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Abstract 

Background:  Successful application of mechanical ventilation as a life-saving therapy 
implies appropriate ventilator settings. Decision making is based on clinicians’ knowl-
edge, but can be enhanced by mathematical models that determine the individual 
patient state by calculating parameters that are not directly measurable. Evaluation of 
models may support the clinician to reach a defined treatment goal. Bedside applica-
bility of mathematical models for decision support requires a robust identification of 
the model parameters with a minimum of measuring effort. The influence of appropri-
ate data selection on the identification of a two-parameter model of pulmonary gas 
exchange was analyzed.

Methods:  The model considers a shunt as well as ventilation-perfusion-mismatch to 
simulate a variety of pathologic pulmonary gas exchange states, i.e. different severities 
of pulmonary impairment. Synthetic patient data were generated by model simulation. 
To incorporate more realistic effects of measurement errors, the simulated data were 
corrupted with additive noise. In addition, real patient data retrieved from a patient 
data management system were used retrospectively to confirm the obtained findings. 
The model was identified to a wide range of different FiO2 settings. Just one single 
measurement was used for parameter identification. Subsequently prediction perfor-
mance was obtained by comparing the identified model predicted oxygen level in 
arterial blood either to exact data taken from simulations or patients measurements.

Results:  Structural identifiability of the model using one single measurement for the 
identification process could be demonstrated. Minimum prediction error of blood 
oxygenation depends on blood gas level at the time of system identification i.e. the 
measurement situation. For severe pulmonary impairment, higher FiO2 settings were 
required to achieve a better prediction capability compared to less impaired pulmo-
nary states. Plausibility analysis with real patient data could confirm this finding.

Discussion and conclusions:  Dependent on patients’ pulmonary state, the influence 
of ventilator settings (here FiO2) on model identification of the gas exchange model 
could be demonstrated. To maximize prediction accuracy i.e. to find the best individu-
alized model with as few data as possible, best ranges of FiO2-settings for parameter 
identification were obtained. A less effort identification process, which depends on the 
pulmonary state, can be deduced from the results of this identifiability analysis.
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Background
Mechanical ventilation is a life-saving intervention in intensive care, maintaining pulmo-
nary function in critically ill patients. Appropriate ventilator settings need to be found 
by the clinician to ensure both sufficient oxygenation and carbon dioxide removal. Tar-
get values for arterial partial pressures of oxygen (PaO2) and carbon dioxide (PaCO2) 
can be reached by changing inspired oxygen fraction (FiO2) and minute ventilation 
(MV). Removal of CO2 and therefore PaCO2 in the patient is mainly regulated by adjust-
ing MV. In critically ill patients, e.g. patients suffering from acute respiratory distress 
syndrome (ARDS), high levels of FiO2 and appropriate PEEP are usually necessary to 
ensure sufficient oxygenation. Finding the appropriate FiO2 setting follows a trial-and-
error approach that may not only be tedious but also exposes the patient to the potential 
risk of hypoxia and hyperoxia [1–4]. Pulse oximetry allows a continuous measurement 
of peripheral oxygen saturation (SpO2), however this method has limitations in sensitiv-
ity and accuracy due to calibration assumptions, optical interference, and signal artifact 
[5]. Therefore, an invasive blood gas analysis is required at the end of each trial to evalu-
ate the individual effect of a change in FiO2 accurately.

In mechanical ventilation therapy, both the risk of ventilator induced lung injury 
(VILI) and the effort to find adequate settings may be reduced if medical decision sup-
port would provide recommendations on how to adjust a patient’s settings to reach a 
prescribed treatment goal. In general, decision support can be divided into knowledge 
based (KDSS) and model based systems (MDSS). KDSS builds on rules of typical i.e. 
average patient behavior to represent reactions to changes of ventilator settings. In con-
trast, MDSS that are adapted to patient specific physiologic properties can simulate the 
individual reaction to changes in therapy settings. Using the inverse model, MDSS there-
fore suggests individualized ventilator settings by evaluating the approximated physiol-
ogy of the patient.

Parameters of a model contain compact information about the individual patient 
state and dynamics once they are quantified in a parameter identification process 
(PIP). Parameter identification requires information from patient measurements often 
obtained during certain clinical maneuvers. Success and robustness of the PIP strongly 
depends on the properties of the model to reflect the required dynamics of the patient, 
the signal quality and amount of data available at the bedside. As the identified param-
eters are used for forward calculation of the model equations, they directly influence 
prediction performance of the model. While using multiple and even redundant meas-
urements helps compensating noise induced errors, measurement efforts and applying 
the necessary maneuvers should not interfere with clinical processes. Thus, those meas-
urements should be kept to the minimum necessary to ensure a robust PIP.

