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With the genomic revolution and the era of targeted therapy, prognostic and predictive gene signatures are becoming
increasingly important in clinical research. They are expected to assist prognosis assessment and therapeutic decision
making. Notwithstanding, an evidence-based approach is needed to bring gene signatures from the laboratory to clinical
practice. In early breast cancer, multiple prognostic gene signatures are commercially available without having formally
reached the highest levels of evidence-based criteria. We discuss specific concepts for developing and validating a
prognostic signature and illustrate them with contemporary examples in breast cancer. When a prognostic signature has
not been developed for predicting the magnitude of relative treatment benefit through an interaction effect, it may be
wishful thinking to test its predictive value. We propose that new gene signatures be built specifically for predicting
treatment effects for future patients and outline an approach for this using a cross-validation scheme in a standard phase
III trial. Replication in an independent trial remains essential.
Key words: gene signature, prognostic, predictive, evidence based, clinical utility

introduction
Molecular signatures are becoming increasingly important for
anticipating the prognosis of individual patients (‘prognostic’
biomarkers) or for predicting how individual patients will
respond to specific treatments (‘predictive’ biomarkers, more
generally called ‘treatment-effect modifiers’). A voluminous lit-
erature of >150 000 papers documenting thousands of claimed
biomarkers has been produced in medicine of which fewer than
100 have been validated for routine clinical practice [1]. Indeed,
<20 prognostic or predictive biomarkers are recognized with
variable levels of evidence in the 2014 European Society of
Medical Oncology (ESMO) clinical practice guidelines for lung,
breast, colon and prostate cancer [2].

In early breast cancer, while several clinical prediction models
exist based on clinical and pathological (CP) characteristics, such

as age, tumor size, nodal status, tumor grade, estrogen receptor, at
least six different gene signatures are commercially available
(Oncotype DX, MammaPrint, Genomic Grade Index, PAM50,
Breast Cancer Index and EndoPredict). The concordance of pre-
dicted risk categories of the different gene signatures for individual
patients is moderate [3, 4], as illustrated by recent OPTIMA study
which evaluated—among others—the two well-known tests
Mammaprint (low/high) and Oncotype Dx (�25 versus >25) on
302 patients in a head-to-head comparison and found a low level
of agreement, i.e. a kappa value of 0.40 (95% CI 0.30–0.49) [5]. Of
course, even when repeating the same assay twice on a single
tumor sample, some inherent degree of inaccuracy would be
expected but unlikely to this extent. This has led to a pretty awk-
ward situation where the treatment decision for adjuvant chemo-
therapy does not depend anymore on the clinician but on the
genomic test ordered. Furthermore, according to a European con-
sensus panel, none of these tests reached the highest level of evi-
dence [6] and according to an Evaluation of Genomic
Applications in Practice and Prevention (EGAPP) panel, there
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was only indirect evidence that Oncotype Dx could predict benefit
from chemotherapy [7], while an ASCO panel in the United States
gave a strong recommendation with high level of evidence that
Oncotype Dx may be used to guide decisions on adjuvant systemic
chemotherapy for node-negative (N0) ER-positive (ERþ), HER2-
negative (HER–) breast cancer [8]. This divergence may result
from the degree of subjectivity in evidence evaluation or from a
different vision of what type of evidence is needed for a gene signa-
ture to be clinically useful. In this commentary, we focus on prog-
nostic and predictive gene expression signatures in breast cancer
to highlight the difficult path from the laboratory to the clinic, but
the concepts are applicable to other omics data.

