a bacterial secondary
metabolite used for antifouling. It is able to pass through the cell membrane and inhibit the
DNA-regulating enzymes such as DNA gyrase and topoisomerase IV, inhibiting cell growth [39].
In an ascidian larval bioassay using Ciona savignyi Herdman, two allelochemicals (i.e., radicicol
and polygodial) strongly inhibit larval metamorphosis with 99% inhibition concentration (IC99)
of 0.8 µg/mL and 0.003 µg/mL, respectively [40]. It is speculated that interference between these
allelochemicals and heat shock protein (HSP)-90 is responsible for inhibiting the triggering of ascidian
metamorphosis. Dibutylphthalate isolated from the marine bacterium R. japonica KMM 9513T has
antibacterial activity, probably due to glucosidase inhibition that affects energy production for bacterial
growth [20]. Nong et al. isolated two natural antifouling products (dicitrinin A and phenol A acid)
from the marine gorgonian-derived fungal strain Xylariaceae sp. SCSGAF0086 [41]. Dicitrinin A shows
enzymatic inhibition of Src homology 2 domain-containing phosphotyrosine phosphatase and inosine
monophosphate dehydrogenase, while phenol A acid inhibits cathepsin B. However, the existence of
a link between enzyme inhibition and settlement-deterrence of the bryozoan Bugula neritina was not
clarified for dicitrinin A and phenol A acid [41].

3. Antifouling Compounds with Proposed General Targets

General targets are global responses of organisms to the stress of antifouling compounds.
These may involve multiple points of attack, without identifying the responsible molecules or pathways
directly. Those speculative mechanisms with no direct verification are also included as general targets
as a reference to the specific targets. The general targets proposed or conjectured in the literatures
have been classified into following categories: Protein expression/metabolic activity regulators,
oxidative stress inducers, neurotransmitter blockers, surface modifiers, biofilm inhibitors, adhesive
production/release inhibitors and toxic killing (Table 2).
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Table 2. Molecular mechanisms and bioactivity of antifouling compounds with proposed general targets.

Proposed Molecular Mechanism and Targets Compounds Activity Category Sources Toxicity References

Protein Expression/Metabolic Activity Regulators

Leading to global stress on cells and favoring the
expression of quorum-sensing and flagella synthesis Zosteric acid sodium salt Antibacterial Shelf-stable Synthetic in lab Non-toxic [42]

Initiating detoxifying systems to ensure fast elimination
from organisms and lower non-specific toxicity Butenolide

Antibacterial; antifouling
(barnacle Balanus amphitrite;
tubeworm Hydroides elegans;

bryozoan Bugula neritina)

Natural product Streptomyces albidoflavus strain
UST040711-291 Non-toxic [43–47]

Affecting protein expression related to nucleotide
metabolism, the glyoxylate cycle, and stress responses Poly-ether B Antibacterial Natural product Sponge-associated bacterium

Winogradskyella poriferorum Non-toxic [48]

Binding with thiol groups of DNA and RNA and affect
the protein biosynthesis of bacteria

Biogenic silver
nanoparticles

Antibacterial; antifouling
(barnacle B. amphitrite) Natural product Brown alga Turbinaria ornata

and T. conoides Non-toxic [49,50]

Affected the cytochrome P450, glutathione
S-transferase (GST) and NO/cGMP pathways Cochliomycin A Antifouling

(barnacle B. amphitrite) Natural product Fungus Cochliobolus Non-toxic [51]

Reducing the expression of inducible nitric oxide
synthase (iNOS) and cyclooxygenase 2 (COX-2)

Diterpenes:
(−)14-deoxycrassin

Antifouling (bryozoan B. neritina,
barnacle B. albicostatus) Natural product Soft coral Sinularia flexibilis Non-toxic [52]

Inhibitory activities of cell division and growth Eunicellin-type
diterpenoids

Antifouling
(barnacle B. amphitrite) Natural product Chinese gorgonian

Astrogorgia sp. Non-toxic [53]

Increasing metabolic activity, depleting energy reserve
of cyprids and retarding settlement Atrovastatin Antifouling

(barnacle B. amphitrite) Shelf-stable Lipid-regulating compound Non-toxic [36]

