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Abstract

A proper immune response ensures survival in a hostile environment and promotes longevity. Recent evidence indicates
that innate immunity, beyond antimicrobial effectors, also relies on host-defensive mechanisms. The Caenorhabditis elegans
transcription factor SKN-1 regulates xenobiotic and oxidative stress responses and contributes to longevity, however, its role
in immune defense is unknown. Here we show that SKN-1 is required for C. elegans pathogen resistance against both Gram-
negative Pseudomonas aeruginosa and Gram-positive Enterococcus faecalis bacteria. Exposure to P. aeruginosa leads to SKN-
1 accumulation in intestinal nuclei and transcriptional activation of two SKN-1 target genes, gcs-1 and gst-4. Both the Toll/IL-
1 Receptor domain protein TIR-1 and the p38 MAPK PMK-1 are required for SKN-1 activation by PA14 exposure. We
demonstrate an early onset of immunosenescence with a concomitant age-dependent decline in SKN-1-dependent target
gene activation, and a requirement of SKN-1 to enhance pathogen resistance in response to longevity-promoting
interventions, such as reduced insulin/IGF-like signaling and preconditioning H2O2 treatment. Finally, we find that wdr-
23(RNAi)-mediated constitutive SKN-1 activation results in excessive transcription of target genes, confers oxidative stress
tolerance, but impairs pathogen resistance. Our findings identify SKN-1 as a novel regulator of innate immunity, suggests its
involvement in immunosenescence and provide an important crosstalk between pathogenic stress signaling and the
xenobiotic/oxidative stress response.
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¤ Current address: Department of Genetics, Eötvös Loránd University, Budapest, Hungary

Introduction

A proper immune response ensures survival in a hostile

environment and contributes to longevity. The nematode

Caenorhabditis elegans provides a valuable genetic tool for studying

innate immunity and various aspects of host-pathogen interac-

tions. During infection, both bacterial virulence factors and host

antimicrobial defense mechanisms present oxidative and proteo-

toxic noxae inducing tissue-damage, especially in the intestine [1–

5]. Accordingly, several self-protective stress-response regulators

including the forkhead transcription factor DAF-16/FOXO [6],

the heat shock transcription factor HSF-1 [7] and the X-box

binding protein 1 (XBP-1) [8] are required for robust immunity.

Moreover, the DAF-16-regulated antioxidant enzymes SOD-3

and CTL-2 contribute to immunity by protecting intestinal cells

from reactive oxygen species during exposure to Enterococcus faecalis

[9]. Strikingly, hyper-activation of DAF-16 enhances susceptibility

to bacterial infection [10].

These data illustrate a critical role of stress response in innate

immunity, and raise questions about the co-ordination of

antimicrobial and host-defense mechanisms. Antimicrobial re-

sponses are mediated by a canonical p38 mitogen-activated

protein kinase (MAPK) pathway, which is conserved from

nematodes to humans [11,12]. Besides, the insulin/IGF-like

signaling (IIS) and TGF-b pathways are also involved in the

regulation of the pathogen-specific immune response in C. elegans

[13,14]. Both p38 MAPK and IIS pathways regulate the Nrf1/2/3

ortholog SKN-1, a transcription factor that orchestrates both

oxidative and xenobiotic stress responses in C. elegans [15,16].

However, the involvement of SKN-1 in the regulation of pathogen

stress response is unknown.

In nematodes, three SKN-1 isoforms exist. While the function of

SKN-1A has not been elucidated yet, SKN-1B and C provide

distinct biological functions. SKN-1B is expressed in the ASI

neurons, and mediates lifespan extension in response to dietary

restriction [17]. In contrast, intestinal SKN-1C is required for

oxidative stress resistance and contributes to longevity by reduced

IIS [15]. SKN-1 activity is regulated by phosphorylation and

degradation. Under normal conditions, inhibitory phosphoryla-

tions by GSK-3 and IIS kinases, AKT-1/2 and SGK-1, retain

SKN-1 in the cytosol [15,18], where it is rapidly targeted to

proteasomal degradation by the WD40 repeat protein WDR-23

[19,20]. In response to oxidative stress, the p38 MAPK ortholog

PMK-1 phosphorylates SKN-1, which then translocates to the

nuclei of intestinal cells and induces transcription of phase 2

detoxification genes [16].

Here we report that SKN-1 is required for pathogen resistance

against both Gram-negative P. aeruginosa and Gram-positive E.

faecalis bacteria, consistently with an independent study [21]

published after submission of this paper. We further demonstrate a

PLoS Pathogens | www.plospathogens.org 1 April 2012 | Volume 8 | Issue 4 | e1002673



Toll and Interleukin-1 Receptor domain protein (TIR-1)/PMK-1-

dependent SKN-1 activation upon P. aeruginosa infection. More-

over, we show a gradual decrease of pathogen resistance and of the

activation of SKN-1-dependent targets during aging, and a

requirement of SKN-1 to boost immunity in response to

longevity-promoting manipulations, such as reduced IIS and

preconditioning H2O2 treatment. Finally, we find that hyper-

activation of SKN-1 impairs pathogen resistance. Our results

indicate an intricate regulation of innate immunity by SKN-1 and

links pathogenic stress signaling to the xenobiotic stress response.

