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MicroRNA (miRNA) binding is primarily based on sequence, but structure-specific binding is also possible. Various prediction
algorithms have been developed for predicting miRNA target genes; the results, however, have relatively high levels of false
positives, and the degree of overlap between predicted targets from different methods is poor or null. We devised a new method for
identifying significant miRNA target genes from an extensive list of predicted miRNA target gene relationships using hyper-
geometric distributions. We evaluated our method in statistical and semantic aspects using a common miRNA cluster from six
solid tumors. Our method provides statistically and semantically significant miRNA target genes. Complementing target
prediction algorithms with our proposed method may have a significant synergistic effect in finding and evaluating functional

annotation and enrichment analysis for miRNA.

1. Introduction

MicroRNAs (miRNAs) are a class of small RNAs that
regulate gene expression at the transcript level, protein level,
or both [1-4]. miRNAs modulate gene activity and are
aberrantly expressed in most types of cancers [5]. Due to
their small size and stability, miRNAs can also be measured
in biologic fluids such as plasma and serum and can serve as
circulating biomarkers [6-9]. In spite of the continuous
attempts to identify miRNAs and to elucidate their basic
mechanisms of action, little is understood about their bi-
ological functions.

Because of the regulatory role of miRNAs and lack of
direct functional annotation to miRNAs, functional en-
richment methods for miRNAs rely on their target gene’s
functional annotations [10-12]. For instance, if the target
genes of a specific miRNA are significantly enriched with
a set of Gene Ontology (GO) terms, it is reasonable to infer

that the miRNA is also involved in the same GO annotations.
Several studies on miRNAs have used “predicted target-
genes’ functional annotation-based” miRNA function pre-
diction strategy [13, 14]; these methods, however, are limited
in that they do not consider the many-to-many-to-many
tripartite network topology among miRNAs, target genes,
and GO annotation [15-17]. In our previous work, we
proposed three types of measures (miRNA-centric, target
gene-centric, and target link-centric) and a novel index for
calculating the functional enrichment of miRNA. Among
the three measures, the miRNA-centric measurements
showed the best performance [18]. We also found that the
miRNA’s intrinsic properties of multiplicity and cooper-
ability may be correctly modeled by combined hyper-
geometric distributions.

Most of the miRNA-to-mRNA target links are estimated
by prediction algorithms. However, these algorithms gen-
erate a relatively high level of false positives [19], and the
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degree of overlap between predicted targets from different
methods is often poor or null [13, 20]. Studies in this field
have developed multiple databases with enormous amount
of miRNA-to-target mRNA relationships computed using
diverse algorithms [21], whereas only a few experimentally
validated targets are available [22, 23]. In light of this cir-
cumstance, there is an unmet need for a method for
identifying a significant miRNA target from a copious
amount of predicted miRNA-target mRNA pairs.

According to miRNA characteristics (multiplicity and
cooperatively activities), we employed the hypergeometric
distribution to identify significant miRNA target genes from
the extensive list of miRNA target genes. We also evaluated
the performance of our method in two aspects: statistical
significance and functional enrichment.

2. Methods

2.1. Computational Methods. To find significant target
mRNAs from the input miRNA cluster, we first searched for
target mRNAs from all miRNA members within the input
cluster from the miRNA target database. For each targeted
mRNAs, we then calculated the numbers of miRNAs that
have target relationships (p;) with the mRNA and those that
do not (p)) using the two-by-two contingency table. We also
calculated the numbers of miRNAs not in the input miRNA
cluster by dividing those that have a target relationship (py)
with the mRNA and those that do not (p;), as shown in
Table 1. Functional enrichment was tested from this con-
tingency table using a hypergeometric distribution. The
hypergeometric distribution applies to sampling without
replacement from a finite population whose elements can be
classified into two mutually exclusive categories: has/does
not have a target relationship.

We then calculated the adjusted p values using the
Bonferroni correction. Finally, for evaluating our methods,
10,000 simulated mRNA sets of the same size were also
randomly sampled from the target mRNAs of the input
miRNA cluster.

