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lupus genes on meta-analysis of GWAS datasets
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Abstract Systemic lupus erythematosus (SLE) is a complex
disorder. Genetic association studies of complex disorders suf-
fer from the following three major issues: phenotypic hetero-
geneity, false positive (type I error), and false negative (type II
error) results. Hence, genes with low to moderate effects are
missed in standard analyses, especially after statistical correc-
tions. OASIS is a novel linkage disequilibrium clustering al-
gorithm that can potentially address false positives and nega-
tives in genome-wide association studies (GWAS) of complex
disorders such as SLE. OASIS was applied to two SLE
dbGAP GWAS datasets (6077 subjects; ∼0.75 million
single-nucleotide polymorphisms). OASIS identified three
known SLE genes viz. IFIH1, TNIP1, and CD44, not previ-
ously reported using these GWAS datasets. In addition, 22
novel loci for SLE were identified and the 5 SLE genes pre-
viously reported using these datasets were verified. OASIS
methodology was validated using single-variant replication
and gene-based analysis with GATES. This led to the verifi-
cation of 60% of OASIS loci. New SLE genes that OASIS
identified and were further verified include TNFAIP6,
DNAJB3, TTF1, GRIN2B, MON2, LATS2, SNX6, RBFOX1,
NCOA3, and CHAF1B. This study presents the OASIS algo-
rithm, software, and the meta-analyses of two publicly avail-
able SLE GWAS datasets along with the novel SLE genes.
Hence, OASIS is a novel linkage disequilibrium clustering

method that can be universally applied to existing GWAS
datasets for the identification of new genes.
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Introduction

Complex disorders such as systemic lupus erythematosus
(SLE) could be thought of as a mixture of multiple resembling
phenotypes, each a result of a separate mutation in genes of a
causal pathway (Saeed 2017). Finding a particular gene then
depends on the enrichment of a causal mutation carrying hap-
lotype in the study sample. In a genome-wide association
study (GWAS), hundreds of thousands of genetic markers
are typed creating a multiple testing problem. As a result of
random noise, true association signal is hard to decipher. To
reduce this error (type I), corrective measures such as the
Bonferroni are applied. These may be overly corrective and
prevent identification of true associations (type II error), lead-
ing to increase in study sample sizes and consequent expense.

GWAS is based on the principle that complex disorders are
caused by common variants (frequency >1%) and should
therefore be detectable by linkage disequilibrium (LD) map-
ping using a large number of common variants. Here, this
principle is expanded upon by the development of a novel
clustering algorithm to identify genes and loci of interest in
SLE. As previously shown, gene- or region-based association
analysis is an approach that may improve the power of GWAS
and allow detection of genes of modest influence (Zhang et al.
2015). It is known that true genetic associations are accompa-
nied by signals from surrounding markers; i.e., single-
nucleotide polymorphisms (SNPs) in LD with the susceptibil-
ity mutation also have statistically significant P values (Martin
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et al. 2000). Diagrammatically, these surrounding SNPs form
a cluster around the causal variant, an BOASIS,^ observable in
numerous GWAS (Duerr et al. 2006; Edwards et al. 2005;
Rioux et al. 2007). Metaphorically, these clusters represent
oasis in Bgene deserts,^ a term usually used to describe ab-
sence of coding sequences in DNA; however, in the context of
gene, hunting may represent absence of disease susceptibility
genes. Hence, this algorithm is termed OASIS.

In this study, OASIS meta-analysis of two SLE GWAS
datasets (Harley et al. 2008; Hom et al. 2008) identified three
known SLE genes viz. IFIH1, TNIP1, andCD44 that were not
identified in the original studies. OASIS verified the five
genes either of the two studies identified, in both datasets
viz. STAT1/STAT4, DNASE1L3/PXK, IRF5, BLK, and
ITGAM/ITGAX. Furthermore, 22 new loci for SLE were iden-
tified. Of these, 10 genes were validated by standard single-
variant and/or gene-based replication. These new SLE genes
include TNFAIP6, DNAJB3, TTF1, GRIN2B, MON2, LATS2,
SNX6, RBFOX1, NCOA3, and CHAF1B. Hence, OASIS is a
novel LD clustering method that can be broadly used to mine
existing GWAS datasets for new complex disease genes.