Results

SKN-1 is required for bacterial pathogen resistance in C.
elegans

To study the role of SKN-1 in C. elegans immunity, we examined

the pathogen resistance of animals in the absence of SKN-1. skn-

1(zu135) allele is considered to be a genetic null mutation as it

creates a premature stop codon that affects all SKN-1 isoforms

[15]. skn-1(zu135) mutant worms were first exposed to the Gram-

negative Pseudomonas aeruginosa (PA14) strain. As skn-1(zu135)

mutants are sterile, we eliminated the difference between them

and wild-type N2 strain arising from the ‘bag of worms’

phenotype, a major contributor to killing. To this end, germline

development was inhibited by silencing cdc-25.1, required for

embryonic mitosis and meiosis. cdc-25.1(RNAi) animals exhibit

extended survival on pathogenic bacteria, as reported previously

[21,22]. In these conditions, we observed an increased suscepti-

bility of skn-1(zu135) mutants to PA14 (Figures 1A and S1A,

Tables S1A and S1E). This result was confirmed by using skn-

1(RNAi) (Figures 1B and S1B, Table S1A and S1E). Furthermore,

when animals were exposed to the Gram-positive Enterococcus

faecalis SdB262 strain, both skn-1(zu135) and skn-1(RNAi) exhibited

significantly decreased survival, though in this case the absence of

SKN-1 exerted a more modest effect (Figures S1C and S1D, Table

S1E). These results suggest a requirement of SKN-1 for the

efficient immune response against two distinct bacterial pathogens.

In subsequent experiments, we focused on further defining the role

of SKN-1 in the antibacterial response against P. aeruginosa.

P. aeruginosa infection triggers SKN-1 activation
To investigate if SKN-1 nuclear translocation occurs upon

PA14 exposure, we incubated skn-1::gfp L3 larvae on P. aeruginosa

lawn for 5 hours. We found a massive accumulation of SKN-

1::GFP in intestinal nuclei of infected larvae, compared to control

animals fed by the non-pathogenic OP50 Escherichia coli strain

(Figures 2A and 2B). The specificity of this response was

demonstrated by a complete inhibition using a skn-1-specific

double-stranded RNA. To reveal a SKN-1-dependent transcrip-

Author Summary

Innate immunity promotes survival by combating patho-
genic threat. During infection, tissue damage is induced
both by invading pathogens and immune effectors such as
toxins and free radicals. Therefore, it is important to
elucidate by what self-protective mechanisms the host
defends itself against pathogenic stress. The conserved
SKN-1 protein of the roundworm Caenorhabditis elegans
directs a detoxification response neutralizing harmful
compounds as well as confers tolerance to oxidative
stress. Here we identify SKN-1 as a novel regulator of C.
elegans innate immunity. We show that SKN-1 contributes
to resistance against infection caused by two bacterial
pathogens. Components of a pathogen-responsive signal-
ing pathway are required to activate SKN-1 in intestinal
cells at the site of infection. Moreover, the SKN-1-
dependent response to pathogen exposure declines
during aging, whereas mild metabolic and oxidative
stresses, known to extend lifespan, evoke a SKN-1-
dependent boosting of immunity. Finally, we find that
elimination of an inhibitory protein leads to an excessive
activation of SKN-1 and impairs pathogen resistance. Thus,
SKN-1 integrates various chemical, metabolic and micro-
bial signals to elicit a self-protective detoxification
response, which promotes innate immunity and may be
relevant to diseases and aging of the human immune
system.

Figure 1. SKN-1 is required for bacterial pathogen resistance. (A, B) Increased susceptibility to Pseudomonas aeruginosa PA14 occurs in both
skn-1(zu135) mutant (p,0.0001) and skn-1(RNAi) nematodes (p,0.0001). Killing assays were performed with at least 90 young adult animals in each
condition. EV: empty vector RNAi.
doi:10.1371/journal.ppat.1002673.g001
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tional activation upon PA14 infection, we examined the Pgcs-1::gfp

and gst-4::gfp reporter strains. While gcs-1 is regulated exclusively

by SKN-1, gst-4 is under the mutual control of both DAF-16 and

SKN-1 [15]. We observed an effective intestinal induction of

fluorescence to comparable extent in both strains in response to a

24 h-exposure of PA14 (Figures 2C and 2D). Both the gcs-1

promoter activation and the GST-4 expression were significantly

suppressed by feeding worms with skn-1(RNAi), indicating the

specific requirement of SKN-1 to elicit these responses. Thus,

PA14 infection induces nuclear translocation of SKN-1 and

transcriptional activation of its targets.

The TIR-1/PMK-1 pathway controls SKN-1 activation upon
P. aeruginosa infection

The p38 MAPK ortholog PMK-1 has a fundamental role in C.

elegans innate immunity [11]. To investigate whether PMK-1

regulates SKN-1 in response to bacterial exposure, we monitored

the activity of a Pgcs-1::GFP reporter in a wild-type and a pmk-

1(km25) mutant genetic background (Figures 3A and 3B). We

found that silencing pmk-1 entirely prevented the SKN-1-

dependent activation of gcs-1 in response to PA14 infection. In

physiological settings, PMK-1 is inactivated by the dual specificity

MAPK phosphatase VHP-1 [23]. Suppression of VHP-1 resulted

Figure 2. P. aeruginosa infection activates SKN-1. (A) Representative epifluorescence image demonstrating the translocation of SKN-1::GFP in
the Is007[SKN-1::GFP] strain to intestinal nuclei in L3 larvae, fed by the empty vector or skn-1 dsRNA, upon a 5-hour exposure to P. aeruginosa PA14.
Note that the intestinal tissue displays autofluorescence, and in the ASI neurons SKN-1::GFP is not silenced by skn-1 RNAi treatment. (B) Quantification
of SKN-1 nuclear translocation from data shown on panel (A). SKN-1::GFP-positive nuclei were counted in the intestine of 78 animals. ‘‘Low’’ refers to
animals in which SKN-1::GFP was detected in less than 5 intestinal nuclei, while ‘‘high’’ indicates that SKN-1::GFP signal was present in more than 15
intestinal nuclei. (C) Representative epifluorescence microscopic image showing intestinal expression of Pgcs-1::GFP and GST-4::GFP in L3 larvae upon
a 24-hour PA14 exposure. Images of control animals incubated on OP50 bacteria are shown in Figure S2. (D) Quantification of reporter expression
demonstrating the SKN-1-dependence of the response. Data were obtained from panel (C) completed with the data of skn-1(RNAi) animals.
Microscopic images are representatives of 3 independent experiments. EV: empty vector RNAi.
doi:10.1371/journal.ppat.1002673.g002
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in increased PMK-1 phosphorylation and resistance to PA14 [23].

