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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome

Coronavirus 2 (SARS-CoV-2), has created a global pandemic infecting over 230 million peo-

ple and costing millions of lives. Therapies to attenuate severe disease are desperately

needed. Cenicriviroc (CVC), a C-C chemokine receptor type 5 (CCR5) and C-C chemokine

receptor type 2 (CCR2) antagonist, an agent previously studied in advanced clinical trials for

patients with HIV or nonalcoholic steatohepatitis (NASH), may have the potential to reduce

respiratory and cardiovascular organ failures related to COVID-19. Inhibiting the CCR2 and

CCR5 pathways could attenuate or prevent inflammation or fibrosis in both early and late

stages of the disease and improve outcomes of COVID-19. Clinical trials using CVC either

in addition to standard of care (SoC; e.g., dexamethasone) or in combination with other

investigational agents in patients with COVID-19 are currently ongoing. These trials intend

to leverage the anti-inflammatory actions of CVC for ameliorating the clinical course of

COVID-19 and prevent complications. This article reviews the literature surrounding the

CCR2 and CCR5 pathways, their proposed role in COVID-19, and the potential role of CVC

to improve outcomes.

Author summary

This article reviews the literature examining the inflammatory pathways resulting in pul-

monary and cardiovascular adverse events associated with the Coronavirus Disease 2019

(COVID-19) and their role in the disease process; it also reviews the mechanism of action

and safety profile of cenicriviroc (CVC), a C-C chemokine receptor type 5 (CCR5) and C-

C chemokine receptor type 2 (CCR2) antagonist, previously studied in advanced clinical
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trials for treatment of HIV or nonalcoholic steatohepatitis (NASH), as a possible treat-

ment option to prevent severe respiratory and cardiovascular outcomes in patients with

COVID-19.

Introduction

In late 2019, health authorities first detected an infection caused by a novel coronavirus, Severe

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2); this rapidly transmissible virus

would go on to create a global pandemic, known as Coronavirus Disease 2019 (COVID-19),

infecting over 438 million people and causing over 5.9 million deaths at the time of writing [1].

SARS-CoV-2 is within the same family of betacoronaviruses as Severe Acute Respiratory Syn-

drome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus

(MERS-CoV) [2]. SARS-CoV-2 infection has a heterogenous clinical presentation, ranging

from asymptomatic infection to severe disease and death [2]. Approximately 5% to 10% of

individuals develop symptoms of respiratory failure marked by pneumonia and hypoxia [2,3].

This can further develop into acute respiratory distress syndrome (ARDS), multisystem organ

failure, and death. Although the initial symptoms and course of disease are a consequence of

viral replication, progressive COVID-19 pneumonia appears to be a consequence more of an

aberrant immune response to the virus and less due to the viral replication itself [4].

At the time of writing, the US Food and Drug Administration (FDA) had issued approval

or emergency use authorization (EUA) for the mRNA vaccines, Comirnaty (BNT162b2; Pfi-

zer-BioNTech), Spikevax (mRNA-1273; Moderna), and the adenoviral vaccine JNJ-7843673

(Janssen) [5]. Other regional and country regulatory authorities have approved additional vac-

cines (e.g., AZD1222/ChAdOx1 nCov-19, Sputnik-5, and BBIBP-CorV) following successful

clinical trials. FDA-approved small-molecule antiviral therapies include Veklury (remdesivir

—Gilead Sciences) [6], an IV viral RNA polymerase inhibitor for hospitalized patients; and

more recently issued EUA for oral treatments of mild to moderate disease, Paxlovid (nirma-

trelvir and ritonavir), for inhibition of the SARS-CoV-2 main protease [7]; and Lagevrio (mol-

nupiravir), for induction of viral RNA error catastrophe [8]. The FDA has also approved or

issued EUA for monoclonal antibodies that bind to the spike protein of SARS-CoV-2 to pre-

vent host cell entry. This includes bamlanivimab plus etesevimab, casirivimab and imdevimab,

sotrovimab, and bebtelovumab, although activity of these antibodies against emerging domi-

nant variants (especially Omicron) has been reported to be much impaired, with the exception

of sotrovimab and bebtelovumab [9–11], to the extent that bamlanivumab use has since been

FDA rescinded and bamlanivumab plus etesevimab as well as casirivimab and imdevimab

have had their uses limited by the FDA [12]. For preexposure prophylaxis, the monoclonal

antibody combinations of tixagevimab plus cilgavimab also have an EUA from the FDA for

populations who are immunocompromised and with limited expected response to vaccination

[13]. This is important because unvaccinated and immunocompromised patients are at most

risk for severe COVID-19 including ARDS [14–18].