Methods

Datasets

GWAS datasets were obtained online from the publicly avail-
able dbGAP repository. Meta-analysis of two SLE datasets,
phs000202 (Harley et al. 2008) and phs000122 (Hom et al.
2008), was conducted using OASIS. The dataset phs000202
consisted of 706 SLE females and 353 controls and was used
for screening (Harley et al. 2008), while phs000122, compris-
ing of 1435 SLE cases and 3583 controls genotyped for 500 K
SNPs, was used as the replication dataset (Hom et al. 2008).
The P values reported in these datasets were based on standard
association analysis results as described in the original studies
(Harley et al. 2008; Hom et al. 2008).

OASIS algorithm

In the OASIS algorithm, LD clusters were defined by 200 kb
regions. This cutoff has previously been used to define an LD
cluster (Bentham et al. 2015). The GWAS file was ordered
sequentially by chromosomes and position. The first variant
that had a P ≤ 0.05 was considered the start of a new OASIS
block. SNPs with P ≤ 0.05, located within 200 kb of this initial
SNP, were counted to form theOASIS score. The 3-sigma (3σ;
three standard deviations or a value ≥99.7%of the data) cutoffs
were calculated for the −log [P] values and the OASIS scores.
This structured the data in two axes (−log [P] and OASIS) and
four groups viz. quadrants A–D (Fig. S1). Quadrant A loci
were those that crossed the 3σ cutoffs on both axes, quadrant

B loci were positive on −log [P] but not on OASIS, quadrant C
loci were positive onOASIS scores but not on −log [P], where-
as quadrant D loci failed to meet the 3σ cutoffs on either axis.

OASIS software

The code has beenwritten in Python 2.7.9 (https://github.com/dr-
saeed/OASIS/blob/master/OASIS.py) and comprises of three
modules. Module 1 reads the GWAS data file and calculates
the OASIS scores which are processed by Module 2 to
generate the 3σ statistics and graphs (saved in PNG format),
for −log [P] values, OASIS scores, and quadrants A–D for
each chromosome (Fig. S1). The software can be used for anal-
ysis using varying OASIS block sizes, though 200 kb is set as
default. GWAS data from dbGAP as well as PLINK output files
can be analyzed using the OASIS software. Module 3 is for
creating a composite of two GWAS datasets into a single html
table with clickable links to NCBI Mapview for easy location of
associated regions. Module 3 highlights the overlapping 3σ sig-
nificant regions in the two datasets with information on their
respective quadrants, maximum −log [P] values in those regions,
and OASIS scores, besides other valuable data in a tabulated
scrollable format. LD has been previously shown to maximally
extend to about 2 Mb (Saeed et al. 2009). Therefore, loci over-
lapping within 2 Mb distance were considered replicated in
Module 3 analyses. Moreover, this allowed a reasonable com-
parison between GWAS datasets, which often use different
genotyping platforms.

OASIS validation using standard analysis

Single-variant replication was performed on SNPs with max-
imum −log [P] values in loci identified by OASIS. These
SNPs in the dataset phs000202 (Harley et al. 2008) were ver-
ified for association in the phs000122 (Hom et al. 2008)
dataset. Gene-based replication was performed using Gene-
based Association Test using Extended Simes procedure
(GATES) (Li et al. 2011) as implemented in the KGG software
(Li et al. 2010). SNPs were mapped onto genes according to
positional information from the NCBI GRCh37 database, and
SNPs within 10 kb upstream and 10 kb downstream of each
gene were included as well (Zhang et al. 2015). OASIS can-
didate genes were used as the seed list for GATES verification.

Results

Linkage disequilibrium clustering (OASIS)

Data for 258,357 and 489,876 SNPs was available from
dbGAP for the datasets phs000202 and phs000122, respec-
tively (Harley et al. 2008; Hom et al. 2008). The input data
included information on chromosome number, SNP, location,
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and P value. On OASIS analysis, 5082 regions in the
phs000202 dataset were identified, which had at least one
variant with a P ≤ 0.05. Similarly, 6342 such OASIS blocks
were identified in the dataset phs000122. Of these, 292 loci
crossed the 3σ cutoffs and were classified in quadrants A, B,
or C (159 from the dataset phs000202 and 133 from
phs000122). OASIS Module 3 analyses showed that 34
blocks replicated in both datasets. A locus was considered
replicated when at least two OASIS blocks from separate
datasets were located less than 2 Mb apart. Some of these
blocks overlapped, resulting in the identification of a total of
30 SLE loci containing 80 candidate genes (Table S1).