prognostic versus predictive signature:
what’s in a name?
Gene signatures can assist clinicians in prognosis assessment
and therapeutic decision making. A signature is prognostic if it
discriminates well between patients with a good or bad progno-
sis in the absence of treatment or in the context of a standard
therapy. In the top left panel of Figure 1, we show an example of

prognostic signature: for untreated patients (dashed lines), the
survival profile is very different according to the signature cate-
gories, i.e. the likely natural course of the disease can be fore-
casted thanks to the signature values [9]. On the other hand,
whatever the risk group, the relative effect of treatment (solid
versus dashed lines) is similar. A signature is called predictive
(of the treatment effect) if the relative treatment benefit varies
according to signature values. In the bottom panels of Figure 1,
one can see that the treatment is beneficial only for low-score
patients, while for high score ones it is either less beneficial
(left, quantitative interaction) or harmful (right, qualitative
interaction). In the case of a quantitative interaction, the mag-
nitude of the relative treatment effect is different, but the effect
is in the same direction. In this case, it is not clear that treat-
ment could be withheld in any of the subgroups. In the case of a
qualitative interaction, the direction of the treatment effect is
different according to signature values. The most appropriate
way to identify a predictive gene signature is through an inter-
action test between the signature and the treatment using data
from a trial [10] in which the treatment has been randomly
allocated to patients.
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Figure 1. Example of survival curves in experimental (Exp) versus control (Ctrl) arms for patients with a high gene signature score (High score) versus
patients with a low gene signature score (Low score) in the case of a prognostic gene signature (top left) or a predictive gene signature, with either quantitative
(bottom left) or qualitative (bottom right) interaction.
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Results from randomized controlled trials are often difficult to
translate into predictions for individual patients, but estimated
absolute risk reductions from large randomized trials do still
provide the best guidance [10]. Even when there is not a single
predictive signature or biomarker for a particular treatment,
prognostic signatures or biomarkers can be useful for prognosis
and treatment counseling [11]. In early breast cancer, for
instance, the proportional risk reduction obtained by chemo-
therapy does not significantly vary according to CP factors, even
in large well-powered meta-analyses [12, 13]. If we assume a 33%
relative risk reduction using chemotherapy regimen in an ERþ

early breast cancer population [12], we can estimate absolute
increases in 10-year predicted survival when adding chemother-
apy to endocrine therapy [14]. For example, for an N0 ERþ

patient with a 10-year breast cancer-specific survival predictions
of 95% with endocrine therapy, the absolute benefit when adding
chemotherapy is estimated by 2% which needs to be outweighed
against potential side effects of the treatment.

prognostic gene signatures: the
evidence-based path from proof of
concept to clinical utility

development and validation of a signature
One of the very first steps in the development of a gene signature
is finding out how to compute a score based on the biomarkers
measured, while the number of biomarkers keeps on increasing
with technology advances. Identifying a meaningful prognostic
model through high-dimensional regression raises particular
challenges from a statistical point of view, including nonidentifi-
ability of the models, instability of selected biomarkers [15],
sparse model selection and multiple testing. Several penalized
methods exist to perform variable selection in this high-dimen-
sional space [16], while controlling the risk of false positives [17].

Table 1 shows different criteria to evaluate when developing a
signature from bench to bedside. The EGAPP initiative has pro-
posed general definitions of analytical and clinical validity, and
of clinical utility [18], which are transposed here to the gene sig-
nature context. Issues related to the assessment of their analytical
validity are beyond the scope of this review. The assessment of
the generalizability of a gene signature needs independent valida-
tion of its prognostic value in multiple series; this is now well
established [19–21] and will not be detailed here.

compare the signature with established
clinico-pathological factors
A key issue in assessing the added value of a prognostic signature
is to study whether it adds independent prognostic information
to the risk determined by a CP model (incremental value). A
gene signature could also be of interest if it provides a more
reproducible, cheaper or more accurate measurement of an
already existing biomarker that has proven clinical utility so that
the CP rule could be updated [20]. The Oncotype Dx assay is
very successful in the USA with an estimated target market pene-
tration of 50% [22]. One could hypothesize that one of the main
reasons for its success is that a proliferation-based signature
measured by a single reference laboratory took the place of the
histological tumor grading, which has been plagued by a per-
ceived suboptimal between-laboratory reproducibility [23].