Using hypergeometric distribution, we assumed that the
coordinated function among miRNAs within a cluster is
valid when these miRNAs are regulated or annotated by
common factors such as same target mRNA, Gene Ontology,
or pathway.

2.2. Data Set: miRNA Clusters. We obtained an miRNA set
created by Volinia et al. [24] that has differentially
expressed sets of up- or downregulated miRNAs in six solid
tumor samples. Among the miRNA clusters, we selected an
miRNA cluster composed of 57 miRNAs by prediction
analysis of microarray (PAM) in six solid tumor samples
versus normal tissues. The complete list of 57 miRNAs is in
Additional File 1.

2.3. Creating Variations of the miRNA-mRNA Target Pair.
To build the miRNA-mRNA target pair, we chose three
representative miRNA databases: TarBase (Data release 6.0,
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TABLE 1: 2 X 2 contingency table of miRNA frequency calculated for
each target mRNA.

Input miRNA cluster
Target mRNA

In cluster Not in cluster
Has a target relationship pi P
Does not have a target relationship Pj )2

February 28", 2014) [23], MirTarBase (Data release 4.5,
February 28" 2014) [22], and mirDIP (Data release 1.0,
February 12, 2014) [14]. The TarBase and MirTarBase
databases provide experimentally validated miRNA-target
interaction data and evidence level (strong and less strong)
of each interaction. The mirDIP database provides in silico-
predicted miRNA-target interaction data from six estab-
lished target prediction algorithms and 12 miRNA pre-
diction databases. GO annotation of miRNA-target-mRNA
was obtained from the Entrez Gene database. We excluded
GO associations with ND (no biological data) and NR (not
recorded) evidence code. Detailed processes are provided in
Figure 1.

2.4. Statistical and Semantic Evaluation Measurement. To
evaluate our methods, we compared the performance in
terms of statistical significances between a significant 317
mRNA cluster and randomly simulated 10,000 clusters.
Each randomly generated cluster had the same size as
the significant mRNA set. GO functional enrichment
analysis was performed for all mRNA sets using GO an-
notations retrieved from the NCBI Entrez Gene database.
We filtered out 339 GO terms that were greater than 0.05.
The resulting lists of 377 GO terms are shown in Additional
File 2. To reduce the number of GO terms, enriched GO
terms and p values were submitted to REduce and Visualize
GO (REViGO).

We computed the average log p values of ranked GO
term sets from functional enrichment analysis of the sig-
nificant mRNA set and the randomly simulated 10,000
mRNA sets. These average log p values were then used for
comparing the performance. Functional enrichment was
performed using GO annotations of mRNA from NCBI
Entrez gene [25]. Average log p values of ranked GO terms
were based on the general assumption that highly significant
GO terms are more desirable because it means the members
of the cluster are highly correlated to each other. For se-
mantic evaluation of the significant mRNA set, we used
REViGO, which is a web-based system that summarizes a list
of GO terms by finding a representative subset of the
terms using the semantic similarity-based clustering algo-
rithm [26].

3. Results

3.1. Statistical Significances. For evaluating our methods, we
compare performance in terms of statistical significances
between a significant 317 mRNA cluster and randomly
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Input an miRNA cluster
(57 up- or downregulated miRNAs in
six solid tumors from Volinia et al. [8])

Localize public miRNA target data
(TarBase, MirTarBase, and mirDIP)

Integrate miRNA target data
(973 miRNAs, 29,559 mRNAs, and
5,663,591 miRNA—target mRNA pairs)

Find miRNA target mRNAs
(3,758 mRNAs)

!

