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The brain is highly structured both at anatomical and functional levels. However, within individual brain areas, neurons
often exhibit very diverse and seemingly disorganized responses. A more careful analysis shows that these neurons can
sometimes be grouped together into specialized subpopulations (categorical representations). Organization can also be found
at the level of the representational geometry in the activity space, typically in the form of low-dimensional structures. It
is still unclear how the geometry in the activity space and the structure of the response profiles of individual neurons are
related. Here, we systematically analyzed the geometric and selectivity structure of the neural population from 40+ cortical
regions in mice performing a decision-making task (IBL public Brainwide Map data set). We used a reduced-rank regression
approach to quantify the selectivity profiles of single neurons and multiple measures of dimensionality to characterize the
representational geometry of task variables. We then related these measures within single areas to the position of each
area in the sensory-cognitive cortical hierarchy. Our findings reveal that only a few regions (in primary sensory areas) are
categorical. When multiple brain areas are considered, we observe clustering that reflects the brain’s large-scale organization.
The representational geometry of task variables also changed along the cortical hierarchy, with higher dimensionality in cognitive
regions. These trends were explained by analytical computations linking the maximum dimensionality of representational
geometry to the clustering of selectivity at the single neuron level. Finally, we computed the shattering dimensionality (SD), a
measure of the linear separability of neural activity vectors; remarkably, the SD remained near maximal across all regions,
suggesting that the observed variability in the selectivity profiles allows neural populations to maintain high computational
flexibility. These results provide a new mathematical and empirical perspective on selectivity and representation geometry in
the cortical neural code.
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The brain is highly structured both at the anatomical and
functional levels. This large-scale anatomical organiza-

tion contrasts with the more local observation that, within
individual brain areas, neural responses are often complex,
depend on multiple variables (mixed selectivity (1)), and, in
cognitive areas, they are very diverse and seemingly disorga-
nized (see e.g. (2–4)). However, when we look more closely
at neural activity, we often see interesting structures both at
the level of the responses of individual neurons and at the
level of their collective behavior. Despite their complexity,
some neuronal responses are similar enough to each other that
suggest the existence of modular structures within brain areas
(“categorical representations” (3, 5)). At the population level,
we often observe low dimensional structures in the represen-
tational geometry, both in terms of neural trajectories (6, 7)
and in terms of activity space organization when multiple
conditions are considered (8, 9)

The organization at the level of population activity (repre-
sentational geometry, Fig. 1a, blue space) and at the level of
single neuron response profiles (response clustering, Fig. 1a,
red space) are related to each other in a complex way, which is
not fully understood. For example, highly specialized neurons
with pure selectivity and linear mixed selectivity to a few inde-
pendent variables correspond to low dimensional geometries,
whereas it has been argued that high dimensionality requires
non-linear mixing and diversity of responses (2, 3).

Here, we systematically analyzed the response profiles and
the representational geometry in 43 cortical regions (Fig. 1c)
in mice performing a decision-making task (IBL public Brain-
wide Map dataset (10), Fig. 1d). As the neuronal responses
have a complex temporal profile, we applied a reduced-rank
regression model to characterize both the temporal and the
selectivity components of the response profiles of individual
neurons. We also employed different measures of embedding di-
mensionality (11) (PCA and shattering dimensionality (1, 12))
to characterize the geometry of neural representations.

Previous work has evidenced a relation between the func-
tional properties of neurons within cortical areas and their
anatomical organization, such as their position on the visual-
prefrontal hierarchy (13, 14). These results suggest that sen-
sory and cognitive areas might employ different coding strate-
gies. Here, we tested whether and how the selectivity and
geometrical properties of neural populations systematically
change along the mouse cortical hierarchy recently reported
by (15) (Fig. 1e, f), which ranks regions in a sensory-cognitive
axis starting from primary sensory areas and following the
patterns of anatomical connectivity (Fig. 1e).

We found that the selectivity profiles within individual
areas are clustered (i.e., “categorical” (3, 5)) only in primary
sensory areas. When multiple brain areas are considered, we
observe clustering that reflects the brain’s large-scale orga-
nization, similar to what has been observed in the monkey
and human brain (16). We then developed a mathematical
theory relating clustering and the geometry of neural repre-
sentations, predicting that the maximal PCA dimensionality
of representations should be inversely correlated to clustering.
This relationship was empirically verified as the PCA dimen-
sionality of the observed representations increased along the
cortical hierarchy and was close to its maximum. Moreover,
the shattering dimensionality, which measures how many dif-
ferent classifications in the activity space can be solved by a

linear readout (1), was close to the maximum (>90%) across
all areas.

In the next section, we will present the conceptual frame-
work and define the two neural activity spaces that will be
analyzed in the rest of the article: the space of the response
profiles of individual neurons (the conditions space) and the
representation space where we will study the geometry of the
representations and estimate their dimensionality.

Conceptual framework: conditions space and represen-
tation space

Let us consider the activity matrix of N neurons recorded
during the presentation of M different experimental conditions,
such as, for example, their response to different sensory stimuli
(Fig. 1a) (3, 12). This matrix defines two complementary
spaces: the one spanned by the rows of the matrix, called the
“conditions space” (shown in red in Fig. 1a), and that spanned
by its columns, called the “representation space” (shown in
blue in Fig. 1a).

In the M -dimensional conditions space, individual points
represent the response profile of the N single neurons to the
M recorded conditions. If neurons are specialized into sub-
groups that respond similarly to these conditions, they will
form clusters (functional groups) in this space, defining what
is called a categorical representation (3, 5, 17). Categorical
representations have been reported in the orbitofrontal cortex
(OFC) of rodents (5, 18), while non-categorical representations
were found in the rodent posterior parietal cortex (PPC) (17).
In several other articles (1, 8, 19, 20), the authors did not
study explicitly whether the representations are categorical,
but the observation of very diverse mixed selectivity neurons
and high dimensional representations suggest non-categorical
representations (see also the Discussion). Whether, where,
and how neural populations are subdivided into functional
clusters is still an open debate (3).

In the N -dimensional representation space, the relative ar-
rangement of the M points representing individual conditions
defines the geometry of the neural representations. Analyzing
the representational geometry of population activity has been
shown to provide insight into the brain’s encoding strategies
and their computational implications for learning and flexi-
ble behavior (1, 8, 19–21). For example, a high-dimensional
neural geometry has been shown to support high flexibility
(1, 2, 4) and memory capacity (19), while low dimensionality
is associated with a better ability to create abstractions and
generalize in novel situations (2, 8, 21). Thus, dimensionality
is one of the most prominent and implicative features of neural
representations.

While these two approaches are, at times, discussed as in
conflict with each other, they are, in fact, complementary views
of the same data: a population of neurons can, in principle,
encode conditions with a categorical or non-categorical repre-
sentation and, independently, with a low- or high-dimensional
geometry (3, 12). Here, we define the positioning within these
two axes as the “coding architecture” of a neural population
(Fig. 1b). As discussed above, to date, it is unknown whether
there are mathematical or empirical constraints on which parts
of the architecture space neural populations can occupy. In the
next sections, we will introduce and apply novel data analysis
methods and analytical derivations to investigate this question
on the cortical recordings from the IBL dataset.
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Fig. 1. Conceptual framework and data structure: (a) The matrix of neural responses of N neurons to M conditions can be analyzed in either its row space (conditions
space, red) or column space (representation space, blue). The relative position of conditions in the representation space defines their “representational geometry”. If neurons
are clustered in the conditions space, they define what is called a “categorical” representation (3, 5, 17). (b) To what extent these two perspectives are related to each other
is unclear, and neural populations could, in principle, occupy any portion of the clustering-dimensionality space. Here, we call the combination of clustering and geometry
the “architecture” of the neural code. Image adapted from (3). (c) Swanson flat map of the 43 cortical regions we analyzed. Data was recorded by the IBL consortium (IBL
Brainwide Map data set) using Neuropixel probes. After selecting neurons in the cortex, we were left with ∼ 14, 000 neurons from ∼ 150 recording sessions. (d) In the IBL
task, mice need to rotate a wheel to move a visual stimulus toward the center of the screen. The stimulus appears left or right with an 80-20% biased probability in blocks of
trials (bottom panel), adding “prior” contextual information to the task. (e) Region-to-region anatomical connectivity in the cortex, data from (15). (f) Cortical hierarchy derived by
the anatomical connectivity matrix of panel (e). The order was derived in (15) such that “source” regions, i.e., regions whose connectivity is unbalanced outwards, are mostly
placed low, and “target” regions, i.e., regions whose connectivity is unbalanced inwards, are mostly placed high in the hierarchy. Additional details on how the hierarchy is
computed can be found in (15).

The statistics of the neural response profiles reflect the
cortical anatomical organization

We first focused on the response properties of single neurons.
Since the IBL task is structured with both continuous and
discrete variables, we initially focused on neural selectivity, i.e.,
the profile of responses of single neurons to behavior variables.
To analyze neural selectivity, we developed a reduced-rank
regression (RRR) model that predicts the activity of single
neurons in response to changes in a set of variables from the
experimental conditions and the subject’s behavior (Fig. 2a-d,
see Methods and Suppl. Fig. 1A-D). The core component of
the RRR encoding model is a small set of temporal bases that
are learned from data and shared across neurons to describe
their time-varying responses (see Methods, Suppl. Fig. 1EF).
The sharing of the temporal bases significantly reduces the
number of parameters and mitigates the issue of overfitting.

We used this model to fit the response of each neuron (13733
neurons from 43 cortical regions) to 8 variables that describe
the IBL decision-making task (Fig. 2a). In this task, subjects
are shown a visual stimulus on one side of a screen and need
to rotate a wheel to move the stimulus toward the center of
the screen. If they perform a correct wheel rotation, they are
given a water reward. Stimuli are either shown left and right
with a 50-50 balanced probability (“50-50 block”) or with an
80-20 imbalance (“left” or “right” block). In this analysis, we
only used trials from left or right unbalanced blocks to avoid
possible time artifacts, as the balanced block only appeared
at the very beginning of a session.