However, vhp-1(RNAi) significantly increased Pgcs-1::GFP activa-

tion upon PA14, but not upon OP50 exposure, suggesting that

PMK-1 is an indispensable permissive factor for SKN-1 activation

by infection.

TIR-1 is a conserved Toll/IL-1 resistance (TIR) domain protein

known to activate p38 MAPK signaling independently of the Toll-

like receptor ortholog tol-1 during PA14 infection [24,25].

Depletion of TIR-1 by RNAi prevented Pgcs-1::GFP fluorescence

upon PA14 infection (Figures 3A and 3B). A similar inhibition in

Figure 3. The pathogen response-specific TIR-1 and p38 MAPK PMK-1 are required for SKN-1 activation upon P. aeruginosa
infection. (A) Representative epifluorescence microscopic images showing the expression of Pgcs-1::GFP in pmk-1(km25) mutants as well as in the
p38 MAPK phosphatase vhp-1(RNAi), and the Toll/IL-1 resistance (TIR) domain protein tir-1(RNAi) animals in response to P. aeruginosa infection. L3
larvae were exposed to PA14 for 24 hours. Microscopic images are representatives from 3 independent experiments. (B) Quantification of reporter
expression from data shown on panel (A) completed with data of control animals fed by OP50 for 24 h. (C) Quantification of SKN-1 nuclear
translocation in tir-1(RNAi) L3 larvae upon 5 h PA14 exposure. Representative epifluorescence images of tir(RNAi) L3 larvae are shown in Figure S3.
Please note that data in Figure 2B and 3C were derived from the same set of experiments. (D) Suggested model of SKN-1 activation during P.
aeruginosa infection. Upon exposure to PA14, the TIR-1/PMK-1 pathway is indispensable but insufficient to elicit SKN-1 transactivation. We propose a
second, unknown factor/pathway that is required to activate SKN-1. Whether the two pathways act in parallel or consecutively is unclear. Solid arrows
indicate a direct, while dashed arrows indicate an indirect/unknown connection. EV: empty vector RNAi.
doi:10.1371/journal.ppat.1002673.g003
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Pgcs-1::GFP expression was also observed in tir-1(qd4) mutant

animals (data not shown). Moreover, silencing tir-1 prevented the

nuclear translocation of SKN-1 induced by PA14 infection, but

did not affect its baseline expression levels (Figures 3C and S3.).

Altogether, these results suggest that the TIR-1/PMK-1 pathway

is necessary to attain activation of SKN-1 by PA14 exposure

(Figure 3D).

Involvement of SKN-1 in immunosenescence
Immune function declines with age, leading to compromised

immune responses to infections in the elderly. Accordingly, aged

nematodes exhibit increased susceptibility to infection by various

pathogens, including P. aeruginosa [26–28]. As SKN-1 is required

for both longevity and for pathogen resistance, we asked if

chronological aging affected SKN-1-dependent target gene

expression in nematodes exposed to pathogenic stress. To this

end we examined the promoter induction of gcs-1 by PA14 in L3

stage larvae, 4-day and in 9-day old adult worms, respectively

(Figures 4A and 4B). We observed a massive age-dependent

decrease in the expression of Pgcs-1::GFP reporter after 24 h of

PA14 infection. To investigate, how SKN-1 activity is involved in

immunosenescence, we examined the survival of 1, 4 and 9 day-

old adult N2 and skn-1(zu135) mutant nematodes exposed to

PA14. We observed that pathogen resistance in wild-type animals

already declined at day 4 as previously described by Laws et al.

[26]. Consistent with a premature decline of self defense in the

absence of SKN-1 activity, 4 d adult N2 worms showed similar

survival on PA14 to 1 d adult skn-1(zu135) animals (p = 0.1429).

Furthermore, we found that skn-1(zu135) mutant animals

exhibited increased susceptibility to PA14, compared to N2 at

all ages (p.0.0001) (Figure 4C and Table S1B), indicating that

SKN-1 function is also required to survive infection beyond day 9.

To address the potential involvement of SKN-1-dependent gene

expression in immunosenescence, we performed a bioinformatics

analysis using the microarray data of Youngman et al. [27]. From

the 379 genes exhibiting the most significant down-regulation

during aging (.10 fold down-regulation at d15 vs. d6) we

identified 46 SKN-1-regulated genes (based on skn-1(RNAi) screens

[29,30]) (Figure 4D, Table S2). Next, we examined the regulation

of these genes with respect to oxidative stress, PA14 and PMK-1

dependent regulation using Wormbase expression data [31].

Strikingly, SKN-1-regulated genes subject to PA14-dependent

regulation were over-represented compared to those regulated by

either oxidative stress or PMK-1, respectively. These results

confirm a progressive age-dependent compromise in pathogen

resistance and imply that a decline in SKN-1 function contributes

to immunosenescence.