Lowering pH values and releasing sorbic acid into the
cytoplasm to inhibit many metabolic functions

Ferric sorbate and
aluminum sorbate

Antifouling in paint
(diatom, seaweed, barnacle,

tubeworm, bryozoan, ascidian)
Shelf-stable Synthetic in lab Non-toxic [54]

Acting in the oil cell region and attaching to the
carapace surface to induce agglutination of cyprids Fluorescent probes Antifouling

(barnacle B. amphitrite) Shelf-stable Synthetic in lab Non-toxic [55]

Able to inhibit RNA transcription Usnic acid Antibacterial Shelf-stable Dibenzofuran derivative Non-toxic [56]

Oxidative Stress Inducers

Enzymatic generation of hydrogen peroxide (H2O2)
by hexose oxidase Crude extract Antibacterial Natural product Red seaweed Chondrus crispus Non-toxic [56]

Reacting with seawater to create H2O2 Zinc peroxide (ZnO2) Antibacterial and antifouling Shelf-stable Strong oxidizing agent Non-toxic [57,58]

Production of H2O2 on the surface of the coating Zinc oxide nanorod (ZnO) Antibacterial; antifouling
(algae, barnacle) in field Shelf-stable Synthetic in lab Non-toxic [59]

Photocatalytic generation of reactive oxygen species
by ZnO nanoparticles

Chitosan/ZnO
nanocomposite

Antimicrobial (bacteria,
fungi, microalgae) Shelf-stable Synthetic in lab Non-toxic [60]

Formation of reactive oxygen species
resulting in cell death

Chitosan-decorated copper
nanoparticles Antibacterial Shelf-stable Synthetic in lab Non-toxic [61]

Producing reactive oxygen species to selectively
kill microorganisms Chitosan-porphyrin films Antibacterial (Listeria innocua) Shelf-stable Synthetic in lab Non-toxic [62]
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Table 2. Cont.

Proposed Molecular Mechanism and Targets Compounds Activity Category Sources Toxicity References

Oxidative Stress Inducers

Attacking the sulfhydryl groups of biomolecules Chlorine dioxide Antibacterial; antifouling
(barnacle B. reticulatus) Shelf-stable Potent oxidant Toxic [63]

Interfering with vital cell processes Juglone Antibacterial Shelf-stable Potent oxidant Non-toxic [56]

Neurotransmission Blockers

Interacting with multiple neurotransmitter systems Oleamide Antifouling
(algae Porphyra suborbiculata) Natural product Marine mussels (Mytilus edulis) Non-toxic [64]

Affecting the concentration of methyl farnesoate,
a potential crustacean hormone Atrovastatin Antifouling

(barnacle B. amphitrite) Shelf-stable Lipid-regulating compound Non-toxic [36]

Surface Modifiers

Nonionic surfactant properties to disrupt
the cell membrane Polygodial

Antibacterial; antifouling
(microalgae, Ascidian Ciona

savignyi, barnacle B. improvisus,
mussel, tubeworm)

Natural product Canelo tree Drimys winteri Non-toxic [65,66]

Surfactant and lysis of cell membrane and microbes 3-Alkylpyridinium oligomers
and polymers (3-APS)

Antimicrobial
(bacteria, fungi); antifouling Shelf-stable Synthetic in lab Non-toxic [32]

Detergent properties at high concentrations
to solubilize the membrane Linoleic acid Antibacterial Natural product Semi-evergreen plant

Dryopteris crassirhizoma Non-toxic [67]

Interacting with bacterial membrane to
allow for membrane insertion Cationic micropeptides Antibacterial; antifouling

(algae, barnacle B. improvisus) Shelf-stable Synthetic in lab Non-toxic [68]

Selective lysis of microbial membranes and subsequent
killing of bacteria

Natural resin acid-derived
cationic compounds and

polymers
Antibacterial Shelf-stable Synthetic in lab Non-toxic [69]

Interacting with the negative charges of the microbial
cell membrane due to cationic nature of chitosan

Chitosan/ZnO
nanocomposite

Antimicrobial
(bacteria, fungi, microalgae) Shelf-stable Synthetic in lab Non-toxic [60]