The variables we used for fitting the model range from
cognitive (left vs. right block), sensory (stimulus side, con-
trast), motor (wheel velocity, whisking power, lick), or decision-
related (choice, outcome). After fitting the RRR model to
predict trial-by-trial activity (Fig. 2b), each neuron is as-
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Fig. 2. The reduced-rank regression encoding model as an effective and meaningful tool to estimate single neurons’ selectivity profiles. a-d Analysis pipeline for
estimating single neurons’ selectivity profiles. A linear encoding model is first fit to describe single neuron’s temporal responses with respect to behavior data of interest
(Methods). Selectivity (α) is computed as the sum of the magnitude of the coefficients across time. Behavior data and neural activity of an example trial are shown for an
example neuron, along with the estimated coefficients and selectivity. e Goodness-of-fit (three-fold cross-validated R2, Methods) achieved by our encoding model versus the
trial-average estimate per task condition. The outperformance (∆R2) is shown in the inset. f Average (absolute) selectivity profiles for neurons in the analyzed cortical areas.
Areas are first grouped by their modules and then sorted by their hierarchy positions. The selectivity values are normalized per input variable for better visualization. The top
three selective areas are marked with red stars for each input variable. g Area-to-area functional similarities are strongly correlated with anatomical connectivity (Fig. 1-e). The
pairwise functional similarity is measured as the cosine similarity between two selectivity profiles (f). (h) Correlation between the position on the hierarchy of single cortical
areas with the average autocorrelation timescale of individual neural responses to task variables, estimated using the coefficients of the RRR (see Methods). (***p < 0.001,
**p < 0.01, *p < 0.05)

sociated with 8 time-varying coefficients that describe how
sensitive the analyzed neuron activity is to each variable in
trial time (Fig. 2c). The time-varying coefficients are typically
stereotyped across neurons and distinct across input variables
(Suppl. Figure 3AB). We then took the sum of these coeffi-
cients in time as an estimate of the total effect on the neural
responses (Method) and obtained an 8-dimensional selectivity
vector for each neuron for further analysis (Fig. 2d, see also
Suppl. Fig. 4 for examples of responses from strongly selective
neurons).

We first checked the predictive performance of our RRR
model against the average firing rate per condition (PSTH),
finding a significant improvement across the whole population
of neurons (mean R2 = 0.16, mean ∆R2 = 0.064, Fig. 2e, see
also Suppl. Fig. 5A-D for additional benchmark results of
model performance and Suppl. Fig. 5E-H for visualization of
example neurons). The goodness-of-fit is positively correlated
with the mean firing rate and tuning to the behavior movement
but not with the timescale of neural responses (Suppl. Fig. 6.
To avoid our results being dominated by neurons that are
not selective to any variable (10, 22), for the purpose of the
following analyses, we only selected neurons whose individual
∆R2 passed a minimal threshold (∆R2 > 0.015, Methods). As
discussed in Suppl. Fig. 7, our results are robust to different
values of this threshold.

We then used the selectivity profiles of neurons within in-
dividual regions to test whether the different selectivity prop-
erties of cortical regions reflect the anatomical organization of
the cortex. Our hypothesis is that regions that are strongly
connected to each other would share similar functional prop-
erties that are captured by our selectivity analysis. To test
this hypothesis, we computed the average selectivity vector
for each cortical region to obtain a region-specific selectivity
profile (Fig. 2f). We then computed the cosine similarity of
these selectivity profiles and compared it to the region-region
anatomical connectivity from which the cortical hierarchy was
derived (reported in (15) and shown in Fig. 1e). Consistent
with our hypothesis, we found a significant positive correla-
tion between selectivity similarity and anatomical connectivity
(Spearman correlation = 0.45, p<0.001, Fig. 2g), suggesting
that the similarity of selectivity profiles estimated by our RRR
model reflects the anatomical organization of cortical regions.

A hierarchical gradient of response timescales in the
cortex

Previous and recent work has shown that neurons in regions
higher up the cortical hierarchy exhibit progressively longer
intrinsic timescales, defined as the autocorrelation time of
the spontaneous firing activity (14, 23–27). Computational
works have interpreted this result in terms of allowing the
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Fig. 3. The clustering quality of areas across hierarchy and across scale. a Schematic plot and characterization of categorical versus non-categorical population. For the
categorical population, neurons are clustered into multiple (> 1) groups in terms of their selectivity profiles, which results in a silhouette score that is significantly larger than a
random mixed null model. The null model is a Gaussian distribution with mean and covariance matrix matched to the data (see Methods and (5)). For the non-categorical
population, the silhouette score is comparable to the null distribution. b,c Examples of categorical versus non-categorical brain areas. On the left, the selectivity matrix
of individual neurons within is shown, with neurons sorted by the clustering labels and separated by black lines. The color indicates the selectivity value, with red being
positive, blue being negative, and white being zero. In the middle, the selectivity matrix of an example null dataset is shown the same way. The data silhouette score and its
corresponding null distribution are shown on the right, together with a reduced-dimensionality visualization obtained using linear discriminant analysis (individual points are
neurons, color refers to cluster labels). d For most cortical areas, the neuronal response profiles are very diverse, and the clustering structure is only present in primary sensory
areas. The clustering quality, estimated by the z-scored silhouette score, decreased significantly along the cortical hierarchy. e Clustering results obtained by applying the
pipeline in (a) to the conditions space instead of the selectivity space, compared to the position in the hierarchy as done in (d). f Clustering quality of modules as defined in (15)
(see Fig. 1) compared to their individual regions. For modules, the clustering quality was measured as in pipeline (a), using neural populations created by pooling together all
the non-clustered regions (i.e., regions whose z-score did not pass a Bonferroni-corrected test for significance with a threshold of p=0.05) within a given module. These values
are shown as orange bars. Blue bars show the mean and standard deviation of the clustering quality of individual regions (grouped data from panel d). The green bar shows the
result for all the neurons from all the non-clustered cortical regions taken together.

integration of information over extended periods in cognitive
areas to facilitate cognitive functions such as working memory
(28). However, it is currently unclear whether cortical regions
exhibit a similar gradient for the response time to task variables
instead of spontaneous activity.

Thus, we wondered whether we could observe an increase
in timescales along the cortical hierarchy defined by Harris et
al. (15). Our RRR model allows us to estimate the autocor-

relation timescale of neural responses to task variables using
the fitted coefficients in time (note that this approach differs
from previous methods using the autocorrelation of sponta-
neous activity; see Methods for details and Suppl. Fig. 8 for
estimated autocorrelation and timescales of example neurons).
Using this measure, we computed the average autocorrelation
timescale τ0 for all neurons within the cortical regions and
compared it with the position of said region along the cortical
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hierarchy. We found a significant positive correlation between
the position in the hierarchy and τ0 (Spearman correlation
= 0.62, p<0.01; Fig. 2h), providing evidence that in mice,
similar to what was observed in terms of spontaneous activity,
neurons in cognitive areas have longer activity autocorrelations
compared to sensory neurons.

Neural selectivity is clustered in primary sensory areas
and non-clustered elsewhere

We then focused on the selectivity properties of single neurons
within each area and investigated whether neurons cluster
into specialized sub-populations (“categorical” selectivity) or
whether information about task variables is heterogeneously
distributed across the whole population (“random mixed” se-
lectivity).

As noted above, our RRR model associates an 8-
dimensional selectivity vector to each neuron. Thus, a popula-
tion within a region can be visualized as a cloud of points in
an 8-dimensional selectivity space (Fig. 3a; analogous to the
red space in Fig. 1a). As a measure of clustering quality, we
used the silhouette score (SS) (29) of clusters identified using
k-means in this space. Given a neuron, the SS compares its
mean distance to neurons within the same cluster with the
distance to the nearest out-of-cluster point (Fig. 1a).

Fig. 3a describes our pipeline to compute the clustering
quality of a neural population (see also Methods): first, we
use k-means to find the clustering labels. The k parameter
is chosen to maximize the SS. We then computed the SS for
these clusters, which we call SSdata. Importantly, across all
the clustering analyses, we considered only clusters that are
reproducible, i.e., that are not dominated by neurons from
a single experimental session (see Methods). The silhouette
score, taken alone, is not indicative of the presence or absence
of clustering, as different shapes of the cloud of points can
yield widely different silhouette scores even in the absence of
clustering (Suppl. Fig. 9). Thus, we compared the value found
in the data with a null model that is sampled from a single
Gaussian distribution (which is non-clustered by design) while
preserving the mean, covariance structure, and the number
of neurons of the original data (Fig. 3a step 3). This null
model was inspired by the one used for the ePAIRS test in
(5). By repeating many null model iterations, we can compare
the SSdata value with a null model population {SSnull}. As a
measure of clustering quality, we finally take the deviation of
the data point from the null distribution, measured with the
z-score.

We used this analysis to quantify the clustering structure
of selectivity profiles of single neurons in all the recorded
cortical regions. To avoid small-size artifacts, we included only
regions that have at least 50 neurons after our R2 threshold
was applied. In Fig. 3b,c, we show two examples of clustering
results, one in a region that was found to be clustered (VISp)
and one in a region that was found to be mixed (ACAd). To
visualize the putative clusters found by k-means, we grouped
neurons according to their cluster labels and sorted them
according to their individual SS scores (highest on top). As
shown in Fig. 3b, it appears that neurons are clustered based
on the block prior (c1, c4), whisking power (c2, c5), and a
combination of side, contrast, and choice (c3). See also Suppl.
Fig. 10 for the clustering results of all cortical regions.

However, the visual aspect of these representations might

be misleading, as these clusters might just reflect a hetero-
geneous selectivity across task variables, which can result in
an elongated shape of the cloud of points in the selectivity
space. In fact, after sorting, some of these clusters are still
visible in a null-model sample (see c2, c3, c4 in Fig. 3b, right
panel). This example showcases the necessity of comparing
the silhouette score with a null model distribution to obtain a
meaningful quantification of clustering quality. In the case of
VISp, the primary visual area, the data clusters were found
to have a higher SS than the null model (Fig. 3b), indicating
that neural selectivity is more categorical than a randomly
distributed null model. This was not the case for ACAd, a
prefrontal area, (Fig. 3c), despite some apparent clusters in
the selectivity profiles mainly driven by whisking (c1) and a
combination of stimulus side and choice (c3).

When applying this pipeline to all the cortical areas, we
found that only three areas passed the statistical threshold of
significance (p<0.05 with a Bonferroni correction for multiple
comparisons): the primary visual (VISp) and auditory (AUDp)
areas, and a region in the primary somatosensory area (SSp-
ul) (Suppl. Fig. 10). To test which variables contributed to
the quality of clusters, we re-ran the clustering analysis by
removing each variable individually and measured the drop
in silhouette score caused by this removal for each cluster.
As shown in Suppl. Fig. 11, the most important variables
for determining the clustering quality varied across areas and
were typically multi-modal, spanning cognitive, movement, and
sensory variables (VISp: block, whisker, contrast and choice;
AUDp: reward and whisker; SSp-ul: wheel and choice).