Reduced IIS and oxidative preconditioning require SKN-1
for enhanced pathogen resistance

Loss-of-function mutations in the insulin/IGF-1 receptor gene,

daf-2 enhance stress resistance and extend lifespan, and both

processes require DAF-16 and SKN-1 activity [15]. As reduced

IIS increases pathogen resistance [6], we investigated the

contribution of SKN-1 to pathogen resistance in daf-2(e1370)

mutant animals. In accordance with previously published data [6],

daf-2(e1370) mutants exhibited robustly increased pathogen

resistance against PA14 (Figure 5A and Table S1C). However

silencing skn-1 by RNAi largely increased their susceptibility to

PA14. These data suggest that SKN-1 is required for reduced IIS

to bring about enhanced pathogen resistance against P. aeruginosa.

Exposure to mild oxidative stress induces tolerance to a lethal

challenge, cross-tolerance to other stresses and extends lifespan

[32]. To address the impact of oxidative preconditioning on

pathogen resistance, nematodes were pretreated with various

concentrations of H2O2, and then exposed to PA14 infection.

H2O2 preconditioning induced resistance against PA14 in a

concentration-dependent manner, reaching a 2-fold increase in

survival by 2 mM H2O2, compared to untreated controls

(Figure 5B and Table S1D). Intriguingly, the same treatment on

skn-1(zu135) mutant nematodes not only exhibited a decreased

pathogen resistance, but had a strongly suppressed reaction to

H2O2 (Figure 5C and Table S1D). We also found that the

mutation of another major oxidative stress response regulator,

DAF-16 (daf-16(mu86)), shows an even shorter basal survival,

compared to skn-1(zu135), and poorly responded to H2O2

(Figure 5C and Table S1D). Thus, oxidative preconditioning

requires both SKN-1 and DAF-16 for enhanced pathogen

resistance against P. aeruginosa.

Excessive activation of SKN-1 by wdr-23(RNAi) impairs
pathogen resistance

Finally, we investigated whether increased activation of SKN-1

was able to promote pathogen resistance. Stabilization of SKN-1

by RNAi against wdr-23 has been shown to induce constitutive

SKN-1 activation, resistance to oxidative stress and longevity [19].

Feeding worms with wdr-23(RNAi) indeed resulted in an

unexpectedly robust increase in the expression of Pgcs-1::GFP

and GST-4::GFP (Figure 6A) compared to the PA14-induced

expression (Figure 2C). To our surprise, wdr-23(RNAi), compared

to empty vector feeding greatly reduced pathogen resistance to

PA14 (Figure 6B and Table S1A). wdr-23(RNAi) did not impair

survival in a skn-1(zu135) mutant background excluding a SKN-1-

independent impact of WDR-23 on pathogen resistance. Inter-

estingly, the compromised reactivity of worms to wdr-23(RNAi) was

confined to pathogenic stress. Determination of oxidative

tolerance revealed that wdr-23(RNAi) animals exhibited increased

survival, whereas skn-1(RNAi) nematodes displayed decreased

survival, compared to control worms, when exposed to 3 mM or

5 mM H2O2, respectively (Figure 6C). Our results suggest that an

excessive post-translational stabilization of SKN-1 induces oxida-

tive stress resistance but impairs resistance to bacterial infection.

Discussion

Our present study identified SKN-1 as a novel regulator of

pathogen resistance against both Gram-negative P. aeruginosa and

Gram-positive E. faecalis bacteria (Figures 1 and S1). We

demonstrated a TIR-1/PMK-1-dependent SKN-1 activation

upon P. aeruginosa infection (Figures 2 and 3). Moreover, we

showed an early onset of immunosenescence with a parallel

decline in SKN-1-dependent transcriptional activation (Figure 4)

and a requirement of SKN-1 to efficient immunity in response to

reduced IIS or preconditioning H2O2 treatment (Figure 5).

Finally, we found that excessive activation of SKN-1 by blocking

its turnover impaired pathogen resistance (Figure 6).

The xenobiotic stress response provides a conserved defense

mechanism against oxidative and electrophilic stress via the

induction of phase 2 detoxification enzymes [33]. Nrf2 and its

nematode ortholog, SKN-1, are transcription factors important in

oxidative and xenobiotic stress response [34,35]. Previously,

several studies demonstrated the importance of Nrf2 in innate

immunity in mammals [36–38]. For example, Nrf22/2 mice

exhibit increased susceptibility to bacterial infection and bacterial

lipopolysaccharide (LPS)-induced inflammation [39]. Similarly,

our present study demonstrates that SKN-1 deficiency in C. elegans

impairs resistance to infection (Figures 1 and S1). During the

revision of our manuscript an independent paper from the Garsin

SKN-1 in C. elegans Immunity
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lab appeared, which obtained similar results [21]. A previous study

found no significant impairment of pathogen resistance by skn-

1(zu135) and skn-1(zu67) mutations in the wildtype background

[40]. A possible reason of this discrepancy might be the use of cdc-

25.1(RNAi) by the Garsin lab and our study, suggesting that

selective bagging in wild-type vs. sterile skn-1 mutants might have

masked the pathogen resistance decrease induced by loss of skn-1

in the previous investigation. Consistently with this note, the use of

skn-1(RNAi) from the L1 stage, which did not induce sterility [21],

confirmed the decrease in pathogen resistance. A similar finding

was also reported as an earlier unpublished result of Evans et al.

[41].

