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Flocking is a paradigmatic example of collective animal behaviour, where

global order emerges out of self-organization. Each individual has a tendency

to align its flight direction with those of neighbours, and such a simple form

of interaction produces a state of collective motion of the group. When com-

pared with other cases of collective ordering, a crucial feature of animal

groups is that the interaction network is not fixed in time, as each individual

moves and continuously changes its neighbours. The possibility to exchange

neighbours strongly enhances the stability of global ordering and the way

information is propagated through the group. Here, we assess the relevance

of this mechanism in large flocks of starlings (Sturnus vulgaris). We find

that birds move faster than Brownian walkers both with respect to the

centre of mass of the flock, and with respect to each other. Moreover, this be-

haviour is strongly anisotropic with respect to the direction of motion of the

flock. We also measure the amount of neighbours reshuffling and find that

neighbours change in time exclusively as a consequence of the random fluctu-

ations in the individual motion, so that no specific mechanism to keep one’s

neighbours seems to be enforced. On the contrary, our findings suggest that a

more complex dynamical process occurs at the border of the flock.
1. Introduction
Self-organization and the spontaneous emergence of order in biological

systems does not come much more spectacular than in large flocks of starlings

(Sturnus vulgaris). At dusk, huge flocks move above the roost, exhibiting beautiful

collective patterns. There is no leader in the group, and the collective movement is

a unique consequence of local interactions between individuals [1,2].

A central question in collective animal behaviour is to understand what are

the interaction rules through which global coordination emerges. For a long

time, owing to the technical difficulties in reconstructing individual motion in

large groups [3], data have been scarce. More recently, though, a new gener-

ation of experimental studies, both in two and in three dimensions, have

been performed, establishing the basis for an empirically validated understand-

ing of the interaction rules in collective animal behaviour [4–11]. What these

data show is that several traits of collective motion are well reproduced by rela-

tively simple models based on local interaction rules [12–18]. The fundamental

ingredient shared by all models is the tendency of each individual to align to its

neighbours. There is now a common consensus that this type of interaction is

indeed a key aspect of collective motion in biology.

Alignment is a very important form of interaction in physics too: in ferro-

magnets, the tendency of each spin to align to its neighbours gives rise to a

spontaneous global magnetization, much as a flock of birds develops a spon-

taneous global velocity. However, in adopting such a minimalistic approach

to the description of flocks, not only does one make a gross oversimplification
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Table 1. Details of the analysed flocks. The number of birds N is the number of individuals for which we obtained a three-dimensional reconstruction of positions
in space (average over all frames). The duration T of the event is measured in seconds (calculated as number of frames � 1021 s). NLL indicates the number of
retrieved trajectories that are as long as the entire time interval T. The last four columns give the values of diffusion and mutual diffusion parameters.

event N T(s) NLL a am D (31022) Dm (31022)

28-10 1246 1.5 785 1.83 + 0.01 1.88 + 0.02 3.8 + 0.1 0.37 + 0.04

48-17 871 1.6 350 1.73 + 0.03 1.48 + 0.02 3.5 + 0.3 1.7 + 0.03

49-05 797 1.6 146 1.71 + 0.02 1.50 + 0.02 3.9 + 0.3 0.77 + 0.06

58-06 442 3.1 140 1.69 + 0.01 1.55 + 0.02 3.6 + 0.2 1.1 + 0.04

69-09 239 4.6 62 1.64 + 0.02 1.32 + 0.01 4.1 + 0.3 1.7 + 0.04

69-10 1129 3.4 500 1.77 + 0.02 1.72 + 0.02 3.8 + 0.2 0.89 + 0.05
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of the individual entities (birds are not spins, of course), but

one also neglects a very fundamental difference between

animal groups and spin systems: animals, unlike spins,

each move with respect to another, so that the interaction net-

work (i.e. who interacts with whom) changes in time. This

crucial property of biological collective behaviour has a

potentially large impact on how information propagates

throughout the group.

Indeed, there are two mechanisms that contribute to

the emergence of global coordination. The first one is the

direct alignment of one individual with its interacting

neighbours; from neighbour to neighbour, local ordering

spreads over the interaction network to the whole group.