Since we observed categorical representations in primary
sensory areas only, we hypothesized that this structure is
inherited by primary sensory regions from the structure of
their multi-modal input variables. We further hypothesize
that, as information flows along the cortical hierarchy, this
categorical structure might get mixed up within areas that
inherit these different streams of information to create more
flexible representations. If that is the case, we would expect
the clustering quality to decrease with the position in the
cortical hierarchy. Indeed, we observed that clustering quality,
measured by the z-score of the silhouette score against the
null model, decreased significantly with the position along
the hierarchy (Spearman correlation: -0.63, p<0.01; Fig. 3d),
suggesting that the neural code becomes more randomly mixed
along the sensory-cognitive hierarchy. Moreover, the trend
is consistent if we consider the specific temporal profiles of
the time-varying selectivity coefficients on top of the sum
across trial time (Spearman correlation: -0.67, p<0.01, Suppl.
Fig. 3D).

As reasoned in the Methods, focusing on RRR model-
based selectivity instead of simple condition-averages of neural
activity has several advantages, including incorporation of
non-instructed behavioral variables in the model. However,
this approach has the potential drawback of making explicit
assumptions about what variables are represented in the neural
activity. For this reason, we repeated the same analysis in the
conditions space, i.e., the space of trial-average firing rate of
neurons in experimental conditions, as proposed in (5). To do
so, we first need to define a discrete set of conditions. We used
the combinations of 4 variables, which were chosen so that they
span different categories (sensory, motor, and cognitive) and
so that each condition was well represented in the behavior:
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whisking motion, block prior, stimulus contrast, and stimulus
side (see Methods and Fig. 4b). Continuous variables (e.g.,
whisking motion) were discretized to binary values, to make
them consistent with the other binary task variables (e.g.,
block prior). Consistent with the previous result, we observed
a negative correlation between the hierarchy and the clustering
quality in this 16-dimensional conditions space (Spearman
correlation: -0.62, p<0.01; Fig. 3e). See Suppl. Fig. 12 for the
clustering results of all cortical regions. Together, these results
provide compelling evidence that areas become less categorical
the higher they are positioned along the sensory-cognitive axis.

Clustering re-emerges on the mesoscale in lateral and
somatomotor modules

The results so far indicate that single regions are typically
non-categorical, with exceptions in the primary sensory areas.
However, the cortex is organized on both the anatomical and
functional levels. For example, Harris et al. (15) proposed a
classification of groups of regions into larger modules based on
their anatomical connectivity and previously known functional
properties. We thus reasoned that neural populations that
are not clustered within single areas might be so when pooled
together in larger, module-scale populations, reflecting the
functional specialization of single areas within cortical modules.
To test this idea, we ran our clustering pipeline on neural
populations created by pooling together neurons from the
areas of the individual cortical modules as defined in (15):
visual, auditory, somatomotor, medial, lateral, and prefrontal
(Fig. 1c, e). To test whether non-categorical areas become
clustered on a mesoscale, we restricted our analysis to areas
that did not pass the significance threshold in the clustering
analysis of Fig. 3d. Since the only areas we analyzed in
the visual and auditory modules were clustered (VISp and
AUDp), we were restricted to four modules (somatomotor,
medial, lateral, and prefrontal). After pooling the different
regions together, we found that neurons were more categorical
than the null model in the medial and somatomotor modules
(somatomotor: z ≃ 7; medial: z ≃ 5; Fig. 3e, f), suggesting
that areas within these modules are functionally specialized
on a larger anatomical scale. Interestingly, the prefrontal and
lateral modules were not found to be more categorical than
the null model, suggesting that, at least for what concerns the
current task, neural populations remained randomly mixed
even at the larger module scale (Fig. 3f). Finally, when
considering a single population spanning the whole cortex,
neurons were found to be significantly more categorical than
the null model, reflecting the higher-order organization on
a cortical level (Fig. 3f). This analysis not only confirms
the existence of a functional specialization that reflects the
anatomical organization of the cortex but also shows that
our approach allows us to detect clustering structures and is
highly sensitive to differences in the statistics of the neuronal
response profiles.

The dimensionality of neural representations increases
along the cortical hierarchy

Next, we investigated whether and how the response properties
of single neurons are reflected in the population activity of
cortical regions. One fundamental measure to characterize
the structure of population representations is their embedding

dimensionality (12). The analysis of the response profiles
revealed a highly distributed code, with responses that are
diverse and progressively less clustered as we move along the
cortical hierarchy. It has been argued that high diversity in
neural responses is required to achieve a high embedding di-
mensionality, which has important computational implications
such as task flexibility (1, 2, 30) or high memory capacity (19).
Thus, we sought to investigate how the embedding dimension-
ality of neural representations evolves along the hierarchy and
whether it is related to the response properties of individual
neurons within cortical areas.

Different measures of embedding dimensionality have been
used in the literature to characterize representations in the
activity space. One measure that is directly related to their
geometrical shape in the activity space is the PCA dimension-
ality, which is the number of independent dimensions needed
to linearly embed the structure of neural representations in the
activity space. The PCA dimensionality of a set of patterns
of neural activity can be summarized by the participation
ratio (PR) (31), which describes how variance is distributed
across the eigenvalue spectrum of the covariance matrix of the
patterns (Fig. 4a). If a few eigenvalues dominate (suggesting
that only a few dimensions explain most of the variance), the
participation ratio will be low. Conversely, if the eigenvalues
are more evenly distributed, the participation ratio will be
higher, indicating that many dimensions are needed to capture
the variability of neural responses.

To analyze the PCA dimensionality of the neural code
in the different cortical regions, we defined the conditions
(points in the representation space) as the set of combinations
of values of the task-relevant variables (e.g., left stimulus
& right choice & right block & high whisking power, etc.).
However, we can not consider all 8 variables used in the RRR
clustering analysis (Fig. 2a), as not all the combinations
are well represented in the behavior. For example, when a
stimulus is presented on the right-hand side of the screen
during a “right” block, it is very uncommon for mice to rotate
the wheel to the left. Thus, we selected four variables that span
cognitive, sensory, and movement information while being well
represented in the behavior: (1) stimulus side, (2) whisking
power, (3) block, and (4) stimulus contrast. We binarized
these variables (see Methods) to obtain 16 conditions and
analyzed the participation ratio (PR) of their centroids (mean
firing rate across trials) in the representation space (Fig. 4a,
b).

We expect cognitive areas to encode relevant variables with
a high-dimensional code, which allows for higher cognitive
flexibility (1, 17). Conversely, there is evidence for both high
and low-dimensional representations in sensory areas (32–34).
Thus, we wondered whether dimensionality in specific cortical
areas was related to their relative positioning on the cortical
hierarchy. Our analysis revealed that, typically, primary sen-
sory areas have lower PR compared to cognitive areas. Indeed,
when comparing the PR of each area with its position on the
cortical hierarchy, we found a positive correlation (Spearman
corr: 0.75, p<0.001; Fig. 4c). Combined with the results of
Fig. 3e, showing that clustering decreases with the hierarchy,
this could imply that areas with more categorical representa-
tions exhibit a lower PCA dimensionality. This was indeed
observed in the data, as we found a negative correlation be-
tween clustering and dimensionality in the coding architecture
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Fig. 4. The embedding dimensionality of neural representations increases along the cortical hierarchy (a) Schematic examples of two geometries with different
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In the lower panel, the covariance structure is evenly distributed along different directions, yielding a high participation ratio. (b) To select conditions, we chose the largest set of
combinations of motor, sensory, and cognitive variables that are well represented in the behavior. (c) The PCA dimensionality, estimated by the PR of the 16 chosen conditions,
increased significantly along the cortical hierarchy. (d) The PCA dimensionality inversely correlated with the clustering quality measured in the space of the mean firing rates of
the 16 conditions (data from Fig. 3e). *** p< 0.001.

space (Fig. 4d), suggesting the presence of a trade-off between
clustering and dimensionality in the neural code.

A mathematical model relates the maximum PCA dimen-
sionality to features of the selectivity clusters

One intuitive explanation of the inverse correlation between
clustering and dimensionality can be drawn from the fact that
the column rank and the row rank of a matrix are the same, and
in the absence of noise, the rank is a measure of dimensionality.
In other words, the dimensionality in the response profile space
is the same as the dimensionality in the activity space. If neural
responses are perfectly organized in k clusters, the rows of the
activity matrix (Fig. 1a) will be highly correlated, lowering
the rank of the activity matrix to the minimum between
the number of conditions M and the number of clusters k.
Since these “perfect” clusters are, effectively, k mega-neurons,
the geometry in the representation space must also be k-
dimensional (Fig. 5a). While this extreme case gives us an
intuitive argument on why clustering in the response profiles is
expected to lower the dimensionality of neural representations,
it is unclear whether there is a quantitative relation between
the two in more intermediate cases (Fig. 5b), such as those
we observed in the data.

To understand the relation between response profile cluster-
ing and representation dimensionality, we developed a mathe-
matical theory in which we were able to derive the participation
ratio of a mixture of Gaussian clusters in the selectivity space
(see Methods and Supplementary Material). As we assumed
that the positions of these clusters are random (i.e., there is
no additional structure besides clustering), the participation
ratio we derived is an upper limit to the dimensionality; hence,
we call this P Rmax. We found that P Rmax can be expressed
as a function of the number of conditions M , the dispersion
of clusters σ (i.e., the diversity of the responses within each
cluster), and the number of clusters k:

PRmax = M
k(1 + σ2)2

1 + M + k(1 + σ2)2 . [1]

From this mathematical form, we can immediately draw a few
conclusions. First, in the limit of perfect clusters (σ → 0),
the function is either limited by the number of rows-neurons
(in this case, the k perfect clusters) or columns-conditions M ,
coherently with the intuition above:

PRmax −−−−→
k→∞

M PRmax −−−−→
M→∞

k , [2]

However, things become more nuanced when k, M , and σ
are finite and non-zero. First, as shown in Fig. 5c, when k
and M are kept fixed, the maximum dimensionality decreases
with the clustering quality (expressed as the average silhouette
score of a population of Gaussian clusters with given k, M ,
and σ). This is compatible with the negative correlation we
observed in the data, suggesting that representations take
the maximum available dimensionality given their respective
clustering properties (more on this below). Second, if we fix
the quality of clusters and the number of conditions (Fig. 5c,
left), we see that dimensionality increases with the number of
clusters, with a magnitude that is larger for high silhouette
scores (categorical representations). This behavior is comple-
mentary to a recent work that showed the inverse relation, i.e.,
that constraining the dynamics generated by recurrent neural
networks to a low dimensional manifold implies a small number
of functional types (categorical clusters) (36). Finally, when
fixing the number and quality of clusters, the dimensionality
is determined by the number of conditions, with a magni-
tude that is larger for low silhouette scores (non-categorical
representations).
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Revealing the independent conditions encoded in the
representation space

We then wanted to assess whether our Gaussian theory was
indeed descriptive of the data. This requires knowing, for
each area, the three parameters M , k, and σ. While the
number of clusters is given by the k-means algorithm and the
dispersion σ can easily be measured in the selectivity space
(see Methods), it is less trivial to measure M , the number of
encoded conditions. One could be tempted to use M = 16,
the total number of conditions defined from task variables, but
this is not necessarily the number of independent conditions
that are encoded in the neural activity of a specific area. For
example, if an area only represents the stimulus side, the
effective number of independent conditions, which we will
call MIC , is MIC = 2 (left and right). In this case, the
maximum representation dimensionality would be PR = 2,
much lower than the total number of labeled conditions (16).
This point is explained in Fig. 5d: on the top panel, we
have a low-dimensional geometry with MIC = 4 independent

conditions. The max dimensionality here is M−1 = 3; however,
the measured dimensionality is lower (PR ≃ 1), indicating a
strongly constrained structure in the activity space (conditions
are indeed positioned in a straight line). The case depicted in
the bottom panel is characterized by a similar dimensionality,
PR ≃ 1; however, here, the neural code only represents two
independent conditions (green+blue clouds vs. red+purple
clouds); hence, the observed PR should not be surprising, as
it is the maximum achievable by the neural code.