The HLA locus on chromosome 6 showed the highest sig-
nificance in both datasets on OASIS as well as −log [P] anal-
ysis (Fig. 1a, b), dwarfing other signals. This affected the 3σ
cutoff values, and a second OASIS analysis for non-HLA loci
was performed after removing the variants in the HLA locus
(25–34Mb). It is this analysis that resulted in the identification
of 292 loci mentioned above (Fig. 2a, b).

In the original studies, five genes/loci were identified
using these datasets (Harley et al. 2008; Hom et al. 2008).
STAT1/STAT4, ITGAM/ITGAX loci, and IRF5 were found
to be associated with SLE in both studies (Harley et al.
2008; Hom et al. 2008). These were verified by OASIS as
well. However, DNAse1L3/PXK locus was originally
identified using the dataset phs000202 (Harley et al.
2008) and BLK was identified only in the dataset
phs000122 (Hom et al. 2008), while OASIS identified
these loci in both datasets (Table S1). BLK was identified
in quadrant B and replicated in quadrants A and C.

DNAse1L3/PXK locus was found to be significant in
quadrant B in both screening and replication datasets.
This shows that the reason these two loci were missed
in one of the studies was due to the use of the stringent
Bonferroni correction. Moreover, this finding verifies the
application of the 3σ rule to GWAS data.

The success of the OASIS methodology is demonstrat-
ed by the identification of known SLE genes not identi-
fied using these datasets in the original studies. IFIH1
screened positive in quadrant C and replicated in quadrant
B (locus 2; Table S1). This shows that the OASIS algo-
rithm based on LD clustering is valid, since IFIH1 shown
to be associated using standard analysis in several sepa-
rate later datasets could not be previously identified in the
datasets used here (Gateva et al. 2009; Robinson et al.
2011; Wang et al. 2013). Verification in quadrant B again
strengthens the concept of using the 3σ rule. Of even
greater significance was the identification, using these
GWAS datasets, of the known SLE genes TNIP1 (locus
7) and CD44 (locus 15). Both these genes could not be
identified in these datasets using standard association
analysis, though they have been shown to be associated
with SLE in later studies (Gateva et al. 2009; Lessard
et al. 2011; Sheng et al. 2015; Yung and Chan 2012;
Ramos et al. 2011). However, using the novel OASIS
algorithm, these genes were identified and replicated in
quadrant C, indicating the sheer usefulness of this analytic
technique.

The above findings lend support to the 22 novel SLE
loci that were found using OASIS (Table S1). Interesting

Note: 

A – OASIS screening analysis with dataset phs000202 7

B – OASIS replication analysis with dataset phs000122 8

Fig. 1 a, bHLA association with SLE on chromosome 6 shows the high
association signal (−log [P] and OASIS score—y axes) on chromosome 6
(SNP position in base pairs—x axis) for data from both SLE GWAS

studies (Harley et al. 2008; Hom et al. 2008). OASIS software
automatically generates these graphs as PNG and marks the 3σ cutoff
values with a mauve dashed line on the y axes
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candidate genes included TNFAIP6 (locus 1), DNAJB3
(locus 4), TTF1 (locus 13), MON2 (locus 20), LATS2 (lo-
cus 21), RBFOX1 (locus 26), NCOA3 (locus 29), and
CHAF1B (locus 30). Besides their potential pathogenic
significance to SLE, the association signals at these loci
were mostly concentrated in a narrow region around these
genes signifying strong focal LD. The LATS2 and
CHAF1B loci are of particular interest because they were
either identified or replicated in quadrant A. Most other
loci were found in quadrant B or C. Interestingly, LATS2
was identified in quadrant C and replicated in quadrant A
and vice versa for CHAF1B. These findings further
strengthen the LD-based clustering approach of OASIS.