This mechanism works even if individuals do not move

with respect to each other, such as spins sitting on the sites

of a crystalline lattice. The second mechanism, on the contrary,

is intrinsically related to motion: when individuals move, two

animals that were not directly interacting at a given time may

become proximate neighbours and interact at a later time,

so that information is more efficiently propagated through-

out the group. It has been hypothesized that this

mechanism reinforces correlations between individuals,

strongly enhancing global ordering [19–21].

This extra ingredient of collective animal behaviour

implies that we cannot simply investigate static aspects of

the interaction network (such as, e.g. the number of interact-

ing neighbours [7]), but we need to get information about the

dynamical evolution of the interaction network. A first step in

this direction is to study how individual animals move and

rearrange within the group. This is what we do here for

flocks of starlings in the field.

There are two other important reasons why it is relevant

to have information about the relative dynamics of individ-

uals. It has been found by Ballerini et al. [7], and later

confirmed by Bialek et al. [18], that starlings in a flock interact

with a fixed number of neighbours rather than with all

neighbours within a fixed metric radius. This number is

approximately seven [7,22]. A natural question is: what is

the permanence in time of these seven individuals? Do they

change uniquely due to the relative motion between individ-

uals? Or is there any kind of relationship between interacting

neighbours that keeps them together longer?

A second question concerns the border of the flock. Birds

at the border are more exposed to predation than those at the

interior. Former studies showed that the density of the flock

at the border is larger than at the interior, probably as a con-

sequence of the fact that border birds ‘push’ towards the
inner part of the flock to get in [7]. Is there a border turnover?

If so, how fast is it?

To quantify how individuals move through the group, we

use a statistical perspective and adopt the powerful approach

of diffusion processes [23,24]. To study diffusion, one needs

not only the positions and velocities of the birds, but

also the full individual trajectories. Individual tracking is a

further level of difficulty with respect to static three-dimen-

sional reconstruction (see §4), and a good performance is

strictly related to having fast enough cameras and a large

memory, in order to record long events. Even though this

was not quite the case in our past experiments [6,7,25], we

succeeded for a few flocking events, and for not too long a

time interval, in retrieving a reasonable percentage of tra-

jectories, with a sampling rate of 10 frames per second

(table 1). Using these trajectories, we compute the diffusion

properties of individuals with respect to the centre of mass

and to neighbours. Moreover, we study the neighbour reshuf-

fling rate and show how it is connected to the diffusion

properties of individuals. Finally, we study the dynamics at

the border of the flock.
2. Results
(a) Quantifying individual motion through diffusion
Why do individuals move through the flock and exchange

positions? If each bird chose exactly the direction of motion

and speed of its neighbours, then one would get a perfect

flock where every individual keeps following the same direc-

tion as others. Relative positions would remain the same,

defining an interaction network (who interacts with whom)

that is fixed in time. However, imitation and mutual align-

ment are never complete, there is always an amount of

uncertainty or arbitrariness in the individual choices. As a

consequence, flight directions between neighbours are very

similar, but not identical, differing by small ‘random’ fluctu-

ations that flocking models usually describe through a

stochastic noise term. Time after time, these fluctuations

accumulate, determining a departure of the individual trajec-

tories and a reshuffling of neighbourhood relationships.

To describe such a process, it is useful to consider first the

case where social forces are absent and individuals merely

follow random moves. This is the renowned case of Brownian

motion (where—originally—the random walkers were particles

instead of birds). To quantify how much the Brownian walkers

move in time, one can look at the average mean-square
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Figure 1. (a) Three-dimensional reconstruction of some trajectories of flock 69-10 (1124 individuals) in the laboratory reference frame. (b) The same trajectories in
the centre of mass reference frame. All the axes are in metres.
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displacement as a function of time (i.e. at the average amount of

distance travelled in a time t),

dR2ðtÞ ;
1

T � t
1

N

XT�t�1

t0¼0

XN

i¼1

½Riðt0 þ tÞ � Riðt0Þ�2; ð2:1Þ

where RiðtÞ indicates the position of bird/particle i at time t,
and where we have averaged over all N individuals in the