To illustrate how to evaluate incremental prognostic value,
we used publicly available microarray data of 845 patients (189
pathological complete responses or pCRs) from eight clinical
studies that included patients treated by anthracycline-based
chemotherapy [24]. We computed two gene signatures: an
approximate version of the MammaPrint signature that we
denote as proliferation signature and an immune-based gene
signature [24]. Because the gene signatures are often derived on
different microarray platforms from different laboratories and
heterogeneous retrospective patient cohorts, we computed the
scores as a weighted average of the genes and scaled each signa-
ture within study so that the 2.5% and 97.5% quantiles equaled
�1 and þ1, respectively [24, 25]. The added value of the two
gene signatures was evaluated in logistic regression models
after adjustment for CP factors as detailed in Table 2. When
using the likelihood ratio test relative to the model with estab-
lished prognostic factors only [26, 27], both signatures do add
significant prognostic information to the CP model and they
both add information to each other. We also evaluated the dis-
crimination, i.e. the ability to distinguish patients who had a
pCR from those who did not, through the area under the
receiver operating characteristic curve (AUC), for the CP
model with and without the gene signatures. The AUC of the
CP model was already high (0.78; 95% CI 0.75–0.82; Figure 2
and Table 2), illustrating the strong discrimination of the CP
factors. Adding both the signatures provided only a slight
increase (0.80; 95% CI 0.77–0.83). Therefore, the added dis-
crimination of the gene signatures for pCR is moderate in this
neoadjuvant example in breast cancer. This is often the case in

Table 1. Evidence-based criteria for a prognostic gene signature in the path from the laboratory to clinical practice

No. Concept Elaboration

1 Proof of concept Do signature levels differ substantially between patients with and without outcome?
2 Analytical validity Signature’s ability to accurately and reliably measure the genotype of interest between and within laboratories
3 Clinical validity Does the signature predict risk of outcome in multiple external cohorts or nested case–control/case–cohort studies?
4 Incremental value Does the signature add enough information to established clinico-pathological prognostic markers or provide a more

reproducible measurement of one of them?
5 Clinical impact Does the signature change predicted risk sufficiently to change recommended therapy?
6 Clinical utility Does use of the signature improve clinical outcome, especially when prospectively used for treatment decisions in a

randomized controlled trial?
7 Cost-effectiveness Does use of the signature improve clinical outcome sufficiently to justify the additional costs of testing and treatment?
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applications in medicine as only very strong independent prog-
nostic factors can lead to large increases in predictive accuracy.
For survival outcomes, there exist different generalization of
the AUC [28, 29] and an alternative measure is an R2-type sta-
tistic to compare the extra variation in clinical outcome
explained by the gene signature [30]. Of note, also the batch
and laboratory effects typically observed play a role in the lack
of applicability of many gene signatures in the clinic, for which
a fully specified algorithm is needed for a single patient from a
random batch or laboratory.

In another example of 883 women treated with either tamoxi-
fen or letrozole monotherapy in the Breast International Group

1–98 trial, one of the cited proliferation signatures in breast can-
cer, the Genomic Grade Index, was prognostic of the distant
recurrence-free interval, in addition to the CP model as meas-
ured by the likelihood ratio test [31]. Nevertheless, similar results
were obtained with centrally reviewed continuous Ki67 by an
expert pathologist, which highlights the importance of including
all known prognostic factors in the CP model.

In addition to the discrimination, it is also of importance to
evaluate the calibration of prediction models that include gene
signatures, i.e. the agreement between predicted risk and clinical
outcome frequencies [32], In our opinion, very little is known
about the calibration of the commercially available gene signa-
tures in early breast cancer, e.g. for patients with a predicted 10-
year risk of distant metastasis below 5% with the CP model and
with the CP model plus the signature, what is the observed fre-
quency of distant events at 10-years? Adding the gene signature
to an established model will also be only of interest if the pre-
dicted risk of such patients changes sufficiently compared with
the standard CP model to have consequences in terms of treat-
ments. Useful summary measures and graphical displays to eval-
uate the subtle changes in prediction scores of patients can be
found elsewhere [32–34].