Models of pulmonary gas exchange are able to predict the effect of FiO2 and MV on 
PaO2 and PaCO2 in the patient. One-parameter models [6, 7] usually only consider 
shunt, i.e. the amount of venous blood that is mixed with the oxygenated blood, to 
describe a patient’s oxygenation status and to predict the effect of an increase of FiO2 on 
PaO2. However, using only one parameter to describe gas exchange impairments fails 
at low FiO2 when mismatches between alveolar ventilation (V̇) and perfusion (Q) occur. 
Several studies [8, 9] have come to the conclusion that PaO2/FiO2 ratio, usually used 
to categorize lung impairment, changes with FiO2. Thus, besides shunt, mathematical 
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models of gas exchange should either include a parameter to describe oxygen diffusion 
limitation [10, 11] or a parameter to characterize V̇ /Q mismatch [9, 12–14]. Latter have 
shown to reproduce measurements at different oxygenation levels with sufficient accu-
racy compared to more complex models or MIGET measurements [15]. A two-parame-
ter model of pulmonary gas exchange including shunt and V̇ /Q mismatch has previously 
been published by Kjaergaard et al. [12]. Karbing et al. [16] evaluated this model with 
data of severely ill intensive care patients. The model has been found to be identifiable 
with four pulse oxymetric (SpO2) measurements at different levels of FiO2 and one blood 
gas analysis (BGA) providing PaO2 and PaCO2 together with the acid–base parameters 
pH, base excess (BE) and the hemoglobin concentration (cHb) as well as the end-tidal gas 
fractions of oxygen (FetO2) and carbon dioxide (FetCO2). Although systems have been 
built to perform the necessary measurements in 10–15 min [17], lowering the number 
of measurements required for identification and therefore minimizing the required time 
and effort is highly relevant. Therefore we investigated if the number of measurements 
that are necessary to identify the model can be reduced to one FiO2-setting. Addition-
ally, we evaluated the influence of the chosen level of FiO2 during model identification.

Methods
Gas exchange model with V̇/Q‑mismatch and shunt

The mathematical model of human pulmonary gas exchange consists of two alveo-
lar compartments that are perfused and ventilated and one shunt compartment that is 
perfused but not ventilated. The alveolar compartments are separated into a compart-
ment with high V̇ /Q-ratio and a compartment with low V̇ /Q-ratio. This allows the 
consideration and simulation of limitations in gas exchange for both oxygen (O2) and 
carbon dioxide (CO2) concentrations in blood. Shunt, i.e. the fraction of venous blood 
not participating in gas exchange, is quantified by model parameter fs multiplied with 
blood flow Q. 90 % of the non-shunted blood ((1 − fs)*Q) is distributed to the low V̇ /Q 
compartment, 10  % of the non-shunted blood is delivered to the high V̇ /Q compart-
ment. Model parameter fA represents the fraction of alveolar ventilation VȦ that reaches 
the low V̇ /Q compartment. Figure 1 shows the model structure of the pulmonary gas 
exchange model.

The model assumes equilibrium in blood gas concentrations as well as constant alve-
olar ventilation and perfusion without separating ventilation into phases of inspiration 
and expiration. Model inputs are FiO2 as well as end-tidal blood gas fractions of oxygen 
(FetO2) and carbon dioxide (FetCO2), respectively. Inspired carbon dioxide is set to 0. 
Tidal volume Vtid and respiratory frequency fR are assumed to be constant during simu-
lation and are provided as additional model inputs. Model outputs are the resulting arte-
rial blood gas parameters PaO2 and PaCO2.