group and over all time lags of duration t in the interval

[0, T ]. For Brownian motion, the mean-square displacement

grows linearly with time [23] (i.e. dR2ðtÞ/ t), indicating that

in their random wandering walkers depart increasingly from

their origin. This behaviour, which is referred to as standard

(or normal) diffusion, is rather robust and usually persists

even in the presence of external forces or interactions bet-

ween individuals. In some cases, however, such forces can

enhance/deplete in a non-trivial way the effect of noise, leading

to different diffusion laws. The majority of natural processes is

well-described by a power-law dependence,

dR2ðtÞ ¼ Dta; ð2:2Þ

where a, the diffusion exponent, falls between 0 and 2, and D
is the diffusion coefficient. The case a ¼ 1 corresponds to

Brownian motion and to normal diffusion. When a . 1,

particles move/diffuse faster, and this is why this case is indi-

cated as super-diffusive (the special case a ¼ 2 corresponding

to ballistic diffusion). Finally, we note that, although for very

long times the type of diffusion is characterized by the value

of the exponent a, for finite times even the value of the coeffi-

cient D plays a key role, larger values of D corresponding to

more mobile particles/individuals.

(b) Diffusion in the centre of mass reference frame
Coming back to flocks, our aim is now to use the above defi-

nitions to quantify how much individuals move through the

group and with respect to each other. Because flocks are

strongly ordered, each bird moves predominantly in the

same direction as the whole group. This contribution to indi-

vidual motion is common to all birds and, if deviations were

absent, would entail a fixed network of reciprocal positions.

We are interested rather in what makes this network chan-

ging in time. Therefore, we need to take away this global

component and focus on individual movements with respect

to the flock’s motion. This can be carried out by considering

the birds’ movements in the centre of mass reference frame:

at each instant of time, the coordinates of an individual in

this reference frame define its location inside the flock and,

correspondingly, diffusion describes how much a bird has

changed its position within the group (while at the same

time co-moving with it). To visualize this point, in figure 1
we show a couple of trajectories of neighbouring birds,

both in the camera’s reference frame and in the flock’s

centre of mass reference frame. We notice that the centre of

mass reference frame closely resembles the subjective per-

ception individuals have of collective motion when flying

together. Birds’ individual velocities are in fact very close

to that of the centre of mass (being the flock very polarized);

therefore, the centre of mass frame is very similar to a frame co-

moving with the birds themselves. An even more faithful rep-

resentation of the individual perception (for a given bird) is

provided by the mutual diffusion setting (see §2c).

To quantify diffusion behaviour in the centre of mass

reference frame, we consider the mean-square displacement

as in equation (2.1), but where coordinates are expressed in

the centre of mass frame, such that

dr2ðtÞ ;
1

T � t
1

N

XT�t�1

t0¼0

XN

i¼1

½riðt0 þ tÞ � riðt0Þ�2; ð2:3Þ

where RCMðtÞ indicates the position of the centre of mass of

the flock at time t, and riðtÞ ¼ RiðtÞ � RCMðtÞ therefore rep-

resents the position of bird i in the centre of mass reference

frame and RCMðtÞ ¼ ð1=NÞ
P

i RiðtÞ indicates the position of

the centre of mass of the flock at time t. N is the number of

birds in the flock and T the length of the time series.

Using three-dimensional trajectories of individual birds

in starling flocks, we computed the mean-square displace-

ment following equation (2.3) for six flocking events (see

§4). We find that diffusion of birds satisfies quite well the

time dependence described by equation (2.2), with an expo-

nent that is systematically larger than 1 (i.e. birds perform

super-diffusive motion in the centre of mass reference frame).

In figure 2, we present the data of four flocks, but results

are similar in the other analysed flocks (table 1). Averaging

the diffusion exponent over all the analysed events we get,

a ¼ 1:73 + 0:07; D ¼ 0:036 + 0:004: ð2:4Þ

(c) Mutual diffusion
The results discussed above indicate that individuals move

within the group faster than Brownian walkers. This super-

diffusive behaviour is probably the consequence of the

interacting nature of collective motion, which gives rise to

strong correlations between birds’ flight directions. Velocity

correlations were first studied for bird flocks by Cavagna

et al. [25], where it was found that there are large correlated

domains of birds with highly aligned velocities fluctuations.