We observed a nuclear translocation and transcriptional

activation of SKN-1 in the intestine, consistent with the primary

site of infection (Figures 2 and 3). Furthermore, we could not

detect any apparent change in SKN-1 intensity or nuclear

localization in ASI neurons upon PA14 exposure (Figure 2). This

finding is in agreement with previous reports on constitutive SKN-

Figure 4. Involvement of SKN-1 in immunosenescence. (A) Representative epifluorescence images showing the decreased induction of the
gcs-1 promoter. L3 larvae, 4 d/9 d adult Pgcs-1::gfp worms were exposed to PA14 for 24 h. (B) Quantification of the epifluorescence images of panel
(A). Epifluorescence images are representatives of two independent experiments. EV: empty vector RNAi. (C) Pathogen resistance of young adult (1
day-old), 4 day-old and 9 day-old adult N2 and skn-1(zu135) mutant animals. skn-1(zu135) mutant worms exhibited significantly increased
susceptibility to PA14 compared to N2 wild-type animals at all ages (p,0.0001). 1 day-old adult skn-1(zu135) worms show similar pathogen resistance
to 4 day-old N2 worms (p = 0.1429) (middle graph). Killing assays were performed with 3 parallel plates in each condition in 2 independent trials. (D)
Venn diagram showing the distribution of age-regulated SKN-1 target genes. Data were analyzed by finding the overlaps between micro-array
databases containing the genes down-regulated at least 10-fold in 15 d adult compared to 6 d adult wild-type animals [27] and SKN-1 dependent
genes under non-stress [29] or oxidative stress conditions [30] using expression data from Wormbase [31]. Please note that the majority of genes
belong to those regulated by PA14 infection. 10 of 46 genes could be assigned to none of the groups. For the detailed gene list please refer to Table
S2.
doi:10.1371/journal.ppat.1002673.g004
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1B activity and a lack of interaction between SKN-1B and WDR-

23 in ASI neurons, respectively [19,34]. Together, our data imply

an active role of the intestinal SKN-1C isoform and does not allow

a conclusion regarding the involvement of the ASI neuronal SKN-

1B in the inducible antibacterial response. However, a continuous

transcriptional output of SKN-1B and/or a different mode of

regulation of SKN-1B in response to infection cannot be excluded.

Hence, a tissue-specific analysis of SKN-1 function may give a clue

whether SKN-1 isoforms co-operate in immunity.

Our findings confirm those of van der Hoeven et al. [21] on the

critical role of the p38 MAPK pathway in SKN-1 activation

(Figure 3). However, the inability of vhp-1(RNAi) to activate SKN-1

on OP50 suggests that there should be additional, unidentified

signals that govern SKN-1 activation in response to PA14

infection, which will certainly prompt additional studies. We

showed an absolute requirement of TIR-1 for SKN-1 nuclear

translocation and for gcs-1 promoter induction upon PA14

exposure, while the Garsin lab reported no to minimal

involvement of TIR-1 in gst-4 and gcs-1 induction in response to

E. faecalis [21]. Whether the difference between our observations

beyond differences in assays and dosage/treatment by tir-1(RNAi)

may be due to a differential pathogen sensing of P. aeruginosa and

E. faecalis is an exciting possibility to explore. TIR-1 and PMK-1

are related to the mammalian SARM and p38 MAPK proteins,

respectively [42,43]. Although the existence of an orthologous

pathway in mammals remains elusive, these findings indicate that

the SKN-1-mediated response is an ancient component of innate

immunity.

Immunosenescence, the age-dependent decline of immune

response, is a critical problem impeding healthy ageing [44]. C.

elegans provides a useful tool to investigate elements of innate

immunity contributing to immunosenescence [45]. A recent

systematic study reported an age-dependent progressive increase

in susceptibility to PA14, detectable at day 6 of adulthood [27].

Our data on a similar age-related decline in survival, with a 45%

decrease in pathogen resistance at day 4 (Figure 4C) establishes an

earlier, dramatic onset of immunosenescence. Moreover, the loss

of SKN-1 function phenocopies the decreased resistance of d4

worms already at day 1, and continues to negatively affect survival

at day 9 (Figure 4C). A parallel strong decline in gcs-1

transactivation on day 4 and the widespread down-regulation of

SKN-1 targets, including PA14-regulated genes, between day 6

and 15 of adulthood (Figure 4D, Table S2) are consistent with this

observation and indicate SKN-1 as a key player in immunosenes-

cence.

Youngman and colleagues found an involvement of PMK-1 in a

decline of the innate immune response, and hypothesized

intestinal deterioration as a primary event in immunosenescence

[27]. Of note, the dependence of SKN-1 activation on PMK-1

([21] and our study), the high number of age-dependent SKN-1

targets among PMK-1 targets (13 of 26; Figure 4D, Table S2 and

[27]) and the impact of SKN-1 on intestinal homeostasis [30]

suggest a dynamic, probably mutual interaction between SKN-1

and PMK-1 in immunosenescence. We propose that SKN-1-

dependent stress responses collapse early in adulthood, which

manifest in a vicious circle of decreasing intestinal homeostasis,

progressive immunosenescence and increasing pathogenic load in

C. elegans. This hypothesis is consistent both with the short lifespan

of worms in natural conditions and with the allocation of resources

to maintain the soma until the production of fit progeny (the

‘‘disposable soma theory’’ [46]).