Interacting and decomposing the
negatively-charged cell membrane

Polyhexamethylene
guanidine molybdate

Antibacterial; antifouling
(bryozoan, Dreissenidae mollusk) Shelf-stable Synthetic in lab Non-toxic [70]

Cationic binding to negatively charged
bacterial cell walls Chlorhexidine Antibacterial and antifouling Shelf-stable Cationic molecule Non-toxic [57,58]

Interacting with the lipid bilayer of cytoplasmic
membranes and causing loss of integrity Thymol and eugenol Antifouling (barnacle, tubeworm,

bryozoan, ascidian, algae) Shelf-stable Lipophilic phenolic compounds Non-toxic [71]

Altering the roughness of surfaces and the contacts of
cyprid antennular discs Nano-sized carbon black Antifouling

(barnacle B. amphitrite) Shelf-stable Carbon-based nanomaterials Non-toxic [72]

Increasing hydrophilic surface and thereby reducing
the adhesion of microorganisms Tween 85 Antibacterial and antifouling Shelf-stable Non-ionic surfactant Non-toxic [57,58]

Affecting the EPS production, growth and the surface
hydrophobicity of the biofilm-forming bacteria

Coconut husk extract
(phenolic compounds) Antibacterial Natural product Coconut Cocos nucifera L. Non-toxic [73]
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Table 2. Cont.

Proposed Molecular Mechanism and Targets Compounds Activity Category Sources Toxicity References

Biofilm Inhibitors

Inhibition of bacterial nucleic acid synthesis and reduce
biofilm formation via quorum sensing inhibition 7-Hydroxy-4-methylcoumarin

Antibacterial; antifouling
(diatom, algae, bryozoan,

tubeworm, ascidian, mussel)
Shelf-stable Synthetic in lab Non-toxic [74]

Removing metals essential for the
growth of microorganisms Modified black wattle tannin Antibacterial; Antifouling in field Shelf-stable Chemically modified in lab Non-toxic [75]

Binding to sulfur and phosphorus containing
biomolecules and causing cell damage

Poly ethylene glycol based
silver nanocomposites Antibacterial Shelf-stable Synthetic in lab Non-toxic [76]

Adhesive Production/Release Inhibitors

Proteolytic and amylase enzyme activity on the
adhesives of settling organisms

Bacterial immobilization in
paint (“living paint”)

Antibacterial; antifouling (diatom,
polychaete, bryozoan, algae) Natural product Marine strain

Pseudomonas aeruginosa 1242 Non-toxic [77]

Inhibiting cross-linking reactions of cement
proteins due to acidity Poly(l-lactic acid) Antifouling (barnacle

B. amphitrite) in lab and field Shelf-stable Synthetic in lab Non-toxic [78]

Toxic Killing

Strong endocrine disruptor 3,3′-Diindolylmethane Antifouling (barnacle
B. Amphitrite, bryozoan B. neritina) Natural product Pseudovibrio denitrificans UST4-50 Toxic [79–81]

Disturbing energy metabolism and osmotic balance;
induce oxidative stress; immunosuppression; reproductive

impairment; disrupting signaling transduction
Organotin Antifouling Heavy metal Organometallics Toxic [82–87]

Increasing larval abnormalities and DNA damage Copper; cadmium Antifouling Heavy metal Toxic [88]

Inhibiting the photosynthesis; genotoxic; oxidative
stress; inhibiting cell cycle and inducing apoptosis Irgarol 1051 Antifouling Booster biocide Herbicide Toxic [88–93]

Inhibiting the photosynthesis; oxidative stress;
endocrine disruption and reproductive impairment Sea-Nine 211 Antifouling Booster biocide Isothiazolone compound Toxic [45–47,89,92,

94–97]

Inhibiting the photosynthesis; oxidative stress; inhibiting
cell cycle and hatching; reproductive impairment Diuron Antifouling Booster biocide Herbicide Toxic [84,89–91,

98]

Disrupting the cell membrane through apoptosis Copper pyrithione Antialgae Booster biocide Fungicide Toxic [92]

Changing the composition of the periphyton community;
immunosuppressive toxicity; oxidative stress Zinc pyrithione Antifouling Booster biocide Bactericide; fungicide; algicide Toxic [85,99,100]

Inhibition of photosynthesis and carbon incorporation Dichlofluanid Antialgae Booster biocide Fungicide Toxic [89]