For each mRNA, build a contingency table

L

Functional enrichment using a hypergeometric
distribution

l

Adjust the p value using the Bonferroni correction

J

Filter out significant mRNAs with the p value <0.05
(317 mRNAs)

FiGure 1: Flowchart of the computational method for identifying significant miRNA target genes.

simulated 10,000 clusters. Each randomly generated cluster
has the same size with the significant mRNA cluster. All
mRNA cluster performed GO functional enrichment anal-
ysis using GO annotation from the NCBI Entrez gene.
Figure 2 shows the distributions of average log p values for
the rank of GO terms which belong to the biological process
category. The significant mRNA set is shown as the red
dotted graph. Randomly simulated 10,000 clusters are
shown as box plots. The significant mRNA set showed
a higher average log p value than random clusters did, which
indicated that the members of the cluster highly correlated
and meaningfully composed.

3.2. Gene Ontology Analysis of Significant miRNA Target
Genes. Using the UniProt database as background and the
default semantic measure (SimRel), our analysis clearly
showed that biological processes associated with cancer
metabolism, regulation of cell death and apoptotic process,
and negative regulation of autophagy were significantly
overrepresented.

Figure 3 shows the REViGO scatter plot represented in
a two-dimensional space derived by applying multidi-
mensional scaling to a matrix of GO terms semantic
similarities. The resulting lists of 339 GO terms along
with their p values were further summarized by the
REViGO reduction analysis tool that condenses the GO
description by removing redundant terms. The remaining
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FiGure 2: Evaluation of statistical significance across thresholds.
The significant mRNA set and randomly simulated 10,000 clusters
are shown as red dotted graphs and box plots, respectively.

terms after the redundancy reduction were plotted in
a two-dimensional space. Bubble color indicates the p
value (legend in the upper right-hand corner): the two
ends of the colors are red and blue, which represent
lower and higher p values, respectively. Size indicates the
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FiGure 3: REViGO scatter plot for the significant mRNA set.

relative frequency of the GO term in the underlying ref-
erence UniProt databases (more general terms are rep-
resented by larger size bubbles).

4., Discussion

Functional enrichment studies for miRNA expression
are performed in three steps: (1) selecting differentially
expressed miRNAs, (2) finding their target mRNA, and
(3) carrying out analysis of mRNA set overrepresenta-
tion [27]. Functional enrichment studies for miRNAs are
mostly based on the annotation of target mRNA; however,
due to improvements in the miRNA target prediction
algorithms, a large number of target mRNAs are predicted.
Considering this, filtering out significant mRNAs using
a stable statistical method is of great importance. In
this study, we proposed a method for identifying the
significant miRNA target mRNA from the miRNA cluster.
The proposed method was verified by functional enrich-
ment analysis of differentially expressed or coexpressed
miRNA clusters.

Inaccurate functional enrichment methods are a hin-
drance in increasing clinical utility for miRNAs, such as
miRNA-based biomarkers or predictors [28, 29]. Several
tools have been recently established for direct prediction of
miRNA functions [10, 30]; however, these methods do not
consider the regulatory or indirect functions of miRNAs,
such as regulation or inhibition of target genes [31]. The

intrinsic properties of multiplicity and cooperative activities
of miRNAs should be considered while annotating the
miRNA function. miRGator v3.0 is a tool created consid-
ering these characteristics and allows the user to manually
select miRNAs and target mRNAs [32]. However, such tools
are only useful when the number of miRNA and mRNA
pairs is small.

The limitation of the proposed method is that the
hypergeometric distribution has a significant effect when
members belonging to an miRNA cluster are regulated by
common factors such as the target mRNA, GO, and path-
way. The proposed method constructs a target mRNA set
with statistical significance by receiving miRNA clusters
with similar expression characteristics. The assumption of
hypergeometric is well suited to this problem because the
cluster-received input already has similar characteristics.

The miRNA target prediction algorithms were modified
to generate more accurate results based on the expanding
understanding of the molecular mechanism of miRNA
regulation. Nevertheless, identifying significant target
mRNAs from the numerous, uncurated miRNA target links
remain as a problem. Our method is based on computa-
tionally identifying statistically significant mRNAs using
predicted or experimentally validated target relationships.
Complementing target prediction algorithms with our
proposed method may have significant synergistic effects in
finding and evaluating functional annotation and enrich-
ment analysis for miRNA.
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