Genetic or environmental interventions that operate via stress-

responsive mechanisms extend both lifespan and pathogen

resistance [6,15,32,47,48]. Our results on H2O2-induced pathogen

resistance (Figure 5B), together with previous analogous heat-

shock experiments [7] suggest that mild stresses acting early in

adulthood confer resistance against pathogenic stress. Further-

more, the demonstration of the requirement of SKN-1 and DAF-

16 in the enhanced pathogen resistance of both H2O2-precondi-

tioned and daf-2(e1370) mutant nematodes suggests a dynamic

Figure 5. Reduced IIS and oxidative preconditioning require
SKN-1 for enhanced pathogen resistance. (A) daf-2(e1370) mutant
nematodes exhibited increased resistance to P. aeruginosa, compared
to that of wild-type N2 worms (p,0.0001). skn-1(RNAi) treatment of daf-
2(e1370) animals increased the susceptibility to P. aeruginosa infection
(p,0.0001). Killing assays were performed with at least 90 young 1-day
old adult animals in each condition. (B) H2O2 pretreatment increased
survival on PA14 in a concentration-dependent manner. Survival curves
of N2 wild-type worms treated with various concentrations of H2O2 in
liquid NGM: 1 mM (p = 0.425), 1.5 mM (p,0.0001) and 2 mM
(p,0.0001) 12 h prior to the killing assay are shown. Killing assay was
performed with 90 3-day old adult animals in each condition. (C)
Oxidative preconditioning-induced pathogen resistance was impaired
in the absence of SKN-1 or DAF-16. Increase in survival was less
pronounced in either skn-1(zu135) (p = 0.0156) or daf-16(mu86) mutant
(p = 0.0304), than in wild-type animals (p,0.0001). Survival curves of
the same genetic background were compared in the absence and
presence of H2O2. Data were combined from at least two experiments
with 89 animals in average for each group. EV: empty vector RNAi.
doi:10.1371/journal.ppat.1002673.g005
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cross-talk of these stress-responsive transcription networks tipping

the balance between responses to nutrient availability, oxidative

and pathogen stress. Though our data do not allow a clear

conclusion, the recent prediction of a DAF-16-dependent

regulation of SKN-1 [49] is in line with the proposed functional

interaction between SKN-1 and DAF-16 and is a subject of future

interesting studies.

Evidence on mammals indicates a defensive role of Nrf2 against

inflammation-induced tissue damage [36–39]. An analogous

nematode model raises the question, whether SKN-1 affects

immunity independently of its impact on aging. Indeed, longevity,

stress resistance and pathogen resistance are intimately linked in

short-lived C. elegans. However, a greater reduction of survival in

skn-1(zu135) mutants on PA14 than on non-pathogenic OP50

(51% vs. 19% compared to N2, Figures 1 and S4, Tables S1 and

S3) suggests a stronger impact of SKN-1 on pathogen resistance

than on longevity. The pathogen-induced activation of SKN-1 and

the large number of PA14-regulated SKN-1-targets including

immune-related CUB-like domain proteins (Figure 4D, Table S2)

[29] support SKN-1’s active involvement in the pathogen

response. Finally, it has previously been shown that knock-down

of skn-1 in the daf-2(e1370) mutant selectively suppresses stress

resistance but not lifespan [15]. Thus, our findings demonstrating

a SKN-1-dependent increase of pathogen resistance by this allele

(Figure 5A), suggest an immune-specific effect of SKN-1. Studies

investigating SKN-1-dependent responses on OP50 vs. pathogens

Figure 6. Excessive activation of SKN-1 by wdr-23(RNAi) impairs pathogen resistance. (A) Robust up-regulation of Pgcs-1::GFP and GST-
4::GFP in 1 d adult wdr-23(RNAi) worms. (B) Pathogen resistance of wdr-23(RNAi)-fed N2 and skn-1(zu135) mutant worms. N2;wdr-23(RNAi) exhibited
increased susceptibility to P. aeruginosa infection (p,0.0001). skn-1(zu135) mutant nematodes fed by wdr-23(RNAi) showed no significant difference
in survival on PA14 (p = 0.1992). Killing assay was performed with at least 90 1-day old adult animals in each condition. Please note that data in
Figures 1A and 6B were derived from the same set of experiments. (C) wdr-23(RNAi) treatment increased (p,0.0001, both at 3 mM and 5 mM H2O2,
respectively), while skn-1 RNAi treatment decreased oxidative tolerance to H2O2 (p,0.0001 at 3 mM H2O, p,0.05 at 5 mM H2O2). Worms were
treated with 3 mM or 5 mM H2O2 for 1 hour, and 24 h after challenge survival was scored. Data were combined from three experiments with 120
animals in average for each group. EV: empty vector RNAi.
doi:10.1371/journal.ppat.1002673.g006
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would help reveal the downstream mediators of SKN-1 and to

determine the immune-specific and other branches of SKN-1

action.

SKN-1 activation by wdr-23(RNAi) impairs pathogen resistance,

a result in contrast with those of the Garsin lab [21]. The reason

may lie in the use of cdc-25.1(RNAi) by us, or in the different

dosage/duration of RNAi treatment in the two experimental

protocols. Nevertheless, our findings on the adverse effects of

excessive SKN-1 activity are consistent with those reporting that

loss of WDR-23 activity slows growth via SKN-1 [19], expression

of SKN-1 from high-copy arrays is toxic [15], and that SKN-1

mediates increased susceptibility to PA14 in the absence of BLI-3

[21]. Combining the two wdr-23(RNAi) results ([21] and our study)

clearly shows that this type of activation can dissociate immunity

from oxidative stress resistance. As a potential mechanism,

excessive SKN-1 activation may remodel the transcriptional

response in favor of anti-oxidative defense and/or may repress

pathogen-specific defenses. Indeed, differential SKN-1 transcrip-

tional outputs were demonstrated [29]. It is logical to assume that

negative and positive inputs regulating SKN-1 allow fine-tuning of

stress resistance, growth and immunity. An analogous deteriora-

tion of pathogen resistance by the excessive activation of DAF-16

[10] underscores the necessity of tight control of stress responses to

avoid deleterious consequences during infection.