Single-variant replication

To validate the loci identified by OASIS in a standard
association study model, SNPs that showed the maximum
−log [P] values in the OASIS analysis of dataset
phs000202 (Harley et al. 2008) were subjected to replica-
tion in the phs000122 (Hom et al. 2008) dataset. As
shown in Table 1, 7 of 34 SNPs replicated. Of the genes
identified in the original studies (Harley et al. 2008; Hom
et al. 2008), SNPs in IRF5, ITGAM/ITGAX, and STAT1/
STAT4 replicated, while those in the BLK and DNASe1L3/
PXK did not. The SNP, rs2785197, with the highest −log
[P] value in the OASIS locus for CD44, a known SLE

Note: 

A – OASIS screening analysis with dataset phs000202 7

B – OASIS replication analysis with dataset phs000122 8

Fig. 2 a, b OASIS genome-wide association in the two SLE datasets
shows the −log [P] values for variants across the genome according to
their categorization in quadrants (A, B, or C) in the two SLE datasets

(Harley et al. 2008; Hom et al. 2008). This is based on the intersection of
−log [P] and OASIS score for each variant

Table 1 Single-variant
replication of OASIS identified
loci

SLE gene (OASIS) SNP ID P value Rank FDR P-FDR

IRF5 rs12537284 5.50E−07 1 1.47E−03 1.47E−03
ITGAM, ITGAX rs9888739 6.65E−07 2 2.94E−03 2.94E−03
IRF5 rs4728142 1.46E−06 3 4.41E−03 4.41E−03
STAT1, STAT4 rs3771327 1.25E−03 4 5.88E−03 4.63E−03
CD44 rs2785197 7.13E−03 5 7.35E−03 2.18E−04
RBFOX1 rs1881335 3.34E−02 6 8.82E−03 NS

MIRLET7I, PPM1H, MON2 rs2704757 4.38E−02 7 1.03E−02 NS

SNPs with the highest −log [p] values in the screening dataset (Harley et al. 2008) were verified in the replication
dataset (Hom et al. 2008). Seven SNPs replicated at p < 0.05 and five SNPs crossed the false discovery rate (FDR).
Known SLE genes are in bold
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gene not identified in the original studies, also replicated
and crossed the false discovery rate (FDR). Two novel
genes identified using OASIS were nominally significant,
RBFOX1 and MON2/PPM1H.

Gene-based replication

Both datasets (Harley et al. 2008; Hom et al. 2008) were
independently subjected to gene-based association using
GATES. Of the 80 candidate genes OASIS identified, 24
nominally replicated using GATES at the gene-based level
in at least one dataset (Harley et al. 2008; Hom et al.
2008). IRF5 was the only gene that crossed the
Benjamini and Hochberg correction in both datasets
(Table 2). Given that known SLE genes from the original
studies (Harley et al. 2008; Hom et al. 2008) could not be
identified after correction, nominal P values were consid-
ered evidence of replication. GATES identified known
SLE genes IFIH1 and TNIP1 in dataset phs000122
(Hom et al. 2008) confirming OASIS findings. However,

CD44 did not replicate using GATES in either dataset in
spite of being an established SLE gene. Similarly,
RBFOX1 also did not replicate using GATES. GRIN2B
and SNX6 were the two novel OASIS candidate genes that
replicated nominally in both datasets (Harley et al. 2008;
Hom et al. 2008). TNFAIP6, DNAJB3, TTF1, MON2,
LATS2, NCOA3, and CHAF1B were verified using
GATES in at least one of the datasets (Table 2) (Harley
et al. 2008; Hom et al. 2008). Therefore, composite anal-
yses with single-variant replication, gene-based (GATES)
and LD clustering (OASIS)-based approaches, have im-
mense potential to mine complex disease genes of low
to moderate effect sizes.

Discussion

In this study, meta-analysis of two dbGAP GWAS datasets
(Harley et al. 2008; Hom et al. 2008) using OASIS identified
three known SLE genes viz. IFIH1, TNIP1, and CD44 that