Alveolar ventilation VȦ is calculated from fR and the difference between tidal volume 
Vtid and the anatomic dead space volume Vds:

FetO2 and FetCO2 are composed of alveolar gas fractions FAO2 and FACO2 in both 
compartments, such that

(1)V̇A = fR ∗ (Vtid − Vds)

(2)Fetx = (1− fA) ∗ FAx,1 + fA ∗ FAx,2
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Index x represents O2 and CO2 in Eq. 2 and in all following equations. Index 1 refers to 
the alveolar compartment with high V̇ /Q, while index 2 denotes the low V̇ /Q compart-
ment. Oxygen consumption V̇O2 and carbon dioxide production V̇CO2 are derived from 
alveolar air flow to each of the compartments and the difference between inspired and 
alveolar gas fractions as described in Eqs. (3) and (4):

Capillary blood gas concentrations Ccx are derived from alveolar gas fractions using 
O2 and CO2 dissociation curves [18, 19] (T—temperature):

Venous blood gas concentrations are then calculated as described in Eqs. (6) and (7).

Cardiac output Q is measured at the bedside or estimated from the patient’s body sur-
face area.

(3)V̇x,1 =
(
1− fA

)
∗ V̇A ∗ (Fix − FAx,1)

(4)V̇x,2 = fA ∗ V̇A ∗ (Fix − FAx,2)

(5)Ccx = blood(FAx, pH ,T , cHb)

(6)Cvx,1 = Ccx,1 − V̇x,1/(Q ∗
(
1− fs

)
∗ 0.1)

(7)Cvx,2 = Ccx,2 − V̇x,2/(Q ∗
(
1− fs

)
∗ 0.9)

Fig. 1  Schematic representation of the gas exchange model. The model consists of two alveolar compart-
ments, one with low and one with high ratio between ventilation V̇  and perfusion Q respectively. Blood flow 
is distributed among the shunt fs and the two alveolar compartments. The low V̇/Q-compartment is perfused 
with a fixed fraction fQ of 90 % of the non-shunted blood and ventilated with fraction fA. FiO2 describes the 
fraction of oxygen in inspired air. PaO2 and PaCO2 are arterial partial pressures of oxygen and carbon dioxide 
respectively
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FAO2 and FACO2 are solved numerically for a given measured FetO2 and FetCO2 with 
the condition that venous concentration in both compartments is equal. Finally, arterial 
blood gas concentrations CaO2 and CaCO2 are calculated as:

Arterial partial pressures of oxygen and carbon dioxide are then calculated from the 
reversed dissociation curves:

Model simulation

Forward calculation of the model equations is termed as model simulation. The flow-
chart of the model simulation process MΘ is depicted in Fig. 2 on the left. Vector Ψ sum-
marizes physical constants for measurements needed for model simulation:

Here, minute ventilation MV is calculated as:

Vector Θ includes model parameters fs and fA as well as Ψ:

Output values PaO2,sim and PaCO2,sim are calculated depending on Θ and FiO2:

Model identification

Parameters that need to be identified in the presented model are shunt fraction (fs) and 
the fraction of alveolar ventilation that is distributed to the alveolar compartment with 
low V̇ /Q-ratio (fA). The process of model identification (M̃a) is shown on the right of 
Fig.  2. (M̃a) is a minimization process of an objective function. F̃iO2, i.e. the level of 
inspired oxygen at the time of the measurement, as well as the other constant physi-
ological values required during identification, are represented in vector α:

(8)Cax = Ccx,1 ∗
(
1− fs

)
∗ 0.1+ Ccx,2 ∗

(
1− fs

)
∗ 0.9+ Cvx ∗ fs

(9)Pax = blood(Cac, pH ,T , cHb)

� = (MV ,Vtid ,Vds,Q, cHb, pH ,T , FetO2, FetCO2).

(10)MV = Vtid ∗ fR

Θ = (fs, fA,Ψ ).

(
PaO2,sim,PaCO2,sim

)
= MΘ(FiO2).

α = (F̃iO2,Ψ ).

Fig. 2  Flowcharts of model simulation (left) and model identification (right). In model simulation, blood 
gas levels are calculated with respect to FiO2. Model parameters fs and fA are known. Vector Θ summarizes 
parameters as well as other physical constants necessary for model calculation. Model identification process 
M̃α minimizes an objective function for measured blood gas levels at a specific F̃iO2. Identified parameters are 
fs

* and fA
*
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PaO2,meas and PaCO2,meas are the measured blood gases obtained at a specific condi-
tion described by α. They are used to determine fs

* and fA
* that best reproduce the meas-

urements in the forward model:

Parameter identification was performed by minimizing the sum of the squared error 
(SSE) between measured (meas) and predicted (pred) partial blood gas pressures in arte-
rial blood:

The weighting factor of 3 for PaCO2 was chosen to avoid imbalanced influence of PaO2 
data on the identification process, as dimension of PaCO2 is approximately three times 
smaller than PaO2. Minimization of the above described objective function was carried 
out using fminsearchbnd in MATLAB (R2012a, The Mathworks, Natick, MA, USA). 
fminsearchbnd is distributed under the BSD license and is based on fminsearch, the 
MATLAB function that employs the Nelder-Mead simplex search method [20]. Accord-
ing to [21] a shunt of 50 % and above leads to increases in FiO2 having no effect on PaO2. 
Additionally, fA values above 0.9 lead to a swap of the high V̇ /Q-compartment with the 
low V̇ /Q-compartment, essentially mirroring V̇ /Q-values of fA below 0.9. Thus param-
eter constraints for {fs, fA} were set as nonnegative lower boundaries LB = {0, 0} and as 
upper boundaries UB = {0.5, 0.9}.

Structural identifiability of the model using multiple measuring points was shown in 
a previous report [22]. Initial fs was set to 0.2, which showed to lead to the global mini-
mum of the objective function in all test cases. Initial fA was set arbitrarily to 0.5 to start 
the minimization process at a certain initial mismatch between ventilation and perfu-
sion. Constant patient state for the time of model prediction is assumed.

Model prediction

Prediction of blood gas levels depending on FiO2 is done using forward calculation of 
the model MΘ* with Θ* = (fs

*, fA
*, Ψ):

Data

We have employed both simulated and recorded real patient data to evaluate how well 
the described model is identifiable with data obtained at one single FiO2 level.

Simulated data The same two-parameter model of pulmonary gas exchange was used 
to create experimental data. It allows calculating the impact of noise in the data because 
the correct results for parameter identification are known a priori. Twelve classes of 
patient data sets have been generated, that differ in the parameter combinations of fs and 
fA. Those have been chosen to represent different stages of pulmonary disease. Model 
parameters used for data generation, resulting FiO2/PaO2-ratios and the classifications 
of pulmonary impairment [24] are listed in Table  1. BGA and physiological standard 

Θ∗ =
(
f ∗s , f

∗
A ,Ψ

)
= M̃α(PaO2,meas,PaCO2,meas).

(
PaO2,pred ,PaCO2,pred

)
= MΘ∗(F̃iO2)

(11)SSE = (PaO2,meas − PaO2,pred)
2 + 3 ∗ (PaCO2,meas − PaCO2,pred)

2

(
PaO2,pred ,PaCO2,pred

)
= MΘ∗(FiO2).
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values of an adult man were used for data generation. These physical constants are listed 
and explained in Table 2.

More formally, we define twelve patient classes by the model parameters

For each of the twelve patient classes, 1000 simulated measurements equidistant 
between FiO2 of 21 % and 100 % were determined. Depending on FiO2 settings, model 
simulation led to

Measuring PaO2 and PaCO2 via blood gas samples drawn from the arterial line is 
the current gold standard in clinical practice [25, 26], while measuring arterial oxygen 
saturation via pulse oximetry is accurate within ±2  % of the true value [27]. Thus, to 

Θj =

(
fsj , fAj ,Ψ

)
with 1 ≤ j ≤ 8.

(
PaO

j
2,sim,PaO

j
2,sim

)
= MΘj (FiO2).

Table 1  Parameters used for simulation of patient data

Parameter values for shunt fraction fs and fraction of ventilation distribution fA as well as the resulting V̇/Q-ratios are shown. 
Classification of pulmonary state is based upon V̇/Q-ratio and PaO2/FiO2-ratio [24]

Patient no. (j) fS fA High V̇/Q Low V̇/Q PaO2/FiO2-ratio Classification 
of impairment

1 0.05 0.90 1.15 1.15 412 Healthy

2 0.10 0.70 3.64 0.94 303 Mild

3 0.15 0.70 3.85 1.00 227 Mild

4 0.20 0.70 4.09 1.06 169 Moderate

5 0.20 0.50 6.82 0.76 162 Moderate

6 0.25 0.50 7.27 0.81 123 Moderate

7 0.25 0.30 10.18 0.48 114 Moderate

8 0.30 0.50 7.79 0.87 95 Severe

9 0.30 0.30 10.91 0.52 89 Severe

10 0.35 0.50 8.39 0.93 74 Severe

11 0.35 0.30 11.75 0.56 72 Severe

12 0.35 0.15 14.27 0.28 70 Severe

Table 2  Constants used for generation of data sets

Physiological constants of an adult man were used for generation of patient data sets