Taken together, we propose that an optimal enhancement of

SKN-1 activity in proper time-frame may enhance immune

responses and delay immunosenescence without compromising

longevity. In recent years, C. elegans has become a versatile model

not only for studying innate immunity, host-pathogen interactions,

but for testing pharmacological interventions in drug discovery

[50]. The results presented herein may prompt studies on drugs

targeting SKN-1/Nrf2 to modulate the innate immune response.

In conclusion, our findings indicate an intricate regulation of

innate immunity by SKN-1, and link pathogenic stress signaling to

xenobiotic and oxidative stress responses.

Materials and Methods

C. elegans strains and maintenance
Nematodes were maintained and propagated on E. coli OP50 as

described by Brenner [51] at 20uC. The following C. elegans strains

were obtained from the Caenorhabditis Genetics Center and were

used in this study: N2, EU31 skn-1(zu67)IV/nT1[unc-?(n754) let-

?](IV;V), KU25 pmk-1(km25)IV., ZD101 tir-1(qd4)III. Further

strains were used: LD001 Is007 [skn-1::gfp], CF1038 daf-

16(mu86)I., CB1370 daf-2(e1370)III. (Tibor Vellai, Eötvös Loránd

University, Budapest, Hungary), LD1171 Is003 [Pgcs-1::gfp] (T.

Keith Blackwell, Harvard Medical School, Boston MA, USA) and

MJCU017 kIs17[gst-4::gfp, pDP#MM016B]X. (Johji Miwa, Chubu

University, Kasugai, Japan). Nematodes were treated with cdc-

25.1(RNAi) to avoid the bacterial infection induced ‘bag of worms’

phenotype in all experiment.

Crossing and genotyping by PCR
Pgcs-1::gfp;pmk-1(km25) and Pgcs-1::gfp;tir-1(qd4) strains were

created by mating male pmk-1(km25) or tir-1(qd4), respectively,

with LD1171 Is003 [Pgcs-1::gfp] hermaphrodites. Transgenic rol

progeny was isolated with the correct genotype as scored by PCR.

PCR primers were obtained from Sigma. The primers pmk-1-OF

(59-GGATACGGAAGAAGAGCCAATG-39) and pmk-1-OR (59-

CAACAGTCTGCGTGTAATGC-39) were used to detect the

pmk-1(km25) deletion allele. The wild-type pmk-1 allele amplified a

1195-bp fragment compared to a 882-bp fragment from pmk-

1(km25) allele. Homozygous pmk-1(km25) mutants were identified

by PCR using primers pmk-1-IF (59-TCCTATAAGTTGCCAT-

GACCTCAG-39) and pmk-1-IR (59-CCCGAGCGAGTACATT-

CAGC-39) from inside the deletion region. Wild-type animals

generated a 469-bp fragment, while the homozygous pmk-1(km25)

allele did not produce any fragment. The primers tir-1-OF (59-

TGGGTAAATGAGGAAGAGAGAGAG-39) and tir-1-OR (59-

TCGGTTGACGAGTCGAATTTGG-39) were used to detect the

tir-1(qd4) deletion allele. The wild-type tir-1 allele amplified a

1368-bp fragment compared to a 228-bp fragment from tir-1(qd4)

allele. Homozygous tir-1(qd4) mutants were identified by PCR

using primers tir-1-OF and tir-1-IR (59-CACAAGAACGTGCAA-

CATCG-39) from inside the deletion region. Wild-type animals

generated a 327-bp fragment, while the homozygous tir-1(qd4)

allele did not produce any fragment.

RNA interference (RNAi)
The HT115(DE3) E. coli bacteria producing dsRNA against cdc-

25.1 (Andy Golden NIDDK/NIH, Bethesda MD, USA), skn-1 (T.

Keith Blackwell, Harvard Medical School, Boston MA, USA),

wdr-23 (Keith P. Choe, University of Florida, Gainesville FL,

USA), vhp-1 and tir-1 (Source BioScience Geneservice, Cambridge,

United Kingdom) were used in our study. RNAi feeding E. coli

clones were grown overnight in LB medium containing 100 mg/ml

ampicillin. RNAi treatment was performed as described by

Shapira et al. [22]. Worms were grown on RNAi bacteria from

hatching till young adult stage. If several RNAi constructs were

used in one condition, ON cultures of the feeding bacteria strains

were mixed equally. Empty vector containing HT115(DE3)

bacteria (EV) was used as a control in all cases.

Preparation of pathogenic bacteria
Different human opportunistic bacteria, such as Pseudomonas

aeruginosa and Enterococcus faecalis [28,52] are ubiquitously used as

pathogen models. Gram-negative Pseudomonas aeruginosa PA14

(David W. Wareham, Queen Mary University of London,

London, UK) and Gram-positive Enterococcus faecalis SdB262

(Jonathan J. Ewbank, Centre d’Immunologie de Marseille-

Luminy, Marseille, France) bacteria were maintained and

prepared for experiments as described by Powell and Ausubel

[53]. BHI agar was supplemented with 100 mg/ml rifampicin for

E. faecalis killing assay.

Killing assay
Killing assays were performed with young adult animals at

25uC on slow killing plates (P. aeruginosa) or rifampicin BHI plates

(E. faecalis), or otherwise as it was noted in the figure legend.