To measure the number of independent conditions, we
developed an iterative algorithm based on the cross-validated
decoding performance of a linear classifier trained to report the
condition label of individual trials from their corresponding
population activity vectors (Fig. 5d, see Methods). In brief,
the algorithm computes the decoding performance for all the
pairs of conditions (1 vs 1) in a putative set of conditions
(initially, the 16 behavioral labels). If two conditions are not
decodable from each other, they are grouped together and
given a new label. The algorithm iterates the 1-vs-1 decoding
for the new set of labels and ends when all individual conditions
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Fig. 6. The shattering dimensionality of neural representations is close to maximal across all regions (a) Definition of Shattering Dimensionality (SD) and schematic
representations of two geometries with similar Participation Ratio (PR) and different SD. In this schematic case, both geometries represent M = 4 independent conditions.
However, in the top panel, only one dichotomy of these conditions is linearly separable (green-blue vs. red-purple), defining an SD value of 1/3. In the bottom case, all
dichotomies are linearly separable, defining a maximal SD= 1. (b) The combination of SD and PR can be used to more precisely characterize the representational geometry of
the encoded conditions. (c) Two examples of the distribution of linear decoding performances for n = 200 random dichotomies defined over the MIC independent conditions
encoded by two regions at the opposite sides of the hierarchy (VISp and ACAd). Here, we used a threshold of decoding performance to define whether a dichotomy was
well-decodable (green dashed line). The SD was then defined as the fraction of well-decodable random dichotomies using a cross-validated linear classifier (see Methods). (d)
Using this definition of SD, all regions were found to represent their independent conditions with close to maximal dimensionality.

are decodable against each other. The size of the final set
is taken as the number of independent conditions MIC (see
Methods and Suppl. Fig. 13 for a step-to-step example of
this iterative process). When we applied this algorithm to the
data, we found that the number of independent conditions
varied widely across different cortical regions, ranging from a
minimum of MIC = 5 (SSp-n) to a maximum of MIC = 16
(MOs). Strikingly, the number of independent conditions MIC

increased significantly along the cortical hierarchy (Spearman
corr: 0.74, p<0.001; Fig. 5e). Thus, cortical regions encode
an increasing number of combinations of task variables as they
move higher up the cortical hierarchy.

Once we have the value of MIC , we are able to test the
predictive power of our analytical theory. As the theory as-
sumes that all the M conditions are independent, we first
re-computed the participation ratio of the subset of indepen-
dent conditions found using our iterative algorithm, called
PRIC . This measure was found to be strongly correlated with
the initial measure of PR (Spearman corr: 0.91, p<0.001;
Suppl. Fig. 14). Consistently, PRIC was also found to corre-
late inversely with clustering (Spearman corr: -0.66, p<0.01;
Suppl. Fig. 14). As suggested by the theory, PRIC was
also significantly correlated with the number of independent
conditions MIC (Spearman corr: 0.81, p<0.001; Suppl. Fig.
14). Using the form in Eq. 1, we compared the value of PRIC

found in the data with that predicted by the theory as a
function of MIC , k, and σ. Strikingly, we found that this
relation was not only correlated (Spearman corr: 0.72, p<0.01;
Fig. 5f), but also quantitatively predictive (linear regression:
slope=1.03 ± 0.28 SE; intercept=0.37 ± 0.84 SE). Together,
these results validate our new theoretical framework, which

relates response clustering to the representation dimensionality
of the neural code.

The shattering dimensionality of neural representations
is close to maximal across all regions

So far, we have shown that the task conditions (i.e., combina-
tions of values of task variables) are represented in different
areas with a PCA dimensionality (measured by the partic-
ipation ratio, PR) that increases along the hierarchy (Fig.
4c), driven by a decreasing clustering quality (Fig. 3) and an
increasing number of independent conditions (Fig. 5).

As shown in Fig. 5a, for a given number of conditions,
the PCA dimensionality is a good indicator of whether condi-
tions are randomly spread in the activity space (high PR) or
whether there are privileged axes of encoding that unequally
contribute to the variance (low PR). However, taken alone,
the PR does not discriminate between geometries that can
have important differences in their computational properties:
in Fig. 6a, we show two geometries with similar PR (low PCA
dimensionality) but different properties in terms of separabil-
ity and flexibility. In the first one (top panel), conditions are
highly organized along a single coding direction in the activity
space. This arrangement is disruptive for flexibility: out of the
three possible dichotomies (ways to divide the conditions into
two equally sized groups), only one is separable by a linear
readout (Fig. 6a). In the second case (bottom panel), the
geometry is still stretched along a particular coding direction
(hence the low PR), but conditions are distributed in a more
unstructured way. This organization differs from the one above
in that here, all possible dichotomies of conditions are linearly
separable (Fig. 6a), assuming that the noise is smaller than
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the shortest distances. One measure of dimensionality that
directly quantifies the coding flexibility of a particular geom-
etry is the “shattering dimensionality” (SD) (1, 8), which is
defined as the fraction of dichotomies that are decodable using
a cross-validated (across trials) linear classifier. Specifically,
the linear classifiers are trained to report the dichotomy label
(0 or 1, depending on each condition) from the population
activity vectors of individual trials (see Methods). In the
example of Fig. 6a, the first geometry has SD= 0.33, while
the second one has maximum dimensionality (SD= 1.0). The
combination of SD and PR allows for a more comprehensive
quantification of the representational geometry, accounting
for both heterogeneity of coding direction as well as coding
flexibility (Fig. 6b).

We thus measured the shattering dimensionality of the
MIC independent conditions represented in the population
activity of the different regions in the cortex. We used a
threshold of decoding performance to quantify the fraction of
dichotomies that are well decodable with a linear classifier (min
performance = 0.65). To our surprise, we found no difference
in shattering dimensionality between sensory and cognitive
areas (see two examples at the ends of the hierarchy, VISp
and ACAd, in Fig. 6c). For almost all regions, the shattering
dimensionality was found to be close to the maximum value
of 1 (SD ⪆ 0.9, Fig. 6d, see also Suppl. Fig. 15). This result
shows that all regions, despite encoding a different number
of conditions, and with varying clustering quality, represent
these conditions in the maximum possible dimensionality.

Discussion

The brain has a clear anatomical organization, and not too
surprisingly, we observe that it is reflected by the organization
of the response profiles of individual neurons in different brain
areas (functional organization). However, when one looks at
the neurons within each brain area, only the responses of some
primary sensory areas seem to be organized into functional
clusters (categorical representations). We showed in a simple
model how these two different aspects of the representations
can be related to each other: as the diversity of responses
increases, the dimensionality can be significantly higher. Re-
markably, the dimensionality is as high as it can be in all the
brain areas when compared to the maximal dimensionality
determined by the number of independent conditions. Finally,
all our analyses revealed that several aspects of the represen-
tational geometry and the statistics of the neuronal response
profiles vary in a systematic way along the cortical hierarchy:
in particular, clustering decreases with the position in the
hierarchy, and the PCA dimensionality increases, together
with the number of independent conditions. All these results
show that the structure in the response profile space and the
geometrical structure are related to each other, and this rela-
tion can help us understand the computational implications
of the neuronal response properties. All the analyses that we
performed can be applied to non-cortical regions, which is one
of our future directions.

Why is the shattering dimensionality maximal in all brain ar-
eas? Dimensionality is directly linked to several computational
properties of neural networks, which include flexibility, mem-
ory capacity, and the ability to solve the binding problem
(2, 4, 37). Flexibility is often defined in terms of the number of

input-output functions that can be implemented by a simple
linear readout (8). High-dimensional representations allow a
network to be highly flexible. In feed-forward multi-layer arti-
ficial neural networks, it is important to have high dimensional
representations in the last layer, because low dimensionality
would severely restrict the number of input-output functions
that the output units can implement. However, this is not a
strict requirement for intermediate layers. So why is maximal
dimensionality so ubiquitous in the mouse cortex? One pos-
sible computational reason is related to the strong recurrent
connectivity of the cortex. In artificial recurrent neural net-
works (RNNs), many of the computational properties depend
on the dimensionality of the representations. One famous
example is the memory capacity of the Hopfield network (38),
which is rather limited for low-dimensional memories (19, 39).
Moreover, any RNN that needs to transition to a new state
that depends on both the previous state and the external
input requires neurons to non-linearly mix these two sources
of information in order to increase the dimensionality of the
concatenated input/recurrent state (4, 30).

Fortunately, increasing the dimensionality is relatively easy
as non-linear random projections already do a surprisingly
good job, both in RNNs (30, 40–42) and feed-forward networks
(31, 43, 44). More generally, if a network is initialized with ran-
dom connectivity and the parameters are properly tuned, it is
likely that the representations are already as high dimensional
as they can be. Learning can certainly improve generalization
and robustness to noise, but starting from high-dimensional
representations is not that difficult. Moreover, high shattering
dimensionality does not imply a complete absence of structure.
Representations can have the generalization properties of low
dimensional disentangled representations and still possess the
maximal shattering dimensionality (8). So, a learning pro-
cess can lead to other interesting computational properties
typically associated with low-dimensional representations with-
out compromising the flexibility conferred by high-shattering
dimensionality.

Notice that in our article and this Discussion, we always
refer to the embedding dimensionality of the set of points repre-
senting different experimental conditions. This dimensionality
is close to maximal. Instead, when the points along a trajec-
tory for a single condition are analyzed, the representations
are typically low dimensional (6). We did not perform this
analysis, but we would not be surprised to see low dimensional
trajectories in the IBL dataset.