Item Abbreviation Value Unit

Minute volume MV 6 l/min

Tidal volume Vtid 0.5 l

Dead space volume Vds 0.15 l

Cardiac output Q 5.5 l/min

Hemoglobin concentration cHb 140 g/l

Alveolar pH value pH 7.4 –

Base excess BE 0 mmol/l

Temperature T 37  °C

Respiratory quotient RQ 0.8 –
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account for measurement noise that would be present in a real setting, both PaO2,sim and 
PaCO2,sim data were superimposed with uniformly distributed noise in a range of ±5 %:

The quality of system identification was assessed with a test set (ts) of 17 distinct FiOts
2  

values ranging from 21 to 100 % in steps of 5 %:

Real patient data: Two real patient data sets were used for the plausibility check of 
the results obtained from the theoretical analysis. Real patient data including at least 
four blood gas measurements at different FiO2 settings in mandatory ventilation mode 
were retrieved from a patient data management system of the university medical centre 
in Kiel [7]. Two data sets, a mild (Pat R1) and a critically ill patient (Pat R2), met those 
demands. The recorded levels of FiO2 were applied on a therapeutical basis, thus not 
systematically in the context of a clinical trial. The data sets included measurements of 
PaO2, PaCO2, fR, Q, Vtid, Vds, cHb, pH, T and FetCO2 at each of the applied FiO2 levels. 
Patient data did not include FetO2 measurements, thus FetO2 was approximated from:

Here, the respiratory quotient RQ was assumed to be 0.8. As with the simulated data 
sets, initial conditions of {fs, fA} for parameter identification were set to {0.2, 0.5}.

Analysis of structural identifiability

To verify structural identifiability of a model system, uniqueness of the solution of 
parameter identification has to be proven. The simplicity of the two-parameter model 
allows a numerical calculation and two-dimensional visualization of the objective func-
tion. The SSE is calculated and plotted for different parameter combinations to visualize 
the contour of the error surface. A single global minimum of the objective function indi-
cates structural identifiability of the model.

Structural identifiability of the model using one measurement point at one F̃iO2 level 
was analyzed with the synthetic as well as the two real patient data sets. The error sur-
faces (SSE) were plotted as a function of model parameters fs and fA with a resolution of 
90 × 90.

Evaluation of quality of fit

Besides quantity, quality of measurements used for model identification is essential for 
the accuracy of parameter identification. To verify practical identifiability, the influence 
of measuring errors on identification behavior of the model system was evaluated using 
the 1000 virtual measurements (PaOj

2,meas,PaCO
j
2,meas) in each of the eight classes of 

virtual patients.
For every patient class the gas exchange model was identified with only one single of 

the 1000 noisy measurements. Please note that each of those measurements belongs to 
one FiO2 setting:

(
PaO

j
2,meas,PaO

j
2,meas

)
= noise

(
PaO

j
2,sim,PaO

j
2,sim

)
.

(
PaOts

2,simi
,PaCOts

2,simi

)
= MΘ(FiO

ts
2i) for 1 ≤ i ≤ 17.

(12)FetO2 = FiO2 −
FetCO2

RQ
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With the identified parameters fs
* and fA

*, the evaluations PaOts
2,predi

 as well as PaCOts
2,predi

 
were calculated for all 1 ≤ i ≤ 17 FiO2-values in the test set:

Predictive performance for blood oxygenation as well as partial pressure of carbon 
dioxide was evaluated by comparing PaOts

2,sim and PaCOts
2,sim, i.e. the values of the origi-

nal simulation set, with PaOts
2,pred and PaCOts

2,pred respectively. Mean deviations were cal-
culated with

and

For statistical evaluation, the 1000 F̃iO2 levels, ranging from 21  % to 100  %, were 
divided into eight clusters (21–30, 30–40,…, 90–100 %), each cluster containing 125 val-
ues. Mean and standard deviations of �PaO2 for each cluster were calculated.