clinical trial designs for prognostic signatures
To assess the readiness of omics-based tests for guiding patient
care in clinical trials, a useful tool is the checklist developed by
the USA National Cancer Institute [35], covering issues related
to specimens, assays, mathematical modeling, clinical trial
design, and ethical, legal and regulatory aspects. Trial designs
evaluating the clinical impact of patients being offered a prog-
nostic gene signature are rather similar to available trial designs
for diagnostic tests [36–39]. The operating characteristics of
some of the trial designs integrating gene signatures in breast
cancer have been discussed previously [40]. In the MINDACT
study [41], a randomized trial was setup in the discordant risk
population—based on a CP model and the gene signature—to
evaluate the capacity of the MammaPrint signature to identify
patients in whom chemotherapy can be avoided when the CP

Table 2. Evaluation of incremental prognostic value of a proliferation and immune gene signature to a standard clinico-pathological (CP) model for
pathological complete response (pCR) in 845 early breast cancer patients treated with neoadjuvant anthracycline-based chemotherapy

Comparison Likelihood ratio statistic P-value AUCa (95% CI)

CP versus null model 151.4 <10�16 0.78 (0.75–0.82)
CPb þ proliferation versus CP 9.4 2.2 � 10�3 0.79 (0.75–0.82)
CP þ immune versus CP 13.8 2.0 � 10�4 0.79 (0.76–0.83)
CP þ immune þ proliferation versus CP 26.1 2.2 � 10�6 0.80 (0.77–0.83)
CP þ immune þ proliferation versus CP þ immune 12.2 4.7 � 10�4 0.80 (0.77–0.83)
CP þ immune þ proliferation versus CP þ proliferation 16.6 4.5 � 10�5 0.80 (0.77–0.83)

aAUC (area under the ROC curve) of the left-sided model in the comparison.
bClinico-pathological logistic model for pathological complete response including treatment (anthracyclines versus anthracyclines plus taxanes), age (�50
versus >50 years), clinical tumor size (cT0, 1, 2 versus cT3, 4), clinical nodal status (negative versus positive), histologic grade (1, 2 versus 3), ER status
(negative versus positive) and HER2 status (negative versus positive) and study effect using publicly available gene expression data of neoadjuvant studies
(845 patients, 189 pathological complete responses) as described in [24]; proliferation: approximate version of the MammaPrint gene signature, immune:
immune1 signature from [24].
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Figure 2. Receiver-operating characteristics curves when adding a prolifer-
ation and immune gene signature to a clinico-pathological (CP) model for
pathological complete response in 845 early breast cancer patients treated
with neoadjuvant anthracycline-based chemotherapy.
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model says otherwise. Its primary test statistic is however not
based on the randomization, so a prospective cohort study would
have been sufficient to answer this objective. If the two predic-
tion models (CP model and gene signature) disagree in 32% of
the patients, and if the treatment reduces 10-year mortality in
the overall population from 24% to 20%, then the absolute differ-
ence in mortality between the two strategies is only 0.5%, and it
has been calculated that 50 000 patients would be necessary to
identify this mortality difference in a statistically satisfactory
manner [42].

In the TAILORx trial [43], women with intermediate
Oncotype DX signature risk score were randomized between
adjuvant chemotherapy and not, and the primary objective is to
evaluate the noninferiority of the control arm compared with the
chemotherapy arm. It may seem peculiar to set up a noninferior-
ity trial of standard chemotherapy of which the relative efficacy
is already well known. Recently, the data and safety monitoring
committee of the TAILORx trial recommended that the results
of the unrandomized low-risk group defined by Oncotype Dx be
released [44]. After a median follow-up of 6.7 years, the esti-
mated 5-year invasive disease-free survival was 93.8% (95% CI
92.4%–94.9%) in this low-risk group. The question remains
whether such a subgroup of patients could not have been identi-
fied with a solid CP model.