Immunomodulators either approved, authorized, or in guidelines for COVID-19 include

dexamethasone, a steroidal anti-inflammatory, tocilizumab, an anti-interleukin (IL)-6 receptor

monoclonal antibody, and baricitinib, a janus kinase inhibitor [19–22]. Although the list of

agents is growing, efficacy remains limited, and further agents to improve outcomes by target-

ing the pathological mechanisms of COVID-19 are desperately needed. In addition to new

drug therapies in development, existing drug or clinical development candidates are also being

examined for their potential role in SARS-CoV-2 treatment, including antiviral agents and

immunomodulators. Identifying potential targets that mediate the immune response to
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regulate the respiratory and vascular sequelae could have a profound impact in reducing the

severity of disease in SARS-CoV-2 patients; in severe disease, respiratory failure is universally

present and may result from excessive cytokine (including chemokine) release from activated

immune cells [23,24]. One such drug therapy that can modulate cytokine activity is cenicri-

viroc (CVC), a C-C chemokine receptor type 5 (CCR5) and C-C chemokine receptor type 2

(CCR2) antagonist, previously studied in clinical trials for consequential antiviral activity

against HIV-1 due to inhibiting the CCR5-mediated HIV entry into T cells [25,26]. CVC has

also been examined in clinical trials for the treatment of nonalcoholic steatohepatitis (NASH),

in which inflammation and hepatocyte injury occur leading to liver fibrosis [27–29]. As

inflammation and cytokine (including chemokine) release can occur via similar receptor path-

ways in pulmonary injury and SARS-CoV-2, we reviewed the literature surrounding the CCR5

and CCR2 pathways and the rationale for CVC as a potential agent in the treatment of patients

with COVID-19 [26,30]. COVID-19 may be characterized by pathologies induced by the sepa-

rate waves of infection caused by distinct variants, including those seen for the Omicron vari-

ant that became predominant at an alarming rate across many geographic areas due to its

relative increased infectivity. Early research indicates this variant may be associated with

reduced disease severity and ARDS, although significant virulence is still apparent [31,32],

indicating current interventional mechanisms to reduce disease severity are likely to still be

valid for many. Unvaccinated populations are overwhelmingly the most affected by disease

severity and ARDS, as are those with compromised immunity and limited immune response

to vaccine and infection (e.g., cancer patients), [33,34] making therapeutic interventions par-

ticularly important for this population, even in light of likely reduced disease severity associ-

ated with the Omicron variant. Therapeutic interventions may become increasingly important

due to reduced vaccine-mediated immune susceptibility (especially humoral) of this variant in

light of extensive epitope changes [35,36]. CCR2 and CCR5 are widely reported to enable traf-

ficking and signaling of immune-dampening myeloid suppressor cells [37–39] and reduce vac-

cine immune responses [40–43]. Considering this and aberrant myeloid trafficking, including

myeloid-derived suppressor cells being a signature of COVID-19 [44,45], CVC use as a vaccine

adjuvant may have some specific merit for further research.

Chemokines and their coreceptors: CCR2 and CCR5

Chemokines, a family of cytokine leukocyte chemoattractants, are a group of immunoregula-

tory mediators that can direct leukocyte infiltration, positioning, and activation by acting at

specific receptors [2]. Chemokines play an important role in trafficking cells during an

immune response [46]. During a respiratory virus infection, inflammatory cytokines and che-

mokines are induced. Inflammatory cells and leukocytes are recruited into local tissue; in

SARS-CoV, elevated cytokine and chemokine expression are found in SARS-CoV–infected

cells [47].

One such chemokine is C-C chemokine ligand 2 (CCL2), a potent cognate agonist of CCR2

[48]. Monocytes, macrophages, vascular endothelial cells, fibroblasts, and smooth muscle cells

can secrete CCL2 [49]. In turn, monocytes are the main leukocyte population expressing

CCR2 that are being recruited to sites of inflammation via CCL2 [50]. CCL2 thus induces a

positive feedback loop by promoting inflammation, thereby releasing additional inflammatory

mediators [49,51]. CCL2 is associated with several inflammatory disorders of the lung, includ-

ing ARDS, the syndrome associated with severe COVID-19, as well as adverse cardiovascular

outcomes (Fig 1) [47,52–56].