Verification of results with patient data

Two real patient data sets were used to confirm the findings obtained with simulated 
data. Identification was conducted at each FiO2 value that was recorded in the particular 
patient. Predictive performance was evaluated by comparing measured and predicted 
PaO2 and PaCO2 at all four recorded FiO2 levels:

Results
Visualizing the objective function

Figure 3 visualizes the contour of the objective function evaluated at one single measur-
ing point. Figure 3a shows synthetic patient data, while Fig. 3b is devoted to real patient 
data. The contour lines (SSE) are scaled logarithmically to improve visibility of the mini-
mum. For all analyzed data sets, a single global minimum in the error surface as a func-
tion of the model parameters fs and fA could be detected. The parameter combination 
leading to the global minimum was in agreement with the parameters used for data gen-
eration. Within accuracy of numerical representation (double), the SSE value was zero at 

Θ∗
j =

(
f ∗sj , f

∗
Aj
,Ψ

)
= M̃α(PaO

j
2,meas,PaCO

j
2,meas) for 1 ≤ j ≤ 8.

(
PaOts

2,predi
,PaCOts

2,predi

)
= MΘ∗

j
(FiOts

2i) for 1 ≤ i ≤ 17.

�PaO2 =
1

17

17∑

i=1

�PaO2i =
1

17

17∑

i=1

∣∣∣PaOts
2,predi

− PaOts
2,simi

∣∣∣

�PaCO2 =
1

17

17∑

i=1

�PaCO2i =
1

17

17∑

i=1

∣∣∣PaCOts
2,predi

− PaCOts
2,simi

∣∣∣.

�PaO2n =

∣∣∣PaOts
2,predn

− PaOreal
2,measn

∣∣∣

�PaCO2n =

∣∣∣PaCOts
2,predn

− PaCOreal
2,measn

∣∣∣ with n = 6 for Pat R1 and

n = 4 for Pat R2.
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the minimum. The global minimum is inside a narrow and flat valley, parallel to the axis 
of parameter fA. A similar type of shape of the objective function could be shown for the 
analysis of both simulated and real data.

Prediction of PaCO2 and PaO2 depending on FiO2

Over all tested data sets, mean �PaCO2 was 2.4 % (1.3 mmHg) of the true value with 
a standard deviation of ±1.6  % (±0.8  mmHg). Figure  4a shows mean deviation of 
�PaO2 with respect to α. PaO2 prediction was less accurate when identification data 
were recorded at low FiO2 levels, especially for data sets representing pulmonary impair-
ment. For data set 1 (healthy lung) minimal �PaO2 was achieved for 40 % < FiO2 < 50 % 
whereas model identification with data set 12 (severely impaired lung) shows the 
smallest �PaO2 for α =  (100  %, Ψ). In the minima, the model was able to reproduce 
PaO2 of all of the simulated patient data sets with a mean deviation of less than 2.5 % 
(<2.5 mmHg) of the true value with a standard deviation of less than 3 % (<2 mmHg). In 
Fig. 4a, the minima are marked with vertical lines and the respective patient numbers.

Fig. 3  Contour plot of objective functions (SSE) with logarithmic scale. log(SSE) was plotted with respect to 
parameters fs and fA. Left SSE for simulated data set no. 5. The global minimum was located at {fs, fA} = {0.1, 
0.7}, the parameter values set for data generation. Right SSE for real patient data Pat R1. Global minimum was 
located at {fs, fA} = {0.17, 0.6}

Fig. 4  Left clustered mean deviation of �PaO2 over FiO2 for simulated data. Deviation of prediction of PaO2 
depends on FiO2 range used for model identification. Broken lines show respective minima for the different 
data sets (numbered). Minimum is located at a higher FiO2 range for data representing a higher pulmonary 
distress. Right mean of ΔPaO2 over FiO2 for real patient data. Deviation of prediction of PaO2 varies with the 
FiO2 level used for model identification. The location of the minimum depends on patients’ pulmonary state. 
Mean deviation of ΔPaO2 was less than 10 % at the minimum for both data sets
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Mean deviation of ΔPaO2 for real patient data sets is shown in Fig.  4b. Predictions 
with model parameters being identified at low and high FiO2 show higher deviations 
from measured values than for identification at medium FiO2 levels. Mean deviation of 
ΔPaO2 was less than 10 % (8 % or 5.8 mmHg for Patient R1 and 6 % or 4.6 mmHg for 
Patient R2) at the minimum. The best performance of PaO2 prediction was found for 
α = (40 %, Ψ) (Pat R1) and α = (80 %, Ψ) (Pat R2) respectively.