Inhibition of photosynthesis and carbon incorporation;
disrupting folate synthesis and inhibiting

thiol-containing enzymes
Tolyfluanid Antialgae Booster biocide Fungicide Toxic [89,92]

Inhibiting the photosynthesis; reproductive
impairment and teratogenic Chlorothalonil Antifouling Booster biocide Fungicide Toxic [89,101]
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3.1. Protein Expression/Metabolic Activity Regulators

Exposure of bacterial cells (Escherichia coli) to 500 mg/L of the sodium salt of zosteric acid induces
alterations in the whole proteomic signature characterized by stress-associated, motility-related,
quorum-sensing-associated (LuxS enzyme) and metabolism/biosynthesis-related proteins [42].
It is concluded that bacteria preferentially synthesize various protective proteins, such as quorum
sensing and flagella, in response to the challenge of the sodium salt of zosteric acid acting as
an environmental cue [42]. Butenolide derived from the deep-sea bacterium Streptomyces albidoflavus
strain UST040711-291 has been shown to protect coated panels for at least six months in the field after
incorporation into soluble matrix paints [43]. Environmental monitoring in natural seawater shows
that butenolide degrades quickly with a half-life of 13.0 h [44]. Compared with the commercial
booster biocide SeaNine 211, butenolide has relatively lower chronic toxicity towards a marine
teleost, the marine medaka Oryzias melastigma, in terms of hepatic oxidative stress, AChE inhibition
for neurotoxicity, endocrine disruption and reproductive impairment [45]. Proteomic profiling
demonstrates that an exposure to low concentrations of butenolide over 28 days primarily disorganizes
the cytoskeletal structure in the brains of medaka [46], and activates the detoxification system in their
livers to eliminate butenolide quickly from the intracellular environment through bile acid, ensuring
lower non-target toxicity and higher biosafety [47]. Poly-ether B, isolated from the sponge-associated
bacterium Winogradskyella poriferorum, can substantially decrease the cell viability of Vibrio sp. 010 [48].
Proteomics research shows that proteins associated with nucleotide metabolism, glyoxylate cycle,
and stress responses are mainly altered in expression levels, while metabolomics analysis finds
differential changes of metabolites such as tripeptides, fatty acids, and quorum-sensing molecules
after treatment with poly-ether B [48]. Biogenic silver nanoparticles produced in the brown algae
Turbinaria ornata and T. conoides display antibacterial and antifouling activities, which are assumed to
result from the silver binding with the thiol groups of DNA and RNA to affect protein biosynthesis
in bacteria [49,50]. Cochliomycin A from the fungus Cochliobolus appreciably affects the protein
expression profiles associated with detoxification (cytochrome P450 and glutathione S-transferase) and
NO/cGMP pathway in barnacle cyprids [51]. Because NO/cGMP signaling plays a critical role in the
settlement of cyprids, agonist and antagonist experiments further indicate that cochliomycin A may
exert antifouling activity against barnacles by stimulating this pathway [51]. Moreover, the diterpene
(−)14-deoxycrassin, isolated from the soft coral Sinularia flexibilis, is also able to reduce the expression
of inducible nitric oxide synthase [52]. In addition to protein expression, various metabolic activities
appear to be targeted by antifouling compounds, such as cell division and growth by eunicellin-type
diterpenoids [53], and energy production by atorvastatin [36] or by synthetic fluorescent probes [55].
Stimulated metabolic activities are known to deplete energy reserves in barnacle cyprids and thus
retard settlement through energy deficiency.

3.2. Oxidative Stress Inducers

The presence of hexose oxidase in the crude extract of the red seaweed Chondrus crispus
enzymatically catalyzes the generation of hydrogen peroxide (H2O2), which oxidatively damages
fouling organisms, consequently deterring their attachment [56]. Many antifouling compounds act
by the generation of H2O2, including zinc peroxide (ZnO2) [57,58] and zinc oxide nanorod [59].
ZnO or copper nanoparticles in the surface of the coating can photocatalytically produce reactive
oxygen species when irradiated by sunlight, resulting in oxidative stress and cell death [60,61].
Chitosan-porphyrin films will also produce reactive oxygen species, mainly singlet oxygen,
to selectively kill microorganisms in the presence of light [62]. Some strong oxidizing agents, such as
chlorine dioxide and juglone, can attack the thiol groups of biomolecules, interfering with various
physiological processes essential for settlement [56,63].
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3.3. Neurotransmission Blockers