This means that if a bird is moving in a certain direction

with respect to the centre of mass, then its neighbours will

move along similar directions [25]. This fact suggests that

diffusive displacement of a bird with respect to its
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neighbours should be smaller than with respect to the centre

of mass. Is it so?

We can answer this question by calculating how much

individuals in the flock move with respect to one another.

We define an expression very similar to equation (2.3), but

in which mutual mean-square displacement of birds i with

respect to its nearest neighbour j at time t0 is considered,

dr2
mðtÞ ;

1

T � t
1

N

XT�t�1

t0¼0

XN

i¼1

½jsijðt0 þ tÞj � jsijðt0Þj�2; ð2:5Þ

where sijðtÞ ; riðtÞ � rjðtÞ is the position of bird j (the nearest

neighbour of i at time t0) in the reference frame of i. Also for

mutual diffusion, we find a power-law behaviour,

dr2
mðtÞ ¼ Dmtam : ð2:6Þ

Averaging over all flocks, we obtain (table 1)

am ¼ 1:58 + 0:2; Dm ¼ 0:011 + 0:005: ð2:7Þ

The representation of the time dependence of dr2
mðtÞ for

the same flocks of figure 2 can be found in the electronic sup-

plementary material, figure S1. From a comparison between

the average parameters in equations (2.4) and (2.7), as well

as the figures just mentioned, we can see that even though

both diffusion and mutual diffusion have an exponent

larger than 1, mutual diffusion is suppressed with respect

to diffusion in the centre of mass. The available statistics do

not allow us to conclude that the exponents are different

(see the electronic supplementary material); however, in the

intermediate time regime we are dealing with, this suppres-

sion is clear, especially looking at the diffusion coefficients.

Mutual diffusion describes how, on average, an individual

bird perceives the motion of its neighbours relative to its

own. As we shall see, it is crucial to understand how

neighbour reshuffling occurs in a flock.
(d) Anisotropic diffusion
To push our analysis further, we can ask whether diffusion

and relative motion occur isotropically or whether, on the

contrary, privileged directions exist. The simplest way to

probe the existence of privileged directions is to consider a

matrix generalization of equation (2.3) (see the electronic sup-

plementary material for details). If we diagonalize this

matrix, the diagonal elements automatically provide the

mean-square displacement along the principal axes of diffu-

sion (see the electronic supplementary material, figure S3

for an example in four flocks). We can then compute, for

each flock, the diffusion exponent and the diffusion coeffi-

cient along each axis. What we find is that diffusion is

strongly anisotropic, occurring more strongly along certain

directions (corresponding to larger diffusion exponents)

than others. More precisely, the average diffusion exponents

and coefficients along the three principal axes are

a1 ¼ 1:78 + 0:08; D1 ¼ 0:021 + 0:003;

a2 ¼ 1:63 + 0:04; D2 ¼ 0:008 + 0:004

and a3 ¼ 1:44 + 0:12; D3 ¼ 0:004 + 0:004:

A previous study [6] showed that flocks tend to fly paral-

lel to the ground, and therefore orthogonal to gravity. It is

therefore natural to analyse the relation between the three

principal axes of diffusion and the directions in space that

are naturally relevant for a cruising flock, namely the direc-

tion of motion and gravity. To investigate this point, we

computed the average (in time) scalar product of the three

normalized eigenvectors of diffusion, u1, u2 and u3, with the

normalized vectors of the flock velocity (uV) and of gravity

(uG). The results are the following:

u1 � uV ¼ 0:11 + 0:04; u1 � uG ¼ 0:27 + 0:07;

u2 � uV ¼ 0:90 + 0:03; u2 � uG ¼ 0:48 + 0:19

and u3 � uV ¼ 0:41 + 0:12; u3 � uG ¼ 0:83 + 0:11:

From these data, we see that gravity, uG, has very high

alignment with the direction of lowest diffusion, u3, whereas
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it has very low alignment with the direction of the largest dif-

fusion, u1. The direction of global motion, uV, has very high

alignment with the second smaller diffusion direction, u2,

whereas (like gravity) it has minimal alignment with the

direction of largest diffusion, u1. We conclude that diffusion

is suppressed along gravity and the direction of motion,

whereas the axis of maximal diffusion, u1, is approximately

perpendicular to both group velocity and gravity, and

therefore it roughly coincides with the wings’ axis.