Table 2 Gene-based association
(GATES) of OASIS candidate
genes

Chromosome Position Gene P7 BH7 P8 BH8

2 152,214,105 TNFAIP6 3.59E−02 8.33E−01
2 163,123,588 IFIH1 3.40E−04 3.37E−01
2 191,840,262 STAT1 2.93E−02 8.10E−01
2 191,894,301 STAT4 1.21E−03 4.94E−01 2.42E−12 5.72E−08
2 234,651,395 DNAJB3 7.38E−03 6.74E−01
3 58,178,352 DNASE1L3 4.25E−02 8.51E−01
3 58,318,616 PXK 1.32E−02 7.52E−01
5 150,409,503 TNIP1 7.31E−03 6.45E−01
7 31,823,125 PDE1C 1.49E−03 4.77E−01
7 128,580,723 IRF5 2.92E−06 1.81E−02 8.25E−11 9.75E−07
8 11,351,520 BLK 9.99E−02 9.04E−01 2.57E−06 1.22E−02
9 135,250,936 TTF1 1.10E−04 1.70E−01
12 12,268,960 LRP6 9.80E−04 4.51E−01
12 13,714,409 GRIN2B 4.48E−02 8.47E−01 4.65E−02 8.59E−01
12 31,079,837 TSPAN11 4.80E−04 4.71E−01
12 62,860,596 MON2 1.33E−02 7.52E−01
13 21,547,175 LATS2 1.93E−03 5.36E−01
14 35,030,617 SNX6 4.43E−02 8.47E−01 4.93E−02 8.68E−01
14 73,436,152 ZFYVE1 1.39E−02 7.59E−01
16 31,271,287 ITGAM 7.00E−04 4.74E−01 5.98E−06 2.02E−02
16 31,366,454 ITGAX 3.35E−02 8.29E−01 4.81E−06 1.90E−02
20 46,130,600 NCOA3 1.80E−03 5.64E−01
20 46,286,149 SULF2 6.55E−03 6.73E−01
21 37,757,688 CHAF1B 7.02E−03 6.42E−01

GATES was used to carry out gene-based association of the 80 OASIS candidate genes identified in 30 loci.
Known SLE genes and the p values that crossed the Benjamini and Hochberg (BH) correction are highlighted in
bold. Nominally significant p values for the genes in the screening (Harley et al. 2008) and replication (Hom et al.
2008) SLE GWAS datasets are shown
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could not be discovered previously using these datasets. The
algorithm verified the five genes either of the two SLE studies
identified, in both datasets viz. STAT1/STAT4, DNASE1L3/
PXK, IRF5, BLK, and ITGAM/ITGAX. Furthermore, 10 new
SLE genes were identified and validated using single-variant
and gene-based analyses. Hence, OASIS is a unique method
of GWAS meta-analysis that can be employed to identify new
genes and loci.

Complex disorders such as the SLE are diverse, manifest-
ing more like syndromes than singular diseases (Saeed 2017).
Therefore, GWAS cohorts in effect, pool multiple mutations in
separate genes of a mixture of resembling phenotypes. For
instance, DNAse1L3 mutations code for both SLE and
hypocomplementemic urticarial vasculitis (HUVS), pheno-
types that are clinically classified separately but nonetheless
substantially overlap (Al-Mayouf et al. 2011; Ozçakar et al.
2013). When assumed this way, genome-wide corrections
such as Bonferroni lose power to identify the myriad of vari-
ants responsible for the phenotypic heterogeneity of a com-
plex disorder. Similarly, more than one gene may exist at a
locus for a complex disorder as exemplified by the identifica-
tion of ANXA6 as a SLE gene located immediately down-
stream of TNIP1 (Zhang et al. 2015). Hence, LD-based clus-
tering algorithms such as OASIS that focus association signals
to loci are of critical importance and can be followed up by
biological studies for verification of particular genes.

Despite the identification of large number of genes in
multiple comprehensive SLE GWAS and candidate gene
studies, they together explain only 15% of SLE heritability
(Bentham et al. 2015). One possible reason for this discrep-
ancy could be increased numbers of false negatives in
GWAS due to stringent corrections such as Bonferroni.
The 3σ rule is a time-tested statistic that, as shown here,
can potentially overcome the problem of false negatives in
GWAS. OASIS identified BLK and DNAse1L3/PXK loci
using the 3σ statistic in both SLE datasets, though these
had been missed previously in one of the datasets (Harley
et al. 2008; Hom et al. 2008). Thus, the 3σ statistic applied
to GWAS datasets without any correction provides greater
opportunity to identify novel genes. Hence, no corrections
were applied to the results even though OASIS incorporates
two different mechanisms to observe the same underlying
phenomenon, i.e., LD (Streiner and Norman 2011).
Possibly as this new method of gene discovery evolves, it
will become clearer as to what types of correction methods
may be applied. However, it has been previously argued that
corrections should not be made for multiple comparisons in
order to reduce the type II error (Rothman 1990). This was
aptly demonstrated in the gene-based replication of OASIS
loci using GATES. The only gene that survived the
Benjamini and Hochberg correction in both datasets was
IRF5, whereas several genes were significant at the uncor-
rected nominal level (Table 2).