A natural product antifoulant, oleamide from the periostracum of marine mussels (Mytilus edulis),
can interact with multiple neurotransmitter systems [64]. In addition, the lipid-regulating compound
atorvastatin affects the concentration of methyl farnesoate, a potential crustacean hormone [36].
These disturbances to neurotransmission signals by antifouling compounds interrupt the normal
attachment and metamorphosis of fouling organisms.

3.4. Surface Modifiers

Antifouling compounds, such as polygodial from the canelo tree Drimys winteri [65,66], synthetic
3-alkylpyridinium oligomers and polymers (3-APS) [32] and linoleic acid from the semi-evergreen plant
Dryopteris crassirhizoma [67], show surfactant properties known to disrupt or solubilize the cell membrane
of fouling organisms. In addition, cationic antifouling chemicals can interact with negatively-charged
bacterial cells to cause lysis of cell membranes and leakage of cellular contents [57,58,60,68–70].
The lipophilic nature of thymol and eugenol enables their interaction with the lipid bilayer of
cellular membranes, allowing membrane insertion and altering the fluidity and permeability of cell
membranes [71]. Another strategy of surface modification employed by antifouling compounds is to
either increase the roughness and hydrophilicity of substrata [57,58,72] or decrease the hydrophobicity
of bacterial surfaces [73], thus reducing the strength of attachment of fouling organisms.

3.5. Biofilm Inhibitors

The antibacterial activity of 7-hydroxy-4-methylcoumarin can be attributed to the inhibition of
bacterial nucleic acid synthesis and quorum sensing by its coumarin ring, which reduces the formation
of biofilms on surfaces [74]. Modified black wattle tannin has the capacity to chelate metals in solution,
especially iron [75]. Because metals are essential for the growth of microorganisms, the removal of
metals by tannic acid tends to deter bacteria. Besides, the binding of silver ions or nanoparticles to
sulfur or phosphorus containing biomolecules will probably cause cell death of bacteria during the
development of biofilms [76].

3.6. Adhesive Production/Release Inhibitors

The so-called “living paint” demonstrates antibacterial and antifouling activities by immobilizing
the marine bacteria Pseudomonas aeruginosa 1242 directly in the coating [77]. Changes in the composition
of biofilms and amylase proteolytic activity on adhesives are two probable effects whose interaction
contributes to the antifouling performance of “living paint”. Synthetic poly(l-lactic acid) releases lactic
acid slowly, and the resulting acidity may inhibit crosslinking reactions and the formation of networks
of cement proteins in barnacle cyprids, thus decreasing the settlement percentage [78].

3.7. Toxic Killing

The natural product 3,3′-diindolylmethane is isolated from the Pseudovibrio denitrificans UST4-50
and exhibits potent antifouling activity against the settlement of barnacles and bryozoans in paint
formulations, whose field performance is comparable with the commercial antifouling agent SeaNine
211 [79]. However, environmental risk assessments consistently verify that 3,3′-diindolylmethane is
too stable to biodegrade quickly in the marine environment and also has potent endocrine disrupting
effects towards non-target organisms. For example, after 28-days of chronic exposure of marine medaka
to 8.5 µg/L of 3,3′-diindolylmethane, sex-specific responses emerged, that is, estrogenic effects in
males but anti-estrogenic effects in females along the entire hypothalamus–pituitary–gonadal-liver
(HPGL) axis [80]. The lower estradiol/testosterone ratio reduces the synthesis of vitellogenin and
eggshell proteins, consequently blocking the development and maturation of oocytes in the ovary [81].
Reproductive failure is shown by reduced fecundity and the obviously decreased viability of offspring
larvae after parental exposure to 3,3′-diindolylmethane. Therefore, although 3,3′-diindolylmethane
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originates as a natural product, not all natural products are readily degradable and environmentally
benign. Systematic evaluation of their environmental risks is indispensable.