The big hope behind these trials is that secondary analyses
would reveal variation in relative efficacy according to fine-tuned
modeling of CP factors and the gene signatures that were missed
in prior analyses of historical trials by categorized CP risk
groups. On the other hand, one could argue that, if the biological
signal was really strong, even a less reliable measurement method
(e.g. of ER and Ki67) with a different categorization would
already have shown some variation. This may be matter of sub-
jective debate. In both these trials, since the annual rate of distant
relapse or deaths is quite low in early breast cancers, a very long
follow-up is required to answer the clinical questions [40]. These
examples illustrate that, in the context of a relatively good prog-
nosis population and a small absolute treatment benefit (of che-
motherapy), developing a randomized controlled trial to
demonstrate the clinical utility of a prognostic gene signature is
quite challenging and that a cohort study may in several occa-
sions be a more appropriate tool to develop and validate a fine-
tuned CP plus gene signature model.

cost-effectiveness
The very last aspect in studying a gene signature is its cost-effec-
tiveness: despite being more prognostic than the CP model alone,
a signature could be of limited usefulness if its cost is too high.
For illustration, in the population of N0 breast cancer patients,
the MammaPrint signature was deemed unlikely to be cost-effec-
tive from the French National Insurance perspective [45].

For EGAPP, the cost-effectiveness evaluation is only seen as a
contextual factor [18], while for the National Institute for Health
and Care Excellence in the UK, the value of diagnostic technolo-
gies is based on three main criteria: test accuracy, clinical effec-
tiveness and cost-effectiveness. Specific evidence requirements
need to be defined for policymakers and reimbursement agencies
to introduce gene signatures or molecular tests into clinical prac-
tice from a health economical perspective [2].

‘predictive’ gene signatures as
treatment-effect modifiers
The approach of treating broad populations of patients and
having large inclusion criteria in clinical trials is based on the
assumption that treatment-by-subset interactions are unlikely
to occur on mortality end points [46]. On the other hand,
increasing knowledge of biology suggests that such interactions
are actually more likely to occur than previously thought [47],
with ER, HER2, KRAS and EGFR mutations as famous exam-
ples. Furthermore, ignoring strong treatment-by-biomarker
interactions in a patient population can substantially reduce
the statistical power of trials aimed at showing the overall bene-
fit of new treatments [48]. Recently, there have been some
attempts to identify gene signatures that are associated with
higher benefit of treatments, such as an 8-gene and a 14-gene
signature for the degree of trastuzumab benefit in early breast
cancer [49, 50]. There is some risk of overoptimism in these
two examples since the former was flawed by a well-known
error in cross-validation that consists of not retesting all the
genes in each of the folds of the cross-validation [51] and the
latter used data from another expression platform on a subset
of the patient series to perform a first gene selection. Before
outlying the approach to develop gene signatures that interact
with relative treatment benefit, we have a look again at the
prognostic signatures in early breast cancer.

are some of well-known prognostic signatures in
early breast cancer also predictive: wishful
thinking?
None of the published gene signatures in early breast cancer we
studied so far was developed for predicting the relative magni-
tude of a treatment effect, i.e. they were fitted in the develop-
ment series using only main effects for prognosis. Nevertheless,
a study has claimed that the Oncotype DX signature predicts
the magnitude of chemotherapy benefit [52], when including
in a subtle manner the patients from the development series
[19]. The only truly independent evaluation of Oncotype DX
was performed in a subset of 367 patients included in the S8814
trial for node-positive, ERþ postmenopausal breast cancer
women, in which the gene signature was tested for interaction
with additional chemotherapy prior to tamoxifen [53]. This
study showed a significant treatment-by-signature interaction
in the first 5 years after inclusion in a Cox regression model
(interaction P ¼ 0.03). Nevertheless, once this model also
included ER expression, the interaction was no longer statisti-
cally significant (P ¼ 0.15), which suggests that there may be
some confounding between the gene signature and ER expres-
sion; furthermore, the subdivision of the time scale in two peri-
ods (before and after 5 years) may or may not have been
preplanned. The small number of events in the different sub-
groups defined by the signature makes it hard to obtain reliable
treatment effect estimates. A prospective randomized con-
trolled trial, RxPonder, has been started to replicate this che-
motherapy by signature interaction by making the bold
assumption that there would exist a qualitative interaction
between the chemotherapy and the gene signature on invasive
disease-free survival [54].
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development of predictive gene signatures in
randomized controlled trials
In randomized controlled phase III trials of an experimental
treatment versus standard treatment or placebo, it has become
common to test multiple candidate predictive biomarkers on
baseline tumor or plasma samples for a possible interaction with
treatment effect. If the predictive signature is known beforehand,
alternative procedures exist to test the effect of the treatment
both in the overall trial population as well as in the signature-
positive (or -negative) subgroup of patients [40, 55].