What are the implications of maximal shattering dimension-
ality for single neuron response properties? Single neuron
response properties and the geometrical structure of the ac-
tivity space are related to each other. In particular, as we
have shown mathematically, highly clustered representations
can limit the dimensionality of representations, even when the
positions of the clusters are random. Thus, in order to achieve
the maximal shattering dimensionality, the neuronal responses
need to be diverse enough, which often means that they exhibit
mixed selectivity (2, 4). Our analysis of the response profiles
revealed that they are indeed very diverse: even when there is
some significant clustering, there is always the possibility that
there is some additional structure within each cluster, given
the cluster size. This diversity of response within each cluster
can greatly contribute to increasing the shattering dimension-
ality, and hence, this diversity is potentially computationally
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important. As we discussed above, a maximal shattering di-
mensionality does not mean a complete absence of structure
in the representational geometry. Analogously, it does not
necessarily mean that the neuronal responses are completely
random, but only that the responses are sufficiently diverse.
Clustering is one form of structure in the response space which
can coexist with high dimensionality.

Modularity and cell types. In the brain, there are several differ-
ent neuronal types (45), highlighting a biological complexity
that is especially marked for inhibitory neurons (46). It is not
unreasonable to expect that these different types of neurons
would cluster in the response profile space. However, our
analysis shows that only primary sensory areas are clustered,
and even in these areas, the clusters are not well separated.
One possible explanation is the discrete nature of neuronal
type is not directly reflected in their functional response to
task variables. Another possibility is that the response profile
reflects neuronal types that are not discrete and well separated.
A recent article from the Harris-Carandini lab (47) analyzed
the transcriptomic profile of neurons in the visual cortex and
found a relation between the position of each neuron along
a “transcriptomic axis” (found as the principal component
in the high-dimensional space of 72 genes) and their activity
modulation in different behavioral states of the subject. Cru-
cially, while clustering in the transcriptomic space was found
to correlate with putative cell types, this axis was defined as a
“continuum,” hence, without clear-cut clusters. The transcrip-
tomic space looks only partially clustered, with some different
neuronal types arranged in continuous filaments. Further stud-
ies will be needed to assess whether other structures emerge in
experiments with more complex tasks (see also the last section
of the Discussion). Future work will also explore the relation-
ship between functional tuning (e.g., the RRR coefficients) and
cell type embeddings estimated from spike waveform, autocor-
relation (48), and eventually also transcriptomic/anatomical
identity.

Clustering of response profiles in other species. The recent
article by the Kanwisher group (16) performed an analysis
that also systematically analyzes structures in the space of
neuronal response profiles. Interestingly, they analyzed the
visual and auditory systems of humans (fMRI) and monkeys
(electrophysiology). Consistently with our results, when they
looked at mesoscale brain structures, they found privileged
neuronal axes that are preserved across individuals and re-
flect the large-scale organization of the brain. Their result is
compatible with our observation of Fig 3f, which shows clear
clustering in the case of mesoscale sensory brain structures.
Instead, when they repeated the analysis on a more local scale,
within category-selective regions of the high-level visual cor-
tex, they did not find the same structure, and they reported a
distribution of the response profiles that would be comparable
to the ones of our null models (these results are preliminary
and mentioned in their Discussion). As the authors say, it
is possible that this is a limitation of the resolution of fMRI,
and that interesting structures emerge in electrophysiological
recordings.

The computational advantages of clustered response profiles.
The brain is highly organized in functional and anatomical
structures, which can be considered “modules” of the brain.

This large-scale organization is well known; it has computa-
tional implications, and its emergence can be explained using
general computational principles, at least in the visual system
(49–51). However, when one looks inside a particular brain
area, the picture is less clear, though in several cases, it is
possible to identify some form of modularity, which would lead
to clustering in the response profile space. Two main forms
of modularity have been studied in theory and experiments.
The first modularity is observed for specific forms of disen-
tangled representations that are aligned to the neuronal axes.
Disentangled abstract representations are widely observed in
the brain (8, 19, 21, 34) and are important for generalization.
However, this geometry is compatible with both highly diverse
neuronal responses (e.g. in the case of linear mixed selectiv-
ity) and with more organized categorical representations with
modular structures in the neuronal response profile space. In
the second case, each relevant variable would be represented
by a segregated population of neurons (module), which would
be a cluster in the selectivity space. This specific type of
modular representation has been shown to be computationally
equivalent to non-modular ones but more efficient in terms of
energy consumption and number of required connections, at
least under some assumptions (16, 52).

A second type of modularity has been characterized in
artificial neural networks that are trained to perform multiple
tasks (53, 54) or operate in different contexts (12, 55, 56). In
this case, it is possible to observe modularity, even when no
additional constraints are imposed on metabolic costs and a
number of connections (56). In particular, two subtypes of
modularity are considered: 1) explicit modularity, for which
there are segregated populations of neurons that are activated
in different contexts. In the activity space, this would imply
that the conditions of different contexts are represented in
orthogonal subspaces. Interestingly, the same geometry would
be observed in the response profile space, and these repre-
sentations exhibit clustering (i.e., they are categorical). 2)
implicit modularity, for which the geometry in the activity
space is the same as in the case of explicit modularity (it is
a rotated version of the explicit modularity case), but in the
response space, it is difficult to say whether clustering would
be observed or not.

All these different types of modular representations share
similar computational properties and allow us to generalize
more easily, learn new structures more rapidly (56), and even
enable some form of compositionality in which the dynamics
of sub-circuits can be reused in different tasks (54).

Limitations of our study. Given all these computational advan-
tages of modular structures, it is surprising that we observe
significant clustering only in a few sensory areas. One possible
explanation is that the assumptions made in the theoretical
studies are incorrect and that the biological brain operates
in different regimes. For example, the metabolic advantage
of modular representation could be too modest compared to
the enormous baseline consumption (57). However, there are
also other possible explanations that are related to the major
limitation of our study: the IBL task is relatively simple, and
the animals that are recorded are trained (in this case, often
over-trained) to perform a single task. It is possible that re-
peating our analysis on a dataset that involves multiple tasks
would actually reveal more clustering and specific modular
structures. Indeed, Dubreil, Valente, et al. (55) showed that,
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in RNNs, simple tasks do not require clusters while complex
tasks do. Similar considerations apply to other theoretical
studies (54, 56). Future studies on multiple complex tasks will
reveal whether the organizational principles that we identified
are more general and valid in experiments that are closer to
real-world situations.
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Materials and Methods

Data structure

We used the International Brain Laboratory (IBL) public data release (10). For each experiment session (153 in total), we collected
time-series data on task, behavior, and electrophysiological recordings. These were segmented into trials based on key task events.
The task recordings collected for each trial included information on the block prior as well as the stimulus contrast and location. The
behavior recordings for each trial comprised the choice made, the outcome/ reward received, and the time-varying movement such as
wheel movement velocity, whisker motion energy, and licks. Other behavior movements, such as paw movement, body motion energy, and
pupil diameter traces, could be potentially included. However, we did not include them due to missing values in many sessions. The
electrophysiological recordings for each trial contained time-varying spike trains of recorded neurons. All these recordings can be accessed
directly via IBL’s open API. The following section (1) details the steps for preprocessing this raw data into data matrices for the encoding
model.

Criteria for session inclusion. We iterated over all cortical regions and downloaded the related sessions. Sessions were included as long as
all the behavior recordings (wheel velocity, whisker motion energy and licks) and electrophysiological data were in place. Some analyses
required additional inclusion criteria, such as a minimum number of trials per condition. These analysis-specific criteria are discussed in
the relevant sections below.

Criteria for trial inclusion. All trials from the left or right unbalanced blocks were included except when the animals did not respond to
the stimulus in time (first movement time was longer than 0.8 s). Trials from the “50-50” balanced block were excluded from the analysis
to avoid possible time artifacts arising from the fact that all these trials were exclusively recorded in the first 90 trials of the session.

Criteria for neuron inclusion. All neurons were included in the downloaded data as long as their mean firing rate was larger than 0.5 Hz
and smaller than 50 Hz. For the selectivity and geometry analyses, we included only neurons that were predicted above a minimal
threshold of min ∆R2 using the RRR model described below. Unless specified differently, we used min ∆R2 = 0.015. This threshold
was necessary to avoid the confounding effects of neurons that are not encoding any relevant variable, including those neurons that were
recorded with a low signal-to-noise ratio.

Reduced-rank regression encoding model

In this section, we describe the reduced-rank regression (RRR) model used to analyze the selectivity profiles of single neurons. We
start by describing the input variables and the target variables of the model, followed by the description of the model itself and its
fitting procedure. Finally, we introduce a few quantities resulting from the fitted model that are key to the follow-up analysis. The
notations that will be used are summarized in Table 1. The code for implementing and fitting the encoding model is available at
https://github.com/realwsq/brainwide-RRR-encoding-model.

Input and target variables

Target variables. For each trial, we used the spike trains of the time window −0.2 to 0.8 seconds relative to stimulus onset, as the
first movement time is typically less than 0.8 seconds (10). The activity of each neuron was first binned at 0.01 s, divided by the size of
the time bin, and then smoothed with a Gaussian filter with a standard deviation of 0.02 s. We tried to apply the linear time warping
technique (58) so that the stimulus onset time and first movement or response time aligned across trials, but the results did not differ
substantially. The resulting activity of neuron n, denoted as frn, was organized into a matrix of shape Kn × T , where Kn is the number
of trials and T = 100 is the number of time steps per trial. Kn depends on n as neurons may have different numbers of trials if they were
recorded in different sessions. Finally, for each neuron and each time step, we Z-scored the activity fr across trials to obtain the target
variable y as follows (Suppl. Fig. 1 B-D):

yn(k, t) = frn(k, t) − µn(t)
σn(t)

, where µn(t) =
∑

k
frn(k, t)
Kn

and σn(t) =

√∑
k

(frn(k, t) − µn(t))2

Kn
. [3]

Since the squared error between the preprocessed data and model predictions was used in the loss function for optimizing the model
(Sec 1), the applied normalization prevented biases due to inherent differences in activity scales and ensured that the predictions of all the
neurons and time steps were optimized equally. Notably, the Z-score transformation is easily invertible, allowing the model’s predictions to
be mapped back to the original units of firing rate, thus preserving interpretability.

Input variables. The input variables (x, Suppl. Fig. 1-A) we considered can be divided into two types: discrete task-based variables and
continuous movement variables. Discrete task-based variables include task-related features, such as the block prior, stimulus contrast,
stimulus side, choice, and outcome. These are listed below:

• Block: The prior probability for the stimulus to appear on the left side is either p(left) = 0.2 (right block), or p(left) = 0.8 (left
block). We used one input variable to encode the block prior: −1. representing p(left) = 0.2, and +1. representing p(left) = 0.8. As
noted above, we excluded trials of p(left) = 0.5 unbiased block.