The fact that diffusion along gravity is very limited is per-

haps unsurprising, because of the energy expenditure that

vertical motion requires. On the other hand, the higher

weight of diffusion along the wings’ direction versus the

velocity direction is less obvious on a purely biological

basis. As we shall see in §3, though, previous theoretical inves-

tigations indeed predicted that diffusion in flocking had to be

much stronger along a direction orthogonal to the direction of

motion, which is exactly what we observe here.

(e) Neighbour reshuffling
A crucial consequence of motion and of mutual diffusion is

that individuals may change their neighbours in time. Let

us consider a (focal) bird i at an initial time t0 and its M near-

est neighbours. After a time t, some of these M birds will not

belong to the set of neighbours of i any more. To monitor

how the neighbourhood changes, we can calculate the per-

centage of individuals that remain within the set of the M
nearest neighbours of i after a time t. Let us therefore define

the neighbour overlap as

QMðtÞ ¼
1

N

X
i

MiðtÞ
M

; ð2:8Þ

where Mi(t) is the number of birds that are among the M
nearest neighbours of bird i at both t0 and t þ t0. The average

runs over all the birds in the flock and over all initial times t0.

In figure 3, we show the evolution of the overlap, QM(t),
as a function of the time t and number of neighbours M.

Clearly, if we set M ¼ N (i.e. if we choose a neighbourhood

as large as the whole flock) then the overlap remains by defi-

nition constant and equal to 1. When M , N, we see that the

overlap smoothly decreases in time owing to birds’ motion.

We conclude that neighbour reshuffling does happen, even

for very close neighbours. This implies that the interaction

network is changing in time and that there is no indication

of a preferred structure of neighbours in the flock. We also
notice, however, that the process of reshuffling of the neigh-

bours occurs on a time-scale of a few seconds, which is rather

long. We will analyse the implications of this fact in §3.

Interestingly, it is possible to explain the behaviour of the

cluster overlap purely in terms of the diffusion properties

described in the previous sections. The basic idea is simple:

consider a focal bird, and its neighbourhood of M birds. We

ask how many neighbours the focal bird can lose in a time t.
The most at risk are those in the outer edge of the neighbour-

hood. We make the very crude approximation that in a time t
the outer birds will have travelled a distance l �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dmtam
p

,

which is a sort of deterministic interpretation of mutual diffu-

sion equation (2.6). In this case, the number of lost neighbours

will be of the order rR2l, where R is the radius of the neigh-

bourhood, which is connected to M by the simple relation

M � rR3. Using this argument, we finally get

QMðtÞ ¼ 1þ c
tam=2

M1=d̂

� ��d̂

ð2:9Þ

(see the electronic supplementary material for the details),

where c is a constant related to the flock density r and to the

mutual diffusion coefficient Dij (see the electronic supplemen-

tary material). For infinite and homogeneous flocks, d̂
coincides with the space-dimension, d̂ ¼ 3, whereas for finite

flocks, owing to the presence of the border, we have an effective

dimension d̂ , 3. The value of d̂ can be fixed by making

a power law fitted to the formula M � aRd̂ (see the electronic

supplementary material, figure S2). We find d̂ ¼ 2:3.

Using the value of am obtained in §2c, we get a very

good agreement with the data (figure 3), both for what con-

cerns the dependence of Q on t and on M. Such agreement

indicates that neighbour reshuffling is entirely ruled by diffu-

sion: there seems to be no ad hoc mechanism used by birds

to pick up their neighbours, nor any specific attempt to keep

them fixed in time. Rather, neighbour reshuffling is simply

the result of diffusion taking its course, so that at each instant

of time, each bird is interacting with whichever birds have

been brought there by their super-diffusive wandering

throughout the flock.

( f ) Permanence on the border
Because of the attacks of predators and of possible interactions

with other external perturbations, birds at the border of

the flock might exhibit specific dynamical properties [26].