Previously, we proposed a global interaction approach for
controlling the family-wise type I error of a predictive signature

in a randomized controlled trial [25, 56]. The interaction statistic
measures the degree of differential treatment effect according to
gene signature values. To evaluate the global interaction signal, a
permutation procedure was proposed (Figure 3). The underlying
idea is that if the biomarkers are not predictive, they are
exchangeable between patients in same arm; thus, by repeatedly
rearranging the biomarkers of the patients and by computing the
interaction statistic for each permutation, the distribution of the
global test statistic under the null hypothesis is obtained and can
be used to compute the P-value of the statistic observed in the
original data. In case of a significant interaction signal, the mag-
nitude of treatment effects within subgroups defined by the sig-
nature values will determine whether it has some clinical
importance for which a large number of events is needed.

Several strategies have been proposed to identify and validate
a signature in a randomized trial using cross-validation techni-
ques to overcome a potential overfitting issue [40, 57–59]. Figure
4 shows the general scheme of cross-validation in this context.
The data at hand are divided into K groups, often 10. For each
group, the data from the remaining K � 1 groups are used to
select the most predictive biomarkers which will make up the sig-
nature and coefficients are estimated. Then, the data in the
excluded group are used to calculate the signature for left-out
patients. The entire model building procedure is iterated over the
K folds to obtain a gene signature score for each patient and to
evaluate the capacity of the signature to predict the magnitude of
treatment effect. The application of the entire gene signature
building process to the full randomized controlled trial data leads
to an ‘indication’ classifier to use for future patients [60]. An
application of this analysis strategy on trials of adjuvant anthra-
cycline-based chemotherapy can be found in [25]. Developing a
gene signature requires selecting the biomarkers which are the
most predictive and combining them efficiently in the regression

Interaction strength

Global interaction value
of the test statistic

= the proportion of K permutations
in which the test statistic sj

exceeds s for the original data

P-value

TreatmentControl

Permute the set of biomarkers
among the patients,
within each treatment arm

Interaction strength

Interaction strength

...

s

s1

s2

sK

Figure 3. Permutation scheme for computing the P-value of a global inter-
action test to evaluate the ability of a gene signature to be associated with
the magnitude of treatment benefit.

Divide the patients into 10 groups

Put the selected group apart as validation set,
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Figure 4. K-fold cross-validation process to develop a signature and to limit overfitting in the evaluation of the magnitude of treatment benefit according to
gene signature values, when only one single randomized controlled clinical trial is available.
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model. Those tasks get increasingly complex as the number of
biomarkers at hand increases. New statistical developments in
this active field of research aim to extend existing selection meth-
ods to higher dimensional setting [61]. One of the major matters
in this context is achieving the right balance between type I error
and power. Once a predictive signature has been successfully
identified in a phase III trial, its performances will need to be
evaluated in a truly independent trial.

conclusions
In this commentary, we have illustrated the challenges in taking
a gene signature from bench to bedside for which more clear evi-
dence-based requirements are needed [2].

Clinical trial designs originally proposed for diagnostic tests
can be adopted for trials with prognostic gene signatures. We
propose to shift from prognostic gene signatures to gene signa-
tures specifically developed on randomized controlled trial data
as treatment-effect modifiers. Our approach consists of applying
first a global permutation test. If the global test gives a green light,
a treatment-modifying gene signature can be developed on the
trial data using a particular variable selection method and a
cross-validation scheme to estimate treatment effects within
gene signature defined subgroups. More research is ongoing on
approaches to develop and validate gene signatures in random-
ized controlled trials. In the era of data sharing of clinical trials, a
larger role for meta-analyses of individual patient data can be
expected in this context. Last but not least, in clinical trials of
gene signatures some of the strongest logistical challenges are to
control confounding that can arise through the handling of the
specimens, batch effects within and between laboratories, meas-
urement error and tumor heterogeneity.
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