Although organotin has been banned for use as an antifouling additive, pollution from it is
still distributed worldwide due to its persistent property and continuous use. Organotin induces
resistance in microalgae by pre-selective mutations [82]. In the abalone Haliotis diversicolor, 28-days
of exposure to organotin compounds not only disturbs both energy production and osmotic balance
but also induces oxidative stress [83]. Reduced reproductive success caused by organotin is also
observed in the ascidian C. intestinalis, partly through alterations in the electrical property of the
oocyte plasma membrane [84]. Suppression of the immune function is also found in another ascidian,
Botryllus schlosseri [85]. In the wood frog (Lithobates sylvaticus), organotin disrupts lipid metabolism
and signaling transduction via the retinoid-X-receptor and perixosomal proliferation receptor gamma
in both acute and chronic exposure regimes [86]. As pigments in antifouling coating, heavy metals,
including copper and cadmium, can increase larval abnormalities significantly and induce DNA
damage in the pacific oyster (Crassostrea gigas) [88].

To resist algal accumulation on immersed structures, diverse booster biocides, previously used as
herbicides, fungicides or bactericides, are used as supplements in copper-based paint formulations.
However, the use of these antifouling booster biocides does not go through comprehensive evaluation
of their environmental risks. Following large-scale use in antifouling paints, their environmental
pollution and high non-target toxicity pose non-negligible threats to marine ecosystems. Irgarol 1051
is adopted from herbicides and is known to inhibit the photosynthesis and carbon incorporation of the
sugar kelp Saccharina latissima [89], and retard the cell cycle of the marine green alga Ostreococcus tauri [90].
In addition, growth of the freshwater cyanobacterium Synechococcus sp. PCC7942 is stimulated by
Irgarol 1051, with altered physiological composition of both soluble proteins and polysaccharide
content in addition to the induction of oxidative stress [91]. As compensation for inhibited
photosynthesis, Irgarol 1051 exerts a selection bias for tolerant algal species in the marine periphyton
communities [92]. Further, exposure to Italic 1051 increases the abnormality and DNA strand breaks
in the larvae of Pacific oyster (C. gigas) [88]. In vitro treatment shows that cell apoptosis through
mitochondrial dysfunction and oxidative stresses is induced by Irgarol 1051 [93].

Similarly, inhibited photosynthesis and carbon incorporation are detected for SeaNine 211
in the sugar kelp S. latissima [89]. SeaNine 211 exposure induces oxidative stress by dramatically
depleting the intracellular pools of glutathione [92], or changing antioxidant enzyme activity [94].
A 28-day exposure to 1.0 µg/L of SeaNine 211 also increases apoptosis in testicular germ cells of the
marine teleost mummichog Fundulus heteroclitus, probably through a caspase-dependent pathway [95].
Furthermore, in the marine medaka O. melastigma, chronic exposure to environmentally observed
concentrations of SeaNine 211 for 28 days induces hepatic oxidative stress [45], decreases AChE activity
and disrupts the mitogen-activated protein kinase (MAPK) signaling pathway in brain tissues [45,46]
and causes endocrine disruptive effects through the entire HPGL axis [47,96]. Imbalanced hormonal
homeostasis and increased estradiol/testosterone ratio indicate an estrogenic intracellular environment.
Transgenerational impairment is also characterized by the delayed hatching and lethargic swimming
of offspring larvae. To directly identify the binding target by which subsequent secondary effects
are mediated, a pull-down assay has been developed with SeaNine 211 immobilized on the surface
of agarose beads. The interaction of proteins with the functional isothiazolinone group shows that
SeaNine 211 has a high binding affinity to G protein alpha subunits in the brains of two teleosts
(i.e., marine medaka and zebrafish) and can competitively inhibit signal transduction through G
protein-coupled receptors, which may result in the consequent endocrine disruption [97].