Standard association analysis is based on the χ2 statistic,
which is skewed by low-frequency alleles and can result in
highly significant P values (type I error). Clustering of signif-
icant SNPs, as in OASIS, reduces the possibility of false pos-
itive associations (type I error). OASIS is an algorithm that
functions in a manner akin to global tests of association such
as gene- or pathway-based tests (Christoforou et al. 2012;
Neale 2004). The identification in quadrant C, of SLE genes
TNIP1 and CD44, validates the novel strategy of LD cluster-
ing in OASIS.

Replication has been the classic mechanism of verification
to avoid type I errors. Here, the OASIS findings were repli-
cated using standard single-variant and gene-based analyses.
The verification of known SLE genes (IFIH1, CD44, and
TNIP1/ANXA6) in datasets that did not previously identify
them is categorical evidence of the validity of OASIS as a
novel gene-hunting tool. About 20% of variants in OASIS-
identified loci replicated in single-variant analysis, whereas
30% of OASIS candidate genes (24 of 80) replicated using
GATES. This together led to the validation of 60% (18 of 30)
of the OASIS-identified loci.

These validated SLE genes are biologically relevant.
TNFAIP6 codes for the protein TSG-6 which inhibits presen-
tation of chemokines on endothelial surfaces leading to de-
creased infiltration of Tcells and dendritic cells during inflam-
mation (Dyer et al. 2016). Loss-of-function variants in
TNFAIP6 may predispose to SLE. TTF1 is a nucleolar factor
that controls transcription of the ribosomal RNA genes. This
process determines the cell-cycle state from proliferation to
apoptosis (Lessard et al. 2012). TTF1 levels are regulated by
MDM2-mediated ubiquitinylation (Lessard et al. 2012).
MDM2 is known to promote SLE in a murine model (Allam
et al. 2011). Possibly, TTF1 variants that decrease
ubiquitinylation by MDM2 may lead to lymphoproliferation
in a manner similar to MDM2 overexpression, leading to SLE
(Allam et al. 2011). LATS2 promotes apoptosis by shunting
p53 to pro-apoptotic promoters (Aylon et al. 2010). LATS2 is
also known to function as a negative regulator of TNF-α-
induced NF-κB activation (Yao et al. 2015). CHAF1B is in-
volved in epigenetic control of chromatin dynamics during
cell cycling, and its inhibition leads to apoptosis and accumu-
lation of double-strand breaks (Nabatiyan and Krude 2004).
MON2 and SNX6 are involved in endosome-to-Golgi traf-
ficking (Mahajan et al. 2013). SNX6 traffics members of the
TGF-β family of receptor serine-threonine kinases (Parks
et al. 2001). NCOA3 codes for the SRC-3 protein that plays
an important role in maintenance of T cell function (Li et al.
2012).

The OASIS algorithm provides an alternative to increasing
sample sizes for GWAS to ascertain variants with low to mod-
erate effect sizes. This is made possible by composite analysis
based on two axes (−log [P] and OASIS blocks) divided into
association quadrants. This unifies two aspects of the LD
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phenomenon—strength of association of a single-variant and
the number of significant genetic markers (Fig. S1). Caveats
with the algorithm are that the results may be affected by
population-based LD, leading to high OASIS scores in re-
gions such as the HLA genomic segments (Fig. 1).
Moreover, the number of SNPs genotyped at a locus may
skew the scores as well. Population stratification in case con-
trol studies will likely affect OASIS results as it does standard
association analysis.

In summary, OASIS is a novel LD clustering algorithm
described here that can be widely applied for mining existing
GWAS datasets to identify candidate genes in an efficient,
low-cost way. These candidates can be subsequently replicat-
ed in other studies such as single-variant, gene-based analyses
and biological studies. Here, OASIS was applied to two
dbGAP SLE GWAS datasets and identified 8 known and 10
novel SLE genes. OASIS was verified using two sets of anal-
ysis viz. single-variant replication and gene-based analyses
using GATES. This study also underscores the need to make
more GWAS datasets publically available for further develop-
ment of novel analytic tools. Taken together, these findings
highlight the novelty and efficiency of LD-based clustering
approaches, such as the OASIS algorithm, for GWAS meta-
analysis of complex disorders.
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