• Contrast: The stimulus contrast is 0%, 6.25%, 12.5%, 25%, or 100%. One variable was used to encode the stimulus contrast: 0.
representing 0% contrast, 1. representing the low contrast (≤ 12.5%), and 4. representing the high contrast (> 12.5%).

• Stimulus: The stimulus location is either on the left side (+1.) or the right side (−1.).
• Choice: The choice is indicated by the turning of the wheel: clockwise (+1.) or counterclockwise (−1.).
• Outcome: The outcome is either a water reward (+1.), or negative feedback (−1.).

Since these values are static, all the time points share the same values (Suppl. Fig. 1-A).
Continuous movement variables included both instructed (e.g., licking and wheel velocity) and uninstructed (e.g., whisker motion

energy) movement. These are listed below.
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• Wheel: The velocity of the wheel movement (radian per second) per time bin.
• Whisking: The whisker motion energy per time bin is calculated as the motion energy for a square of the left/ right camera roughly

covering the whisker pad. The maximum value between the left and right whisker motion energy was used.
• Lick: The number of licks per time bin.

A few preprocessing steps were applied separately to each movement variable: for each trial, we first read out the continuous behavior of
the time window −0.2 to 0.8 seconds relative to stimulus onset and interpolated into 0.01 s time bins. Then, to account for the activity
that was shifted in time, for each session, we computed the mean time-lagged correlation between the neuronal activity and the movement
traces averaged across neurons and trials and shifted the movement traces so that the zero-lagged correlation was maximized. The
distribution of optimal shift for each movement variable is displayed in Suppl. Fig. 2. Last, significant differences were observed in the
variance of input values across trials, both for different input variables and for different time steps. To ensure optimal performance and
clarity in interpretation, we Z-scored the values for each input variable and time step across trials in the same way as Eq 3. Examples of
the resulting input variables are shown in Suppl. Fig. 1-A.

The reduced-rank regression model

Linear encoding model. For each neuron n, we describe its temporal responses as a linear, time-dependent combination of input variables
(Suppl. Fig. 1-AB):

yn(k, t) ≈ ŷn(k, t) =
∑

v

βv
n (t) xv(k, t), ∀k, t, n, [4]

where
• yn(k, t) is the preprocessed neuronal activity of the trial k ∈ {1, · · · , Kn} and time step t ∈ {1, · · · , T }.
• ŷn(k, t) is the corresponding model prediction, given by the value of the equation on the right-hand side.
• v represents the relevant input variables included in the model. xv(k, t) is the preprocessed value of the input variable v for the trial

k and time step t.
• βv

n(t) is the effect size of the input variable v at time step t. It is further referred to as the regression coefficient.
Low-rank coefficient matrix. The time-varying coefficients βv

n ∈ RT are the weighted sum of a set of temporal basis vectors shared across
all the neurons and input variables, that is

βv
n = Uv

nV , ∀n, v. [5]
Here, Uv

n ∈ Rd is the neuron n and input variable v-dependent loading of temporal basis vectors V ∈ Rd×T . Specifically, we considered
sharing a single set of temporal basis vectors across all the neurons from all the brain regions and across all the input variables. We
verified that this restriction did not compromise the goodness-of-fit. The rank d is generally a value much smaller than the number of time
steps T . See Suppl. Fig. 1-E for an example decomposition. Sharing the temporal bases across neurons and input variables significantly
reduces the number of parameters (Suppl. Fig. 1-F). Let N be the number of neurons, T be the number of time steps, and |v| be the
number of input variables. An unconstrained full-rank coefficient matrix employs N × |v| × T parameters, while a reduced-rank coefficient
matrix of the same shape only needs N × |v| × d + d × T parameters. Since N , T are typically much larger than d, the reduction in
parameters is on the order of T , i.e., around 100-fold.

Estimation of the parameters The parameters of the RRR model include a shared temporal bases matrix V of size d × T and loading
vectors Uv

n of length d for each input variable v and neuron n. The approach we adapted to fit the parameters was to minimize the
ridge-penalized mean square loss:

L (V , {Uv
n}n,v) =

∑
n

(∑
k

∑
t

(yn (k, t) − ŷn (k, t))2 + λ
∑

v

∑
t

βv
n(t)2

)
. [6]

Minimizing this particular loss function is straightforward as a closed-form solution exists (59). In practice, we chose to use the L-BFGS
optimization algorithm to compute the optimum.

Moreover, to optimize the model hyperparameters, namely the rank d and the regularization penalty λ, we implemented a 3-fold
cross-validation technique across trials. First, the dataset was stratified based on a composite target label that included the block prior
and stimulus contrast to ensure each fold was representative of the entire dataset. Then, for each combination of d and λ, the dataset was
partitioned into three subsets by trials, utilizing each subset in turn for testing the model while the remaining data served as the training
set. Finally, the combination of d and λ that yielded the lowest average test error across all folds was selected. d = 5 turned out to be the
optimal number of temporal bases (Suppl. Fig. 1E).

Estimating the goodness of fit We used the 3-fold cross-validated R2 to measure the goodness-of-fit of single-trial predictions. For each
session’s data, we randomly sampled one-third of the trials as the test set held out during training. Once the model is trained - using the
remaining two-thirds of trials - we computed the R2 between the model predictions f̂rn(k, t) ∗ and the actual neuronal activity frn(k, t)
on the test set. We repeated the whole split-train-test process three times and computed the mean of the three cross-validated R2 as the
measure of goodness-of-fit.
Selectively modulated neurons Conceptually, we distinguish two types of task modulation: the selective modulation and the non-selective
modulation. Selective modulation, captured by ŷn(k, t) =

∑
v

βv
n (t) xv(k, t) (Suppl. Fig. 1-B) is induced by the input variables and varied

trial-by-trial. Non-selective modulation, captured by the mean time-varying response µn(t) =
∑

k
frn(k,t)
Kn

(Suppl. Fig. 1-D) is locked
to the key events of the trial (stimulus onset in this case) and does not vary trial-by-trial. See Suppl. Fig. 5-GH for examples of two
modulation types. Both types play a significant role in modulating neuronal responses. In this work, we focus mostly on the neuronal
responses selectively modulated by the task. To distinguish the variation explained by the selective modulation from the non-selective
modulation, we use the trial-average estimate as the null model that does not consider any effect of the input variables:

ŷnull
n (k, t) = 0, ∀k, t, n. [7]

∗
f̂rn(k, t) is calculated by inversing the z-score transformation applied in the preprocessing step f̂rn(k, t) = σn(t)ŷn(k, t) + µn (t) (Suppl. Fig. 1-BCD).
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The outperformance, ∆R2, defined as:
∆R2(model) = R2(model) − R2(null), [8]

captures the overall selective modulation of all the input variables combined.
Only selectively modulated neurons, identified as ∆R2(RRR) ≥ 0.015 (Suppl. Fig. 5-A), are included in the further analysis.

Computing the selectivity profiles of single neurons to the input variable To compute the selectivity profiles of single neurons to the individual
variables, we used the estimated coefficient βv

n(t). For the clustering analysis of Fig.3, Suppl. Fig.7, Suppl. Fig.10, Suppl. Fig.11), we took
the sum of the coefficients across time as a measure of the total selectivity of neuron n to input variable v.

αv
n =

∑
t

βv
n(t) [9]

Note that by normalizing the neuronal responses and input variables in the preprocessing steps, we ensured that the unit-free coefficients
βv

n(t) are not affected by the neuron’s mean firing rate or the inherently different scales in different input variables and can be compared
directly across neurons, input variables, and time steps. Thus, βv

n(t) can be interpreted as the expected change in normalized neuronal
activity yn per one standard deviation change in the input variable xv at time t, and αv

n can hence be thought as the expected total
change across the whole trial. Also, note that the sign of βv

n(t) typically does not change over time t. See Suppl. Fig.1-A for examples.
The selectivity αv

n captures whether individual neurons are selectively modulated by the given variable v or not (see Suppl. Fig. 4 for
examples of responses from strongly selective neurons). In the selectivity analysis (Fig.2fg), when the goal is to estimate the absolute
modulation of an input variable, αv

n is calculated as αv
n =

∑
t
|βv

n(t)|.

Computing the autocorrelation timescale of neural responses to task variables Given a matrix of single-neuron activity zn ∈ RK×T , where
zn could represent the neural responses to task variables ŷn (used in Fig. 2h), or the total neural activity yn (used in Suppl. Fig. 6B),
with K being the number of trials and T the number of time steps per trial, we can compute the corresponding autocorrelation timescale.
To compute the timescale, we first calculate the time-lagged autocorrelation sequence

cn(i) =
∑

k

∑
t

zn(k, t)zn(k, t + i)
K

, i ≥ 0,

with zn sequences being zero-padded where necessary. We then linearly interpolate the autocorrelation sequence so that cn(i) is spaced at
1 ms resolution (original 10 ms). The timescale τn is approximated by the time the autocorrelation function first reaches half its peak
value. See Suppl. Fig. 8 for the estimated autocorrelation and timescales of two example neurons (i.e., the neurons shown in Suppl.
Fig. 5-GH). The timescale of brain area a (Fig. 2h) is further determined by averaging the values over all the selectively modulated
neurons within this area.

Table 1. Notation

Indices:
n, N index and number of neurons (n ∈ {1, · · · , N})
k, K index and number of trials (k ∈ {1, · · · , K})
t, T index and number of time steps (t ∈ {1, · · · , T })
v, |v| index and number of input variables (v ∈ {block prior, stimulus contrast, stimulus side,

choice, outcome, wheel velocity, whisker motion energy, lick})
i, d index and rank of the RRR model (i ∈ {1, · · · , d})
RRR model:
βv

n(t) regression coefficient (a.u.) of neuron n, input variable v at time step t
Uv

n ∈ Rd neuron n and input variable v-dependent loading of temporal basis vectors (a.u.)
V ∈ Rd×T temporal basis vectors (a.u.)
Random variables:
xv(k, t) preprocessed value (a.u.) of input variable v, trial k at time step t
yn(k, t) preprocessed neuronal response (a.u.) of neuron n, trial k at time step t
ŷn(k, t) model prediction of preprocessed neuronal response (a.u.) of neuron n, trial k at time step

t
frn(k, t) smoothed, binned firing rate (Hz) of neuron n, trial k at time step t

f̂rn(k, t) model prediction of smoothed, binned firing rate (Hz) of neuron n, trial k at time step t
µn(t) mean of smoothed, binned firing rate (Hz) of neuron n at time step t
σn(t) standard deviation of smoothed, binned firing rate (Hz) of neuron n at time step t

Clustering Analysis

To test for the presence of functional clusters, we followed the steps explained below. The required inputs include each relevant neuron’s
response profile and original session ID. Two types of response profiles can be considered: the estimated selectivity to individual input
variables (Eq 9, Figure 3bcdf, referred to as clustering analysis in the selectivity space) or the average response in each experimental
condition (16 conditions as described in the main text, Figure 3e, referred to as clustering analysis in the mean firing rate space).
Performing clustering analysis in the selectivity space arguably has a few advantages:

• It reduces the dimensionality in an interpretable and informed way. If we have |v| variables, then there are at least 2|v| conditions,
assuming all the variables are discrete and have more than one different value.