CCR5 and its cognate agonist ligands (CCL3, CCL4, CCR3L1, and CCL5) have long been

associated with airway inflammation in both allergic and infectious settings [57]. CCR5 is
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expressed on several cell types, including T cells, macrophages, vascular cells, and dendritic

cells [58,59]. Last, CCR5 is a coreceptor for HIV cell entry (with CD4 being the primary recep-

tor), which underpins its efficacy in HIV infection.

Association of CCR2 and CCR5 in adverse sequelae associated in

COVID-19

Pulmonary sequelae

Multiple studies have reviewed the roles of CCR2 and CCR5 in mediating respiratory and vas-

cular sequelae across various diseases including COVID-19. Lung injury in ARDS associated

with COVID-19 may be associated with dysregulation of inflammatory cytokines, similar to

SARS-CoV [60,61]. The Genetics of Mortality in Critical Care (GEnOMICC) genome-wide

association study evaluated 2,244 critically ill patients with COVID-19 from 208 United King-

dom intensive care units where high expression of CCR2 was found to be associated with

severe COVID-19 via transcriptome-wide association in lung tissue [62]. In SARS-CoV–

infected mouse model studies, enhanced production of tumor necrosis factor (TNF) α, IL-6,

CCL2, chemokine-chemokine ligand 5 (CCL5), and other chemokines were observed and cor-

related with the lung migration of macrophages and plasmacytoid dendritic cells [63].

Enhanced cytokine production observed in the lungs including CCL2 and CCL5 along with

pneumonitis observed by day 7 [63]. CCL2 is up-regulated early in the stages of acute infec-

tion. As the disease progresses, both CCL2 and CCL5 are up-regulated. A similar breakdown

of the infection and cytokine elevation longitudinal patterns in humans with SARS CoV-2

infection was reported by Lu and colleagues [64], which proposed 3 stages of infection and

Fig 1. CCR2 mediated recruitment of aberrant myeloid compartment and high CCR2 and CCR5 ligands. Left: Diagrammatic summary representation of

CCR2- and CCR5-mediated recruitment of aberrant myeloid compartment via elevated airway CCR2 and CCR5 agonist ligand expression in airways of patients

with severe COVID-19 infection. Right: Heatmap showing inflammatory mediators in airway samples from 14 COVID-19 patients (x axis) highlighting

specifically elevated CCR2 and CCR5 cognate ligands MCP-1 [CCL2], MIP-1α [CCL3], and MIP-1β [CCL4] levels (average elevation relative to uninfected

controls graded in purple as per key). Reprinted from Immunity, 54 (4), Szabo PA, et al. Longitudinal profiling of respiratory and systemic immune responses

reveals myeloid cell-driven lung inflammation in severe COVID-19. 797–814. Copyright (2021), with permission from Elsevier et al. CCL, chemokine-

chemokine ligand; CCR, chemokine-chemokine receptor; COVID-19, Coronavirus Disease 2019; MCP, monocyte chemoattractant protein; MIP, monocyte

inflammatory protein.

https://doi.org/10.1371/journal.ppat.1010547.g001
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cytokine-mediated sequalae, of which the CCR2 and CCR5 cognate agonistic ligands played a

significant part. Based on these findings, inhibiting the CCR2 and CCR5 pathways could bene-

fit patients in both early and late stages of infection; optimal administration of CVC during

several phases of the SARS-CoV-2 infection may attenuate or prevent inflammatory conse-

quences of COVID-19 and prove beneficial by avoiding excessive monocyte recruitment (Fig

2) [63,64].