To investigate this issue, we calculate the border survival
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probability, P(t), defined as the probability that a bird initially

at the border remains on the border for a time greater than t
(for a precise definition of the flock’s border, see electronic

supplementary material). The data for P(t) are shown in

figure 4 for four different flocks.

Given our success in explaining neighbour reshuffling

purely by using the diffusion properties, it is interesting to

ask whether the border survival probability too is ruled

simply by diffusion or whether there is some extra dynamical

ingredient ruling the way birds remain on the border. We may

start by saying that once a bird has travelled more than the

average distance lB between border and first internal nearest

neighbour, it has left the border. If we use the same crude

approximation as for neighbour reshuffling, namely that in a

time t a bird travels on average a distance
ffiffiffiffiffiffiffiffi
Dta
p

, we can get

an estimate of the time-scale birds remain on the border,

tdiff ¼
l2B
D

� �1=a

: ð2:10Þ

Using the measured values for flock 69-10 for lB, a and D,

this gives tdiff ¼ 0.8 s. On the other hand, if we look at

the data in figure 4 we can see that after a fast and short

initial decay, then the curve exhibits a rather long tail, indi-

cating that persistence on the border can in fact be much

longer. Indeed, a simple exponential fit of flock 69-10 gives

a time-scale t ¼ 2.5 s, three times larger than what mere

diffusion predicts. A similar underestimation occurs for

the other flocks. It seems that a naive diffusion argument

does not work and that individuals at the border tend to

exchange positions with neighbours less than internal

individuals do.

The discrepancy between internal and border dynamics

is confirmed by comparing the border survival probability

with the analogous survival probability for internal birds.

In figure 4, together with the border P(t), we also plot the

probability that in a time t an internal bird remains within
a distance lB from its initial position in the centre of mass

reference frame (i.e. the probability that a positional swap

with a neighbour does not occur). This internal survival prob-

ability decays much faster than the border one. Analytic

computations allow calculation of rigorous bounds for the

survival probability of a super-diffusive walker with diffu-

sion exponent a (see electronic supplementary material)

[27]. The empirical P(t) for internal birds is fully consistent

with these predictions, confirming once again that mutual

rearrangements of internal individuals can be explained in

terms of a diffusion mechanism. However, the same is not

true for the border survival probability.

Why, then, do birds on the border tend to exchange

position with neighbours less than internal birds do?

First, and most trivially, we need to consider that border

individuals—due to their peripheral location—lack neigh-

bours on one side. Therefore, any movement larger than lB
but in the outward direction does not decrease the relative

distance with any internal neighbour and leaves the bird on

the boundary of the flock. To take this into account, the

appropriate quantity to look at is therefore the probability

that an individual moves less than lB only in the inward direc-

tion. For a generic diffusion process, there are not analytic

expressions for this quantity. However, in the case of a

Brownian walker, the computation can be easily carried

out [23], leading to

PðtÞ ¼ erfc
lBffiffiffiffiffiffiffiffi
2Dt
p
� �

: ð2:11Þ

A fit of the data with this Brownian functional form is dis-

played in figure 4. While this fit captures the convex shape of

the curve, the empirical border survival probability systema-

tically decays faster for times larger than the typical diffusive

scale (2.10). This can be explained by noticing that even if

border birds can arbitrarily move towards the outside while

still remaining peripheral, they in fact never increase their
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distance from the flock by too much, as this would imply

leaving the group and losing altogether the benefits of the

collective motion. It is better to be in the border than to go

astray [28]. In getting equation (2.11), however, all these

large outer ‘walks’ are considered as possible positive contri-

butions to the permanence on the border at large times. Thus,

we must expect the real survival probability (which does not

include such walks) to be smaller than the one predicted by

equation (2.11), as we indeed find.