• It mitigates the issue of unbalanced or even missing conditions.
• It reduces the noise in the estimation of the response profile. As shown in Suppl. Figure 5, neural responses are very noisy, and

simple averaging may be non-satisfactory (Figure 2e). The selectivity estimated from the encoding model, in comparison, provides a
more reliable account of the task-driven variance in the neural responses.
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We summarize our clustering pipeline below.
1. Check whether there are more than 50 neurons and only continue if so.

2. Given the response profile of each neuron, run k-means clustering algorithm (with 100 random initializations) with the number of
clusters k varied from 3 to 20.

3. Then, select the optimal clustering result by maximizing the silhouette score. The Silhouette score is defined as < bi−ai
max(bi,ai) >i

where i is the index of the neuron, a(i) = 1
|CI |−1

∑
j∈CI ,i ̸=j

d(i, j) is the mean Euclidean distance intra-cluster and b(i) =
minJ ̸=I

1
|CJ |

∑
j∈CJ

d(i, j) is the min distance outside cluster (Fig. 3a).

4. Iterate over the resulting clusters and check whether there is a cluster whose total silhouette score summed over all neurons is mainly
contributed by neurons from one single session (> 90%). (See also (47).) If so, remove neurons from that cluster and session, and
repeat steps 1-4.

5. Sample the same number of data points from the Gaussian distribution with the mean and covariance matrix matched to the data
values and compute the sampled data’s null silhouette score following steps 2-3.

6. Repeat step 5 100 times and pool the null silhouette scores to form the null distribution. Finally, compute the z-score of the data
silhouette score with respect to the null distribution.

When clustering in the space of mean firing rate, two more preprocessing steps are required. First, we normalized each neuron’s mean
firing rates separately across conditions to prevent clustering driven solely by overall firing rate differences between neurons. Second,
since the number of conditions and the dimensionality of the response profile is large, we decreased the dimensionality using principal
component analysis (60). In Figure 3e, we decrease the dimensionality to 2, but the exact dimensionality does not impact our results (see
Suppl. Figure 12 where we decrease the dimensionality to 4).

Analysis of population representations

Data Preparation For the analysis of population neural representations, we used the same sessions as described above. For each trial within
a session, we thus have a collection of N -dimensional population activity vectors fk

t , where k ∈ {1, P } is the trial index within the session,
and t ∈ {1, T } is the time-bin index within each trial. For the analysis below, we used data from 0 to 1000ms after the stimulus onset, so
to capture a variety of sensory and behavioral variables. We then labeled each time bin according to the value of four binarized cognitive,
sensory, and movement variables:

• Block: left (20-80) vs. right (80-20) prior block.

• Contrast: we binarized the contrast into low (0-0.125) vs. high (0.25-1.0) values.

• Stimulus: left vs. right side of the screen.

• Whisking: we binarized the whisking power using the distribution of whisking power values within each session. Time bins where
the mouse was whisking with a power larger than the 50 percentile across the distribution were annotated as high, while those below
the 50 percentile were annotated as low.

These variables were chosen so that they span movement, cognitive, and sensory variables while ensuring that all the M = 16 conditions
(combinations of the four variables) were well represented in the data. For example, we could not add Choice as a variable since mice are
overtrained in the task and, as a consequence, make very few mistakes when Block and Stimulus are aligned (e.g., choose “left” when the
block and the stimulus are both “right”.)

For each condition c ∈ {1, M} (for example, Whisking = high, Contrast = low, Stimulus = left, Block = right), we then defined a collection
of “conditioned trial” population activity vectors {fk

c }:

fk
c (i) =

∑
t

δk
t (c) fk

t (i)∑
t

δk
t (c)

, [10]

where i indicates the neuron index and δk
t (c) = 1 if the time bin t in trial k corresponds to the condition c, and = 0 otherwise. These

conditioned trial population vectors are the data samples that will be used for the dimensionality and decoding analyses below. Across all
analyses, we considered only those recording sessions where each condition was present in at least P = 5 trials.

Participation Ratio The Participation Ratio (PR) quantifies the effective dimensionality of a set of data points by measuring how evenly the
variance is distributed across the eigenvalues of its PCA decomposition (31). For each neural population, we computed the PR of the
centroids fc of the M conditions, defined as the average activity pattern across all trials of the same condition:

fc =
〈

fk
c

〉
k

, [11]

To compute the PR for the set of centroids, we first calculated their covariance matrix. We then performed Principal Component Analysis
(PCA) on this covariance matrix to obtain its eigenvalues, λi. The PR is defined as:

PR =

(∑
i

λi

)2∑
i

λ2
i

, [12]

where λi are the eigenvalues of the covariance matrix. A higher PR indicates that the variance is more evenly spread across multiple
dimensions, suggesting a higher effective dimensionality of the neural representations. Conversely, a lower PR implies that the variance
is concentrated in fewer dimensions, indicating a lower effective dimensionality. This metric provides insight into the complexity and
dimensionality of the neural population’s response patterns.
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Cross-validated Decoding We used Decodanda (61) (www.github.com/lposani/decodanda) to perform a cross-validated, class-balanced
decoding analysis of different combination of condition labels from the neural activity within individual trials (condition trial vectors
fk
c ). See individual sections below for additional detail on the data input structure of our decoding analyses. As a decoder, we used a

scikit-learn SVM classifier with linear kernel (62). To ensure that results were comparable across regions, which might have a different
number of recorded neurons, we created a pseudo-population by over-sampling (or down-sampling) all the recorded neurons within each
region to a fixed number N = 640. Similarly, we re-sampled the same number of pseudo-population for each analysis (T = 100 patterns per
condition). Note that simultaneously recorded neurons were always kept together during resampling, so as to keep the noise correlations
intact within the pseudo population (61). All cross-validated decoding analyses were performed using the following Decodanda parameters:
training_fraction = 0.8, cross_validations = 100, ndata = 100. These analyses were used for Fig. 5, Fig. 6, Suppl. Figures 14, 13, 15.

Finding the Independent Conditions To find the number of independent conditions encoded in the activity of a population of neurons, we
developed an iterative algorithm based on linear decoding. The algorithm followed the steps below, and is shown in action on one example
region in Suppl. Fig. 13.

1. First, we decoded individual condition trial population vectors fk
c based on their condition label c using a linear classifier (as explained

in the section above). For each pair of conditions (ci, cj), we estimated a cross-validated decoding performance φ(ci, cj), resulting in
an initial M × M condition-condition decoding matrix (C0, see Suppl. Fig. 13) defined as C0(ij) = φ(ci, cj).

2. We then chose a decoding threshold φmin = 0.666; the pairs of conditions whose 1-vs-1 decoding performance was smaller than φmin
were defined as “dependent”. Using this threshold, we defined a binary dependency matrix D defined as D0(i, j) = 1 if φ(ci, cj) < φmin,
and C0(i, j) = 0 otherwise.

3. Then, we used the Bron-Kerbosch algorithm (63) to find all the cliques, i.e., subgroups of fully-connected nodes, in the undirected
graph defined by the dependency matrix D0. This process allows us to identify whether there are groups of conditions that are all
non-decodable from each other (dark squares in Suppl. Fig. 13).

4. Next, we identified the largest clique and grouped together all the trials of the conditions within that group into a new, merged
condition (see arrows and “mrg” conditions in Suppl. Fig. 13).

5. We repeated steps 1 and 2 with the new reduced set of conditions, yielding a new Ct and a new Dt matrix of a different size Mt; t
denotes the iteration step.

6. We then repeated step 3 and 4, and iterated the whole process (1-4) until all the merged and remaining conditions were found to be
independent, i.e, the dependency matrix Dt̃ was diagonal. The number of independent conditions was then defined as the size of the
final dependency matrix: MIC := Mt̃.

Shattering Dimensionality Shattering Dimensionality (SD) (1, 8) is a functional definition of dimensionality that quantifies how many
random classifications of a given set of points a linear readout can solve. To estimate the SD of a neural population, we followed the
following steps:

1. First, we randomly divided the set of MIC independent conditions into two equally-sized groups (dichotomy).

2. Given the dichotomy d, we then measured the cross-validated decoding performance φd of a linear classifier trained to report whether
individual condition trial vectors fk

c belonged to conditions within one or the other dichotomy groups. This decoding analysis was
performed as described in the Decoding section above, resampling a fixed number of neurons and fixed number of trials per condition
for all regions to ensure the comparability of the performances across regions.

3. The random dichotomy assignment and decoding (steps 1, 2) was then repeated n = 200 times to obtain a population of decoding
performances {φd}.

4. The SD was then defined as the fraction of well-decodable dichotomies: SD := 1
n

∑
d

θ(φd − φmin]), where θ is the Heaviside step
function. In the present analyses, we used the same threshold of the independent-conditions analysis (φmin = 0.666).

The distributions of decoding performances for all the analyzed regions are shown in Suppl. Fig. 15.