As the SARS-CoV-2–infected epithelial cells and macrophages in the airways express high

levels of CCL5, one pilot study including 10 patients evaluated leronlimab (Pro-140), a mono-

clonal antibody CCR5 inhibitor, to disrupt the CCL5-CCR5 axis associated with the immune

cell infiltration and associated cytokine storm and subsequently the pulmonary sequelae

caused by pro-inflammatory leukocytes [65,66]. Although initial data indicated a possible asso-

ciation between CCR5 blockade and reduction in disease markers in uncontrolled studies,

more comprehensive clinical trials have failed to demonstrate a clear medical benefit with this

antibody in patients with severe disease [65,67]. Localized vasoconstricor responses to elevated

chemokine–chemokine ligand 4 (CCL4) via CCR5 agonism may be important in also restrict-

ing respiratory function due to SAR-CoV-2 infection, and blockade of this by CCR5 antago-

nists has been demonstrated [68]. Leronlimab and maraviroc are monoclonal antibody and

Fig 2. Three stages of immunological pathway leading to mortality in COVID-19: Stage I (Initiation), with early induction of predominant chemokines

upon SARS-CoV-2 infection and viral sepsis. Treatment at this stage with CVC (highlighted in blue text and arrows) is postulated to maintain normalized

myeloid compartmentalization at early stage of infection, or block aberrant myeloid infiltration upon CCL2, 3, and 5 signaling following SARS-CoV-2

infection and consequent cytokine amplification (Stage II), and subsequent tissue damage and eventual death (Stage III—consummation). Lu L, et al.

Preventing Mortality in COVID-19 Patients: Which Cytokine to Target in a Raging Storm? Front Cell Dev Biol. 2020;8:677. https://doi.org/10.3389/fcell.2020.

00677. CCL, chemokine-chemokine ligand; CCR, chemokine-chemokine receptor; COVID-19, Coronavirus Disease 2019; CVC, cenicriviroc; IL, interleukin;

IP, interferon gamma-induced protein; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2; TNF, tumor necrosis factor.

https://doi.org/10.1371/journal.ppat.1010547.g002
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small-molecule ligands of CCR5, respectively, which are approved drugs for the treatment of

HIV infection and operate by blocking CCR5-tropic HIV entry into CD4+ host cells [69,70].

Maraviroc is being investigated for efficacy in various COVID-19 clinical studies (hospitalized

patients; see NCT04441385, NCT04475991, NCT04435522, and NCT04710199) by virtue of

being a functional antagonist of the CCR5 receptor, postulated to disrupt the associated cog-

nate chemokine-mediated adverse immune-pathophysiology of infection, as discussed later in

this manuscript. Results from these studies are awaited. Leronlimab has also been studied in

COVID-19 clinical trials, but the largely unfavorable efficacy outcomes in studies may be a

consequence of leronlimab being a potent CCR5 ligand and HIV entry inhibitor, but with lim-

ited functional antagonistic properties against cognate ligand signaling [71–73]. Like mara-

viroc, CVC is a potent small-molecule inhibitor of HIV entry/replication on the basis of high

affinity binding to CCR5, to block HIV gp120 binding, but also cognate ligand (chemokine)

binding and functional signaling [74]. However, unlike maraviroc, CVC possesses additional

potent functional antagonistic properties against CCR2 [75] to block additional immune-phar-

macologies that are implicated in COVID-19 disease pathology, as detailed in this manuscript.

Indeed, CCR5 and CCR2 have interrelated pharmacologies in immune signaling, particularly

for the inhibitory myeloid compartment, which may overcome potential interreceptor redun-

dancy or enable a synergistic effect in limiting COVID-19 adverse immunopathology [76–78].

Given this, investigations into CVC as a dual CCR2/5 functional antagonist offer a unique

rationale for the potential treatment of COVID-19.

Cardiovascular sequelae

In addition to respiratory involvement, patients afflicted with COVID-19 often experience car-

diovascular complications or have an exacerbation of underlying cardiac disease [79]. While

the exact mechanism of this has not been fully elucidated, current evidence points toward an

inflammatory response underpinning the adverse cardiovascular outcomes in COVID-19

patients. In a cross-sectional cohort study of 130 patients (ranging in severity of COVID-19)

where peripheral blood mononuclear cells were analyzed, surface proteome, T/B lymphocyte

antigen receptors, and single-cell transcriptome analyses revealed nonclassical monocytes

were largely expanded and expressed complement transcripts (CD16 + C1QA/B/C+) that

sequestered platelets and were predicted to replenish the alveolar macrophage pool in

COVID-19 [80]. Other research, including in vitro and in vivo studies, has shown that bio-

markers of inflammation such as IL-6, IL-8, C-reactive protein, and CCL2 are associated with

thrombus development along with leukocytes [81].