Diuron is capable of inhibiting the photosynthesis, carbon incorporation and progression through
the cell cycle in macroalgae [89,90]. The depressed photosynthetic performance and the resultant
physiochemical changes decrease the sinking rate of marine diatoms, which probably alters their
survival strategy [98]. In addition, the abnormal sodium currents and conductance of the oocyte
plasma membrane caused by Diuron may impair the reproductive fitness and population sustainability
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of the ascidian C. intestinalis [84]. Copper pyrithione can affect the settlement and growth of marine
periphyton communities by disrupting the integrity of cell membrane as a consequence of increased
cellular metal ion concentrations [92]. A series of adverse effects, including the altered composition of
the periphyton community [99], suppression of the immune function [85] and the induction of oxidative
stress [100] have been documented for zinc pyrithione. Similarly, dichlofluanid, tolyfluanid and
chlorothalonil can inhibit the photosynthesis and carbon incorporation of the sugar kelp S. atissima [89].
Further, tolyfluanid disrupts folate synthesis and inhibits thiol-containing enzymes by forming
disulfide bridges during the settlement and growth of marine periphyton communities [92]. In mature
oocytes of the ascidian C. intestinalis, a decrease in the amplitudes of sodium and fertilization currents
by chlorothalonil is observed, suggesting an involvement of plasma membrane ion currents in the
teratogenic mechanism of chlorothalonil [101].

4. Conclusions

This review gives a summary of progress in the understanding of antifouling mechanisms since
2012, providing a timely supplement to our last review of these mechanisms [5]. Briefly, literature that
investigates or speculates on the molecular mechanisms of antifoulants is included, and categorized as
either specific targets or general targets, based on whether or not certain target molecules and pathways
are involved. Specific targets embrace five groups, including inhibitors of transmembrane transport,
quorum sensing inhibitors, neurotransmission blockers, adhesive production/release inhibitors and
enzyme/protein inhibitors (Table 1). General targets roughly comprise six groups: protein expression or
metabolic activity regulators, oxidative stress inducers, neurotransmission blockers, surface modifiers,
biofilm inhibitors, adhesive production or release inhibitors and toxic killing (Table 2). Comparison
with the overall complicated responses of general targets that give a blurry assumption, direct
identification or speculation about the specific intracellular targets of antifouling compounds is
certainly of great value in discovering the mechanisms responsible for antifouling activity more clearly.
In the specific target groups, target molecules such as AChE, phenoloxidase and tyrosinase, AHL of
quorum sensing, intracellular Ca2+ levels and HSP-90 have the potential to be developed and employed
as sensitive and efficient biomarkers. Another advantage of these proposed biomarkers is that their
detection methods are generally available, which can be directly and easily adopted from previous
studies for mechanistic antifouling screening in future research.

It is necessary to point out that, although a large variety of natural products or shelf-stable
compounds have been tested for antifouling activity, there is currently little information for their
modes of action. This situation has not improved even slightly since our last review [5]. It is well
recognized that increased knowledge of antifouling mechanisms will in turn facilitate more targeted
and efficient screening of antifouling compounds. Therefore, future work on antifouling must combine
both chemical and biological work to provide a more complete picture of antifouling performance.

In view of the present status and knowledge gaps regarding the development of antifoulants,
we propose here a workflow to list the issues that need to be resolved step by step prior to
the commercialization of any novel antifouling chemicals (Figure 1). First, shelf-stable or natural
product compounds are purchased, synthesized or isolated for preliminary screening based on the
mechanism-guided or bioassay-guided method, respectively. Those compounds showing potent
antifouling activities in laboratory conditions will be further evaluated for: (1) their degradation
kinetics in various environmental matrices to ensure that these promising antifoulants degrade
quickly once released from coatings but without generating more toxic byproducts, thus maximally
avoiding possible environmental pollution; (2) their environmental biosafety in both acute and chronic
exposure scenarios to ensure that these promising antifoulants will have low adverse effects against
non-target marine organisms of different trophic levels; and (3) their field antifouling performance
after incorporation into paints to ensure that these promising antifoulants are compatible with
paint formulations and demonstrate efficacious and durable performance in the field as well as
in the laboratory. These three aspects are expected to support each other systematically for any
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effective and environmentally friendly antifouling compound. Next, studies to give insights into
both the mechanisms of antifouling activities and the biological clues during settlement will assist
the establishment of sensitive and targeted biomarkers, facilitating faster screening of antifouling
alternatives in turn.
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effectively but also are environmentally “green”. In turn, research on antifouling mechanism and
settlement molecular insight will facilitate the utility of sensitive biomarkers for faster screening of
promising antifouling compounds.
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