Finally, there might be an additional effect to be taken

into account. Previous experimental observations show that

the density of flocks is larger at the border than at the interior

[7]. This effect could be a consequence of the fact that birds

compete with each other for a place in the interior of the

flock. This struggle for the occupation of the same internal

space would imply that when attempting to move inward,

a border bird experiences an outward repulsion produced by

its internal neighbours, pushing it outside again. The attempt

to move inward is then reiterated, until by some fluctuation

the bird successfully leaves the border. This mechanism clearly

contributes to increase the survival probability of border birds

when compared with internal ones.
3. Discussion
Our results show that diffusion in the centre of mass reference

frame occurs with an exponent of a ¼ 1.73, much larger than

the Browninan case (a ¼ 1). Birds within a flock are there-

fore strongly super-diffusive. How do theoretical predictions

of flocking diffusion compare with our data? Hydrodynamic

theories of flocking [19,20,29] make some predictions about

the emergence of anomalous diffusion. In particular, in two

dimensions, these theories predict super-diffusive behaviour,

with an exponent a ¼ 4/3 [29]. Numerical simulations in

two-dimensional models of self-propelled particles support

these predictions [29,30]. However, these predictions have

been made for two-dimensional systems, whereas our data

are three-dimensional. Hydrodynamic predictions in three

dimensions are much harder to perform, but according to a

conjecture put forward by Toner & Tu [20], it would be

expected that a ¼ 1 in three dimensions, in contrast to our

result. On the other hand, numerical simulations in three

dimensions [31] give a ¼ 1.7, in agreement with our exper-

imental value. We believe that, now that experimental data

about diffusion are available, both theoretical and numerical

studies in three dimensions should be reconsidered more

carefully, as the prediction of the right diffusion properties

can be a very effective model selection tool.

Our diffusion data display strongly anisotropic behav-

iour. Motion is quite limited in the plane formed by flock

velocity and gravity, while it is much stronger along a direc-

tion perpendicular to that plane. We can roughly identify this

direction of maximal diffusion with the wings’ axis. There is a

compelling geometric argument to explain the origin of ani-

sotropic diffusion [20]: if birds make small errors du in their

direction of motion, then their random displacement perpen-

dicular to the mean direction of motion V is much larger than

that along V ; the former is proportional to sinðduÞ � du,

whereas the latter is proportional to 1� cosðduÞ � du2�du.

Therefore, diffusion is suppressed along the direction of

motion V . This simple argument does not take into account

the role of gravity, which has the effect of further depressing
vertical diffusion on the plane perpendicular to V . As a con-

sequence, one expects to have minimal diffusion along both

V and gravity, and maximal diffusion along the direction

perpendicular to them. This is exactly what we find.

When we consider mutual diffusion, namely how much a

bird moves with respect to its nearest neighbours, we find

diffusion exponents similar to diffusion in the centre of

mass reference frame, but much lower diffusion constants.

In other words, birds move less with respect to their neigh-

bours than with respect to the centre of mass. This fact is

the consequence of the very strong and long-ranged spatial

correlations of the velocity fluctuations observed by Cavagna

et al. [25]. Neighbouring birds’ displacements in the centre of

mass reference frame are similar, so that birds do not depart

from each other as much as they move throughout the flock.

From the full individual trajectories, we calculated the

neighbour overlap QM(t) and thus quantified how much,

on average, the local neighbourhood of a focal bird changes

in time. Our data show that neighbour reshuffling occurs,

so that each bird gradually changes all its interacting neigh-

bours over time. There is no indication of a fixed structure

of neighbours in the flock. In fact, we showed that a very

simple model, whose only ingredient is mutual diffusion,

reproduces quantitatively well the neighbour overlap, with-

out the need of any extra dynamical ingredients. This fact

seems to indicate that the neighbours each bird is interacting

with at each instant of time are not selected on the basis of a

biological criterion; they just randomly happen to be there,

according to diffusion laws.

Even though neighbour reshuffling definitely occurs, it

seems not to be a very fast process. To give full validity to

such a statement we should define a time-scale (the birds’

‘clock’), which is not straightforward. Still, we do expect any

kind of update of the internal state of motion of a bird to

happen on a rather fast time-scale (let us say definitely smaller

than 0.1 s). Hence, the fact that, for example, it takes about 3.5 s

to change only half of 10 neighbours (figure 3) really seems to

indicate that neighbour permanence is rather high. This is

interesting. Indeed, according to several theoretical and

numerical studies, the fact that the interaction network changes

in time has the effect of reinforcing the alignment order in the

flock [19,32,33]. Changing the neighbours over time amounts

to having an effective number of interacting neighbours that is

larger than the instantaneous one.