Chemokines such as CCL2 and CCL5, along with their coreceptors CCR2 and CCR5,

respectively, have long been associated with vascular disease [78,82,83]. CCL2/CCR2 and

CCL5/CCR5 recruit monocytes to migrate to sites of inflammation including atherosclerotic

plaques; circulating monocytes can trigger tissue factor expression via the release of cytokines

from activated platelets and endothelial cells. A signature marker of COVID-19–associated

coagulopathy is the presence of neutrophil extracellular traps, which recruit myeloid cells to

the culprit site via CCL2 [84–86]. Early recruitment of neutrophil and monocytes trigger factor

XII-dependent coagulation and tissue factor delivery thus contributing to the formation of a

thrombus [87]. In one study, deep vein thrombosis was induced in wild-type and growth-

arrest–specific 6 (Gas6)-deficient mice [81]. Gas6 promoted the recruitment of inflammatory

monocytes via CCL2/CCR2. Inflammatory monocyte recruitment via these pathways also

occurs in other cardiovascular diseases such as myocardial infarction [49]. A study, examining

the expressions of CCL2 and CCR2 in the plasma, found that in 80 STEMI (ST-Elevation Myo-

cardial Infarction) patients with platelet high response, patients had higher expressions of
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CCL2 or CCR2 than those patients with a platelet normal response. Exogenous recombinant

human CCL2 increased platelet aggregation and granule secretions in vitro; these were abol-

ished by a CCR2 inhibitor or a CCL2 neutralizing antibody [49]. These studies further support

the theory that the CCL2/CCR2 pathway is vital in cardiovascular events. Given the adverse

cardiovascular-related events seen in COVID-19, blockade of CCR2 could potentially reduce

these adverse outcomes by decreasing the amount of circulating and infection site accumula-

tion of inflammatory monocytes and other myeloid populations [79,81,88,89].

Mechanism of action of CVC

CVC is an orally bioavailable, small-molecule chemokine receptor antagonist with similar in

vitro potency against cognate ligand binding to both CCR2 and CCR5 receptors (IC50 = 2 to 6

nM) [26,74]. It is an immunomodulator that can decrease the transmigration of immune cells

through the blockade of CCR2 and CCR5, thereby preventing monocytes (that differentiate

into inflammatory tissue macrophages) and lymphocytes from penetrating lung tissue [90].

The mechanisms of monocyte recruitment to injured lungs and their contribution to inflam-

matory macrophages appear to be very conserved across tissues, because similar (monocyte-

derived) macrophage tissue phenotypes can be observed and mediate inflammation in models

of lung injury, as well as, for example, liver injury [91–93].

CVC was initially developed as an anti-HIV drug by Takeda and then Tobira, prior to

acquisition by Allergan for investigation in liver disease, namely liver fibrosis with NASH

(Allergan subsequently acquired by AbbVie). CVC displays potent, selective anti–HIV-1 activ-

ity via binding to CCR5 as a coreceptor of HIV-1 and to prevent virus entry into the cell

[25,26]. CVC is efficacious in treating HIV infection with HIV-suppressive activity at doses

associated with a highly favorable safety profile as demonstrated in a comprehensive Phase 2b

clinical study compared with the then standard of care (SoC) comparator efavirenz [25]. High-

level dual receptor blockade was demonstrated as highlighted by the high levels of viral sup-

pression (not achievable without 100% CCR5 occupancy) and dose-dependent increases of

CCL2 [25,94]. Elevation of CD4 count was numerically greater in the CVC arms than SoC

comparator arms (no statistical analysis reported), and the myeloid inflammatory marker

sCD14 was reduced in the CVC arms, but elevated in the SoC arms, with this difference being

statistically significant [25]. Despite this encouraging profile as a direct-acting antiviral candi-

date agent for HIV infection, it was not further developed as an HIV clinical candidate follow-

ing its acquisition by Allergan, but investigated instead for potential therapy of NASH with

liver fibrosis, due to the pharmacologies associates with CCR2 and CCR5 in this disease

[27,28]. In a Phase 2b study, CVC showed an improvement in liver fibrosis compared to pla-

cebo after 1 year of therapy with similar safety profiles between both CVC and placebo groups.