Theoretical derivation of the relationship between embedding dimensionality and clustering

We consider a data model with N features (neurons) and M observations (conditions), in which observations are sampled i.i.d. as

xµ = zµ + ηµ , [13]

where zµ and ηµ are both vectors in RN and represent the clustered and heterogeneous part of the data, respectively. More precisely, zµ

is sampled from a normal distribution N (0, B) that has a clustered covariance matrix, i.e. Bij = 1 if i and j belong to the same cluster
and Bij = 0 otherwise. We call k the number of clusters and assume that all clusters have the same number of neurons Nc = N/k. In
contrast, the heterogenous part ηµ is sampled from N

(
0, σ2I

)
, where I is the identity matrix. Our goal is to compute the participation

ratio (PR) of this representation, which we define as

PR = Tr(C)2

TrC2 = N⟨Cii⟩2

⟨C2
ii⟩ + (N − 1)⟨C2

ij⟩
, [14]

where the averages are across neurons and the matrix C is the sample neuron-by-neuron covariance matrix, i.e. C = 1
M

∑M

µ=1 xµ(xµ)T .
We note that this definition assumes that the sample mean of both z and η are negligible or have been subtracted.
We are interested in the regime in which N → ∞ while M is allowed to be small, as it often happens in controlled experiments. Small
M might cause the sample covariance matrix to differ substantially from the true covariance matrix. Defining Cc, Ch, and Cch as the
sample covariance matrices of z, η, and the cross-covariance between z and η respectively, we have that

PR = N
⟨Ch

ii + Cc
ii + 2Cch

ii ⟩2

⟨(Ch
ii + Cc

ii + 2Cch
ii )2⟩ + (N − 1)⟨(Ch

ij + Cc
ij + 2Cch

ij )2⟩
. [15]
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Therefore, we need to evaluate the first and second moments of both diagonal and off-diagonal elements of all covariance and cross-covariance
matrices. The diagonal elements of these matrices have the following statistics:

Cc
ii = 1

M

M∑
µ=1

(zµ
i )2 ⇒ ⟨Cc

ii⟩ = 1 , ⟨(Cc
ii)2⟩ = M + 2

M

Ch
ii = 1

M

M∑
µ=1

(ηµ
i )2 ⇒ ⟨Ch

ii⟩ = σ2 , ⟨(Ch
ii)2⟩ = M + 2

M
σ4

Cch
ii = 1

M

M∑
µ=1

zµ
i ηµ

i ⇒ ⟨Cch
ii ⟩ = 0 , ⟨(Cch

ii )2⟩ = 1
M

σ2 ,

[16]

and
⟨Cc

iiC
h
ii⟩ = σ2, ⟨Cc

iiC
ch
ii ⟩ = 0, ⟨Ch

iiC
ch
ii ⟩ = 0 . [17]

For the off-diagonal elements, we have

Cc
ij = 1

M

M∑
µ=1

zµ
i zµ

j ⇒ ⟨Cc
ij⟩ = 1

k
, ⟨(Cc

ij)2⟩ = 1
M

+ 1
kM

+ 1
k

Ch
ij = 1

M

M∑
µ=1

ηµ
i ηµ

j ⇒ ⟨Ch
ij⟩ = 0 , ⟨(Ch

ij)2⟩ = 1
M

σ4

Cch
ij = 1

M

M∑
µ=1

zµ
i ηµ

j ⇒ ⟨Cch
ij ⟩ = 0 , ⟨(Cch

ij )2⟩ = 1
M

σ2 ,

[18]

and
⟨Cc

ijCh
ij⟩ = 0, ⟨Cc

ijCch
ij ⟩ = 0, ⟨Ch

ijCch
ij ⟩ = 0 . [19]

Most of the expressions above can be straightforwardly derived by writing down the definition of the sample covariance matrix for a
zero-mean variable and then performing the average over neurons. To illustrate this procedure, let us consider one of the most involved
terms:

⟨(Cc
ij)2⟩ = 1

M2

M∑
µ,ν=1

⟨zµ
i zµ

j zν
i zν

j ⟩

= 1
M2

M∑
µ=1

⟨(zµ
i )2(zµ

j )2⟩ + 1
M2 ⟨zµ

i zµ
j ⟩⟨zν

i zν
j ⟩

[20]

The probability that zi and zj are part of the same cluster is given, for large N , by 1
k

. The expression for ⟨(Cc
ij)2⟩ then becomes

⟨(Cc
ij)2⟩ = 1

kM2

M∑
µ=1

⟨(zµ
i )4⟩ + 1

M2

(
1 −

1
k

) M∑
µ=1

⟨(zµ
i )2⟩2 + 1

kM2

M∑
µ̸=ν

⟨(zµ
i )2⟩2

= 3
kM

+ 1
M

−
1

kM
+ 1

kM
(M − 1)

= 1
M

+ 1
kM

+ 1
k

.

[21]

The other terms can be computed following the same steps.
Given that k, M are finite, we can approximate the PR for large N as:

PR ≃
⟨Ch

ii + Cc
ii + 2Cch

ii ⟩2

⟨(Ch
ij + Cc

ij + 2Cch
ij )2⟩

. [22]

Expanding the square and using the results above for the first and second moments of the covariance matrices, we get to our final
expression:

PR ≃

(
1 + σ2

)2

1
k

+ 1
kM

+ 1
M

(1 + σ2)2 = M
k
(

1 + σ2
)2

1 + M + k (1 + σ2)2 [23]
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1. Supplementary Figures

Supplementary Figure 1. Visualization of the RRR encoding model. A-D) Illustration of how the RRR encoding model predicts the neuronal responses using two example
trials (blue and orange lines): The model weights the input variables xv with the corresponding coefficients βv

n (A) and sums the values over all the input variables to get the
prediction ŷn (B). The prediction (thin and opaque lines) overlays the data (thick and transparent lines). Furthermore, the prediction can be mapped back to the original units of
firing rate (C) by applying the inverse Z-score. The mean and standard deviation used in the inverse Z-score (D) are computed during the Z-score step in the target variable
preprocessing. The gray vertical lines indicate the onset of the stimulus (0.2 s), and the gray horizontal lines indicate the zero value. E-F) Coefficients are enforced to be
weighted sums of a small set of temporal basis vectors. E) Example decomposition of the stimulus side coefficients in A). F) Schematic plot showing the low-rank structure of
the coefficient matrix.
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Supplementary Figure 2. Distribution of the optimal time shift across all the sessions. Positive shift indicates that neuronal activity is correlated with future movement.

Supplementary Figure 3. The clustering results remain largely consistent regardless of whether we consider temporal patterns. A) The variance in all neurons’
time-varying coefficients explained by the first principal component (PC) is high, suggesting that the time-varying coefficients βv

n across neurons largely share a common
temporal pattern. B) The common temporal pattern (i.e., first PC) for each input variable. C) Clustering analysis result based on estimating the selectivity of input variables
using the projection onto the first PC. D) Clustering analysis result based on estimating the selectivity of input variables as the projection onto the first n PCs. Here, n (typically
2 or 3) is chosen as the number of PCs required to explain over 80% of the variance in all neurons’ time-varying coefficients.
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Supplementary Figure 4. Neurons with high selectivity are strongly modulated by the corresponding input variable. Examples of neurons with strong selectivity to each
input variable are displayed: the first row shows neuronal activity, while the second row illustrates the associated behavioral movements.
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Supplementary Figure 5. The reduced-rank regression (RRR) encoding model effectively overcomes the dominant "noise" in the single-trial activity and efficiently
captures task-related variance. A) Goodness-of-fit achieved by the RRR encoding model. Results for all the neurons are shown. The black line indicates when the
performance of the two methods is the same, and the red line indicates when RRR is outperforming the trial-average estimate by 0.015, the threshold further used for neuron
inclusion. B-D) Comparison of the performance between the RRR method and three baseline methods. ∆R2 = R2(RRR) − R2(baseline method). B) The trial-average
estimate per condition is a non-parametric method that predicts activity based on the average across all trials of the same task condition. C) The full-rank regression model
follows the same format as the linear encoding model (Eq 4) but without constraining the coefficient matrix to be low-rank. D) The "multi-task" neural network (as in (60),
adapted from (64–66)) shares the encoding of the input variables across neurons in a complicated nonlinear way that involves several feed-forward networks and one recurrent
network. E-H) Results were visualized for four representative neurons (corresponding to the four colored dots in A). When plotting the PSTH, the RRR predictions (dashed, thin,
thick lines) were overlaid on the data (solid, thick, transparent lines). Colors correspond to different task conditions. For example, the blue and orange outcomes refer to a water
reward (+1.) and negative feedback (-1.). The grey vertical lines and 0.2 s represent the onset of the stimulus. When plotting the single-trial activity, the X-axis represents the
time in a trial, and the Y-axis represents the trial index. Trials were first clustered by spectral clustering and then sorted by the cluster labels so that trials with similar patterns
sit nearby. E) An example of poorly-fitted neurons. A great portion of the variance in neuron responses is not captured by the RRR encoding model and is not apparently
correlated with the task. F) An example of well-fitted neurons. A great portion of the variance in neuron responses is driven by the task and reliably captured by the RRR
encoding model. G) An example of selectively modulated neurons, characterized by a large ∆R2 (relative to the R2). This example neuron showed significant differences
under different task conditions, which were clearly visible from both the PSTH and single-trial activity. H) An example of weakly-selectively modulated neurons, characterized by
a large R2 and small ∆R2 (relative to the R2). In contrast to the G), no strong differences among PSTHs of different task conditions were observed. However, a consistent
step pattern was observed for all the PSTHs shortly after the stimulus onset, indicating its response was mostly modulated by the onset of the task.
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Supplementary Figure 6. The goodness-of-fit (cross-validated R2) is correlated with the mean firing rate and tuning to the behavior movement but not with the
timescale of neural responses. The timescale is approximated by the time at which the autocorrelation function of the total neural activity first reaches half its peak value
(Methods). Tuning to behavioral movement is measured by the Pearson correlation between the behavioral L2 distance and the response L2 distance across all trial pairs. A
high correlation suggests that neuronal responses are similar for trial pairs with similar behavioral movements and different for trial pairs with different behavioral movements.
The Pearson correlations for the mean firing rate (A), the timescale (B), and tuning to the behavior movement (C) are 0.38, 0.04, and 0.34, respectively.

Supplementary Figure 7. The exact threshold of min ∆R2 is not crucial for the clustering results. Clustering results were obtained by applying the same analysis as in
Fig. 3d, but with varying min ∆R2 criteria for neuron inclusion.

Supplementary Figure 8. The autocorrelation function of neural responses to task variables is generally smooth. The autocorrelation function of two example neurons’
responses estimated by the RRR model (Suppl. Fig. 5-GH) is shown, along with the estimated timescales (the gray vertical lines, Methods).
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Supplementary Figure 9. The silhouette score, taken alone, is not indicative of the presence or absence of clustering, as different shapes of the cloud of points can
yield widely different silhouette scores even in the absence of clustering. The covariance matrix of the data samples was set as diag(σ2

1 , σ2
2), where σ1 varied while σ2 was

set to 1. Each dataset consisted of 100 samples and for each σ1 we randomly sampled 10 different datasets.
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Supplementary Figure 10. Clustering results of all cortical regions in the selectivity space.
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Supplementary Figure 11. Key variables influencing clustering quality varied across brain areas and were often multi-modal, encompassing cognitive, movement,
and sensory domains. Variable importance was measured by the reduction in the silhouette score when removing each input variable. (VISp: block, whisker, contrast and
choice; AUDp: reward and whisker; SSp-ul: wheel and choice).
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Supplementary Figure 12. Clustering results of all cortical regions in the mean firing rate space.
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Supplementary Figure 13. Example of all the individual steps of the independent conditions algorithm applied to the population activity of RSPd.
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Supplementary Figure 14. Relation between the number of independent conditions and other geometrical or clustering quantities across cortical areas.
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Supplementary Figure 15. Distribution of decoding performance of n = 200 random dichotomies of the independent conditions for all the regions used in Fig. 6.
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