Figure  5 summarizes the FiO2 levels leading to a minimum of mean deviation of 
�PaO2 for simulated data sets (colored markers). 32 additional simulated data sets 
(black markers) were generated to illustrate the relation between optimal FiO2 and pul-
monary impairment more precisely. Location of the minimum was shifted to a higher 
FiO2 cluster with increasing pulmonary impairment, i.e. decreasing PaO2/FiO2-ratio.

Discussion
Using mathematical models for decision support in clinical practice requires high level 
of safety and accuracy of the model predictions. Furthermore, measuring effort for 
model identification, i.e. identification of patient specific parameters, should be kept to 
a minimum.

Identification of the two-parameter model of human pulmonary gas exchange requires 
data from arterial blood gas analysis and photoplethysmographic saturation measure-
ment. The model has previously been applied with four measurements at different levels 
of FiO2. To reduce the effort required in clinical practice to identify gas exchange models 
it was investigated if a reduced number of FiO2 levels for data acquisition is sufficient.

Structural identifiability of the model applying a single identification data point was 
examined in this study with both simulated and real patient data sets. One single global 
minimum of the objective function is an indication for structural identifiability of the 
model. Without noise in the data, one single blood gas measurement is sufficient for 
robust model identification.

Fig. 5  FiO2 cluster of minima of �PaO2 mean deviation with respect to PaO2/FiO2-ratio for simulated data. 
Colored markers show the minima of the eight simulated data sets of Table 1 (numbered). Additional data 
were generated to visualize the curve progression and to confirm the findings (black markers). Minimum of 
�PaO2 mean deviation is shifted to a higher FiO2 cluster for increasing severity of pulmonary impairment 
(lower PaO2/FiO2-ratio)
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The effect of a change in FiO2 on the concentration of carbon dioxide in arterial blood 
is negligible. PaCO2 data could be reproduced by the model with high accuracy. Pre-
diction error of CO2 data was below the noise level of ±5 % for all data sets. However, 
measuring errors may decrease the accuracy of parameter identification and therefore 
model prediction of PaO2, especially if identification is based on only one measurement. 
Results show that the gas exchange model with shunt and V̇ /Q-mismatch is able to fit 
both the synthetic and the real patient data with good accuracy, as already presented in 
former work [16]. Oxygenation data of all data sets could be reproduced by the model 
with a mean deviation below 10 % in spite of measuring errors in the identification data. 
However, when identifying the model with noisy data, the FiO2 setting influences the 
prediction accuracy of PaO2. This influence was therefore examined to find a guideline 
how to choose an appropriate FiO2 level for data acquisition in the identification process.

The identification processes of both simulated and real patient data sets representing a 
variety of different disease states showed surprisingly similar results. It could be pointed 
out that accuracy of model prediction of blood gas concentration is related to the FiO2 
setting when recording identification data. The optimum FiO2 level depends on the level 
of pulmonary impairment whereupon FiO2 should be increased with increasing severity 
of pulmonary impairment. In severely ill patients, oxygenation of arterial blood is inhib-
ited, thus higher FiO2 levels are required in order to achieve adequate PaO2 levels.

Figure 6a shows the mean deviation of �PaO2 with respect to PaOj
2,meas. It could be 

observed that a minimal prediction error is achieved for PaOj
2,meas in the range of 150–

200 mmHg for the entire simulated data sets. Identification at higher levels leads to a 
small increase of mean deviation. However, mean deviation of �PaO2 was found to be 
still below 5 % for all tested patient cases. Identifying the model with PaO2 levels of less 
than 100 mmHg is potentially leading to an increase in both mean and standard devia-
tion of model prediction. Because of the high severity of pulmonary impairment, data 
sets 7 and 8 do not achieve a PaO2 of 100 mmHg, even when a FiO2 of 100 % is applied. 
Patients with such high pulmonary impairment have to be ventilated using the highest 
FiO2 possible to achieve a sufficient oxygenation.

Fig. 6  Left clustered mean deviation of �PaO2 over PaOj
2,meas for simulated data. Minimum in prediction 

error of PaO2 data is in the range of 150–200 mmHg for data sets 1–7. Because of the high severity of pulmo-
nary impairment, data sets 8–12 do not achieve this oxygenation range, even when a FiO2 of 100 % is applied. 
Right mean of ΔPaO2 over PaOreal

2,meas. Real patient data tested in our study confirm the curve progression of 
the study with the simulated data. The best prediction performance is shown for identification in the PaO2 
range of 70–80 mmHg
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Mean deviation of ΔPaO2 over PaOreal
2,meas is shown in Fig. 6b. Both curves represent-

ing real data confirm the results of the analysis with simulated data, but minimum mean 
deviations were found for a PaO2,meas of 73 mmHg and 81 mmHg respectively.