It was also associated with reduced levels of markers of cardiovascular outcomes such as C-

reactive protein and fibrinogen and biomarkers of inflammation such as IL-6 and IL-1β
[27,28]. Despite mechanistically associated evidence of efficacy, the AURORA Phase 3 study

was terminated early due to lack of efficacy based on the results of the planned interim analysis

of Part 1 data. While no efficacy data for CVC in animal models of SARS-CoV-2 infection

exist, there is evidence from preclinical in vivo models (in mice) that CCR2/CCR5 inhibition

by means of CVC administration suppresses the inflammatory-mediated organ injury [95–

97]. In models of acute liver injury to mice (by acetaminophen or the hepatotoxin carbon tet-

rachloride), CCR2 specifically inhibits the recruitment of monocytes into injured liver that

give rise to inflammatory monocyte-derived tissue macrophages [96]. Of note, the number of

Kupffer cells in the liver (tissue-residing macrophages), remains unaltered upon CVC admin-

istration, suggesting that only freshly recruited inflammatory cells are blocked, with
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preservation of basic homeostatic functions of tissue phagocytes (such as defense against bacte-

ria or other infectious threats). In longer-term injury preclinical in vivo models reflecting

NASH, treatment with CVC prevents fibrosis in the liver [95].

These same receptors that play a role in inflammation in hepatic injury may also play a vital

role in the immune response that occurs in patients with moderate and severe COVID-19

infections. In one study, CVC was studied for its inhibitory effect on the replication of SARS--

CoV-2 in cell cultures [26]. CVC was found to be a selective but fairly weak inhibitor of the

viral replication (IC50 for virus-induced cell destruction and viral RNA levels were 19.0 and

2.9 μM, respectively). Such low levels of potency may not be sufficient for a direct antiviral

effect, but the potent blockade of key immune populations, such as myeloid-derived suppres-

sor cells may increase the effector B and T cell lymphoid populations for indirect immune-

based antiviral activity as seen in other viral infections [37,98–100]. We therefore predict that

each of the CCR2 and CCR5 receptors has a complementary role in infection-associated

inflammation and tissue sequelae in COVID-19 with CCR2/CCL2 seen in both early and late

stages of infection and CCR5/CCL5 seen later in the infectious process [63]. Blockade of both

may also disable inter-receptor compensatory mechanisms of these 2 closely related G-protein

coupled receptors (GPCRs): CCR2 and CCR5 are key mediators of myeloid cell trafficking and

migration into tissues and lymphoid regulation. By blocking the CCR2 and the CCR5 path-

ways, it is anticipated that the administration of CVC may be beneficial in potentially prevent-

ing or reversing the pulmonary and vascular sequelae associated with COVID-19.

Safety of CVC

CVC is a well-tolerated oral formulation with most adverse events considered mild or moder-

ate; the most common side effects reported are nausea, headache, and diarrhea [25,28]. CVC

should be administered with food for optimal absorption. There were no major safety signals

in over 2,000 patients exposed to CVC, including vulnerable patient populations such as

patients with HIV-1 or patients with liver cirrhosis in CVC clinical trials [25,27,28,101]. CVC

does not have apparent dose or exposure-related safety signals, and there is no evidence of pro-

moting (bacterial) infections, including in HIV–positive patients. In preclinical models, CVC

inhibited functioning of monocytes and macrophages but other immune cell populations such

as neutrophils or lymphoid cells were not adversely affected [102]. Functional blockade of

CCR5 by maraviroc and CCR2 by clinical candidate agents to date has met with a fairly benign

safety profile in patients across a range of indications. The homozygous Δ32 mutation of

CCR5 has been reported as less prevalent in COVID-19 patients, with transcript levels higher

in patients versus controls [103,104], although disease course has been reported with no associ-

ation [105]. However, of particular note is the strong association of the Δ32 CCR5 genotype

with increased susceptibility to West Nile virus infection [106,107]. In areas of high West Nile

Virus prevalence, the potential utility of maraviroc or CVC for the treatment or prophylaxis of

COVID-19 would need significant consideration. A higher dose than what has been used in

NASH could potentially be advantageous in COVID-19 patients, as this might ensure faster

CCR2 and CCR5 inhibition (i.e., target engagement) of CVC. There is potential for drug-drug

interactions with strong cytochrome P450 (CYP 450) 3A4 inhibitors; while remdesivir is a sub-

strate and inhibitor of CYP3A4 in vitro, the clinical relevance of these in vitro findings has not

been established [108]. To this end, although CVC as a direct-acting anti-HIV agent was no

longer pursued following its acquisition from Tobira by Allergan, and the limited efficacy

observed in Phase 3 for NASH with liver fibrosis during its tenure with Allergan and now Abb-