Dead worms were scored every 12 hours till complete extinction

of the population. Viability was determined by assaying for

movement in response to gentle prodding. Worms died on the

wall of the Petri dish or crawled into the gel were censored. 30

animals per condition were tested with 3 parallel plates in at least

two independent trials, except that an H2O2-concentration

dependence of preconditioned pathogen resistance was estab-

lished in one trial. For studying pathogen resistance of daf-2

mutants, nematodes were grown at 15uC. For oxidative

preconditioning 2-day old adult animals were treated with 0

(control), 1 mM, 1.5 mM and 2 mM H2O2 (Sigma) in liquid

NGM for 2 hours at 20uC. Before the killing assay worms were

transferred to OP50 seeded NGM plates for a 12-hour recovery

period. To test the effect of aging on pathogen resistance, worms

were maintained on OP50-seeded NGM plates before the

challenge. To avoid ‘bag of worms’ phenotype, animals were

fed by cdc-25.1(RNAi).
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Fluorescence microscopy
Nematodes were treated as indicated in the figure legends

(Figures 2, 3, 4 and 6). After treatments at least 40 worms per

condition were placed on a 2% agarose pad, and immobilized by

adding 40 mM levamisole in M9 buffer. Images were taken by a

Leica DMI6000B epifluorescence microscope with a DFC480

camera. Epifluorescent microscopic images are representatives of

at least 3 experiments. To analyze Pgcs-1::GFP and GST-4::GFP

expression upon PA14 infection, two groups of animals were

determined depending on the detected GFP level in the intestine:

GFP positive and GFP negative animals. To study the nuclear

localization of SKN-1 in response to PA14 infection minimum 15

skn-1::gfp worms per condition were analyzed in at least 3

independent trials. Images were captured by a Zeiss LSM510

confocal laser scanning microscope equipped with a 406/1.3 oil

immersion objective (Plan-Neofluar, Zeiss).

Analysis of SKN-1 dependent targets amongst genes
down-regulated by aging

A list of 379 genes exhibiting the most significant age-dependent

decline in their expression (.10-fold at d6 vs. d15) was acquired

from [27]. Data were analyzed by finding the overlaps between

genes subject to SKN-1 dependent genes under non-stress [29] or

oxidative stress conditions [30]. Then the expression of the

identified genes was analyzed based on Wormbase data, focusing

on PA14-, oxidative stress- or PMK-1-dependent regulation [31].

Oxidative stress tolerance
Young, 1-day old adult worms were incubated in liquid NGM

for 1 hour at 20uC with 3 mM and 5 mM H2O2 (Sigma). After

oxidative challenge animals were transferred to OP50 seeded

NGM plates and viability was tested 24 hours later. 35 animals per

plate were examined in each condition with 3 parallel plates in 3

independent trials.

Statistical analysis
Data were analyzed by using the SPSS software 15.0 (SPSS Inc.,

Chicago, IL, USA). Survival curves were compared by Kaplan-

Meyer log-rank test. To compare the means of survival (oxidative

tolerance assay) or the GFP expression of the Pgcs-1::gfp, gst-4::gfp,

skn-1::gfp strains variables were analyzed by one-way ANOVA test.

Results are expressed as mean 6 standard deviation (SD).

Statistical significance was indicated as follows: * p,0.05,

** p,0.001, *** p,0.0001.

Accession numbers
C. elegans proteins/genes: Q17941, Q9XTG7, Q2MGF0,

Q17450, O61213, P54145, Q9U3Q6, O02215, G5EC10,

Q18198, Q9XUH3, Q9XUF9, O44552, Q27487, Q18938,

O17725, O16849, Q968Y9, Q9XVB4, Q9XVA9, Q19223,

O62146, G5EGH6, Q8MNR8, Q19774, O02357, Q09321,

Q9UAQ9, P91316, Q20770, Q20840, G5EC22, P90893,

Q20968, Q21009, Q20117, Q9U2Q9, Q21355, Q9XW45,

Q21381, Q09991, Q94269, Q94271, P34528, Q17446, Q2PJ68,

P34707, P41977, O02364, Q9XUC0, Q86DA5, Q10038,

P90794, Q8WRF1, Q9U309, G5EFR9, Q9GR66, G5ECJ8,

Q86S61, O76725, Q9N4X8, Q9NAB1, Q23498, Q23564

Human proteins/genes: Q12778, Q16656, Q16236, Q9Y4A8

Supporting Information

Figure S1 SKN-1 is required for pathogen resistance
against both P. aeruginosa and E. faecalis.

(DOC)

Figure S2 PA14-induced activation of Pgcs-1::GFP and
GST-4::GFP expression.

(DOC)

Figure S3 Suppression of PA14-induced SKN-1 nuclear
localization by tir-1(RNAi).

(DOC)

Figure S4 Lifespan of N2 and skn-1(zu135) mutant
worms.

(DOC)

Table S1 Statistical analysis of killing assays.

(DOC)

Table S2 List of SKN-1-dependent genes down-regulat-
ed by aging.

(DOC)

Table S3 Statistical analysis of lifespan assays.

(DOC)

Acknowledgments

We thank T. Keith Blackwell, Johji Miwa, Tibor Vellai and the

Caenorhabditis Genetics Center for C. elegans strains, T. Keith Blackwell,

Andy Golden, Keith P. Choe for RNAi strains and Jonathan J. Ewbank

and David W. Wareham for Pseudomonas aeruginosa PA14 and Enterococcus

faecalis SdB262 strains, respectively, and Wormbase for collecting and

providing data on C. elegans. We are grateful to Attila Mócsai and Gergő
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