When only one measuring point is used for model identification, success of parameter 
identification obviously depends on the level of PaO2 at the particular time of the meas-
urement. Low PaO2 levels bear the risk of large influence of measuring errors in iden-
tification data. In low PaO2 levels, even small changes in PaO2 used for identification 
may lead to an overestimation of shunt fraction fs and therefore to a smaller increase of 
PaO2 for higher FiO2 levels compared to correct data. In severely ill patients, this effect 
is more prominent than in patients with less pulmonary distress.

PaO2 levels suggested to be optimal for identification of the model may be not achiev-
able in patients with severe pulmonary impairment. Here, identification at an FiO2 of 
100 % was shown to achieve predictions with highest accuracy.

In the presented work, we have investigated a FiO2 range 21–100 %. To separate effects 
of shunt from those caused by low V̇ /Q-ratio, subatmospheric oxygen levels should be 
considered as well. However, the intended use of the applied model and the presented 
routine of identifying the model parameters with only one blood gas measurement are in 
a critical care environment where such oxygen levels are not applied.

Karbing et al. [16] have previously presented a three-parameter extension of the model 
used in this work which uses an adjustable distribution of non-shunted blood among the 
alveolar compartments. This model shows to be superior in terms of reproducing PaCO2 
especially in patients with V̇ /Q-ratios below 0.27. The presented work however focuses 
mainly on finding the optimal calibration point of FiO2, which has only a minor effect 
on PaCO2. Nevertheless, investigating the structural identifiability and the possibility of 
using only one measurement set to also identify the three-parameter model should be 
considered in future work.

The model of gas exchange applied in the presented study includes assumptions such 
as steady state conditions of blood gases and constant alveolar ventilation and perfu-
sion. Thus, tidal breathing as is the reality in humans is not considered. Those assump-
tions present shortcomings compared to the reality those models try to reproduce [28]. 
Several models including tidal breathing have been presented in the past [28–30] how-
ever continuous measurement of blood gases in combination with continuous measure-
ments of gases in inspired and expired air is not routinely available at the bedside at this 
moment. Thus clinical applications are currently limited to models assuming continuous 
ventilation and perfusion as well as equilibrated blood gases. Still, Karbing et  al. [16] 
have shown previously that the applied model is well capable of reproducing patient data 
for a wide range of lung impairments and that the model can thus be used in a clinical 
environment as a prediction tool.

Model based decision support in clinical practice implies that the mathematical model 
is identifiable with a minimum of measuring effort. We could show that the two-param-
eter gas exchange model with shunt and V̇ /Q-mismatch is structural identifiable with 
only one single blood gas measurement. Using only one single measurement, possible 
measuring errors are not averaged. However, simulation results show that model based 
prediction of blood gases for different FiO2 is possible with a mean prediction error 
below 10 % for a maximum measuring error of 5 %. Simultaneously, we could determine 
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the range of PaO2 level where prediction error is minimized for data representing a wide 
range of different pulmonary states. Our work provides scientific findings in developing 
a robust parameter identification process for the gas exchange model with low measur-
ing effort. For a given accuracy of the blood gas measurements used for identification it 
will be possible to estimate the accuracy of the model prediction of blood gases.

This study is faced with the limitation that only two real patient data sets were avail-
able to confirm the findings from the study with simulated data. Furthermore, the real 
data were not from a systematic patient study, but retrieved from a patient data manage-
ment system, giving no information about the interventions of the clinicians between the 
measurements. Therefore, a change in the patients’ pulmonary state cannot be excluded. 
A systematic study with a higher number of mechanically ventilated patients is neces-
sary to consolidate our findings.

Conclusions
The study showed that the identification point has a significant impact on the predictive 
performance of the presented gas exchange model. Measuring errors, i.e. noise in iden-
tification data, could lead to prediction errors when only one measurement is applied. A 
combination of simulated and real patient data provides a valuable tool in determining 
the optimal identification point where influence of measurement errors is minimal.
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ventilation; VĊO2: carbon dioxide production; Vds: dead space volume; VILI: ventilator induced lung injury; VȮ2: oxygen 
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