Vie, the pharmacologies and safety profile of this clinical candidate made a case for its evalua-

tion in COVID-19.
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Conclusions

The worldwide spread of SARS-CoV-2 and the associated morbidity and mortality have led to

an urgent need for additional therapies to mitigate, including pulmonary and vascular compli-

cations of COVID-19. This review describes the role of the CCL2/CCR2 and CCL5/CCR5 che-

mokine pathways associated with amplification of inflammatory responses in COVID-19 and

the role of CVC in inhibiting this pathway [109]. CCL2/CCR2 are critical for monocyte and

macrophage migration, a potential mechanism may be monocyte infiltration into the lungs via

airway specific expression of CCL2/CCR2 in patients with severe COVID-19 [3,47]. CCL2

contributes to monocyte recruitment in acute lung injury (and subsequent neutrophil-medi-

ated tissue injury) as demonstrated in multiple animal studies [2,63]. CCL2 is up-regulated

into the lungs of patients with ARDS, which then induces the migration of circulating CCR2

positive inflammatory cells into the alveoli; airways of patients with COVID-19 express pro-

inflammatory mediators, including CCL2; airway myeloid cells propagating inflammatory

responses in COVID-19 is further supported by the excessive CCL2 levels found in airways,

but not blood in COVID-19 patients versus healthy controls [3,110]. Targeting airway-derived

cytokines, such as CCL2, via a CCR2 antagonist may be effective in reducing lung damage and

preventing further respiratory sequelae in severe COVID-19 [3]. CCL5 was also expressed

>100-fold in SARS-CoV patients with a return to baseline of inflammatory markers such as

IL-6 with the administration of leronlimab, further supporting that both CCR2 and CCR5

receptors play a role in the inflammatory airway processes [65]. Cardiovascular studies have

demonstrated higher expression of CCL2/CCR2 increased the risk for higher platelet response,

atherosclerosis, and thrombus formation [49,81,88]. CCR2 and CCR5 may be potential targets

for inhibiting airway and cardiovascular inflammatory processes and reducing lung and car-

diovascular damage in those inflicted with SARS-CoV-2 [3].

CVC, a dual, potent CCR2 and CCR5 inhibitor, has demonstrated its effect on mitigating

inflammatory pathways in both HIV-1 patients and patients with NASH along with decreasing

HIV-1 RNA [25,27,28]. It is theorized that CVC could potentially have a similar effect with

respect to reducing adverse inflammatory effects associated with COVID-19. By inhibiting

both the CCR2 and CCR5 receptors, CVC may decrease the migration of circulating immune

cells early in the infectious process as well as inhibiting tissue-based immune cells at later

stages, with subsequent effects of decreasing both pulmonary and vascular sequelae associated

with the increased of inflammatory markers. Cell culture studies have demonstrated that CVC

is a modest inhibitor of SARS-CoV-2 in vitro, although indirect antiviral activity may be more

likely a consequence of CVC-dependent block of immunosuppressor cell infiltration to infec-

tion sites, such as CCR2- and CCR5-dependent myeloid suppressor cells [26,38,99,100]. CVC

has been studied at doses of 100 mg, 150 mg, and 200 mg and found to be well tolerated with

most adverse events mild to moderate in severity [25,27,28].

Further research is needed to determine the utility of CVC in treating patients with moder-

ate to severe COVID-19. At the time of publication drafting, there are currently 3 ongoing

studies of CVC in COVID-19 patients: I-SPY/COVID Clinical Trial (NCT04488081), ACTIV-

1/NIAD/NIH Consortium Study (NCT04593940), and the single-center Charité trial of CVC

treatment for COVID-19 patients in Germany (NCT04500418) [111–113]. The I-SPY trial dis-

continued testing of CVC as it met the predefined futility criterion, defined as at least 90%

probability that the hazard ratio for time to recovery is less than 1.5 compared with the control

arm [114]. It should be noted that dexamethasone was included in the treatment and partici-

pants in this study were critically ill. The other trials include less severe infection in hospital-

ized COVID-19 patients. Given the benign safety profile of CVC, the oral bioavailability, and

the multimodal pharmacologies that align with disrupting COVID-19 pathology, investigating
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CVC in early infection, mild disease, and in the post-acute COVID-19 populations also have

merit.
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