However, there may be a trade-off: exchanging neigh-

bours too quickly could be detrimental for establishing

long-range order in the flock. At each time-step, one individ-

ual tries to align its velocity to that of its neighbours; but

there is noise, so that alignment is not perfect and it

may take several time-steps to consolidate consensus. If, how-

ever, the pool of neighbours changes completely from one

time-step to the next, it will be very hard to beat noise and

therefore to dynamically reach global consensus. If a trade-

off exists, there should be an optimal neighbour reshuffling

rate that makes global order easiest to achieve at the dynami-

cal level. However, even if an optimum exists, then it does

not imply that the natural system is actually at the optimum.

The comparison of theoretical models, where the rate of

neighbour reshuffling can be artificially altered, with our

experimental data (which give quantitative substance to

these speculations), can help understanding of whether an

optimum neighbour reshuffling exists and to what extent

natural flocks of birds are close to such an optimum.
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Finally, we have investigated the dynamics of individuals

at the border of the flock. What we find is an intriguing

difference between motion within the flock and motion at

the border. The survival probability of individuals at the

border is indeed significantly larger than the survival prob-

ability of internal individuals: birds stay on the border

longer than the way internal birds keep their position

inside the flock. Our analysis suggests that in doing this, indi-

viduals on the border balance the tendency to exchange

neighbours owing to motion, the availability of void space

outside the flock and the reluctance of internal neighbours

to give up a more favourable position.

When a predator (such as the peregrine falcon) attacks a

flock, it is mostly birds on the border that get captured.

Hence, the border is a dangerous place. And yet, bird

dynamics do not accelerate border turnover. It seems that

the flock self-organizes out of the individual selfish tendency

not to stay at the border. This situation is reminiscent of the

‘selfish herd’ scenario described by Hamilton [26]. Border

dynamics is very fascinating and very important, and we

have just started scratching the surface of it. New data (and

more specifically longer and more exhaustive trajectories)

are needed to be able to fully unveil border dynamics.
4. Methods
Analysed data were obtained from experiments on large flocks of

starlings (S. vulgaris), in the field. Using stereometric photogra-

phy and computer vision techniques [8,33], the individual

three-dimensional coordinates were measured in groups of up

to a few thousands individuals [6–8]. For a number of flocking

events (table 1), we could retrieve individual trajectories. Each

event consists of up to 40 consecutive three-dimensional
configurations (individual positions), at time intervals of 0.1 s.

We developed a tracking algorithm that connects the three-

dimensional spatial positions of the same individual through

time. Temporal matching between consecutive times is based

on a patter algorithm of the same kind as the one used to solve

the stereometric matching (see [8]). This two-time match is effec-

tive but never complete. At each instant of time, a small

percentage of individuals (typically below 5% in our case) is

not reconstructed owing to occlusions on the images and seg-

mentation errors. Owing to this, a mere iteration of two-time

matches only brings a set of very short interrupted trajectories.

To overcome this problem, we developed a Monte Carlo algor-

ithm that allows for ‘ghosts’ to simulate the occurrence of

missing three-dimensional reconstructions, and patches together

pieces of trajectories by optimizing an appropriate measure com-

bining average smoothness, three-dimensional constraints and

number of ghosts. Thanks to this algorithm, we could retrieve

a reasonable percentage of individual trajectories as long as the

entire event.

Given a flocking event, we considered the subset of retrieved

long-lasting trajectories and computed the mean-squared displace-

ment and mutual square displacement, following equations (2.3)

and (2.5). To estimate the diffusion exponents and coefficients, we

fitted the resulting time dependence in log–log scale between time

lags of 0.4 and 1.5 s, which takes into account the length of all the

data at our disposal. Results for the individual flocks are reported

in table 1, and correspond to super-diffusive behaviour. The statisti-

cal significance of this finding in connection with the finiteness of

the time series wastested using synthetic data (see the electronic sup-

plementary material for a full account of the procedure).
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discussions. This study was supported in part by grants IIT—Seed
Artswarm, ERC—StG no. 257126, AFOSR—Z80910 and FP6-NEST
12682 STARFLAG. S.M.D.Q. is supported by a Marie Curie Intra-
European Fellowship (FP7/2009) no. 250589.
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