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Abstract: Colorectal cancer (CRC) is one of the most common cancers worldwide. Accurate early
detection and diagnosis, comprehensive assessment of treatment response, and precise prediction of
prognosis are essential to improve the patients’ survival rate. In recent years, due to the explosion of
clinical and omics data, and groundbreaking research in machine learning, artificial intelligence (AI)
has shown a great application potential in clinical field of CRC, providing new auxiliary approaches
for clinicians to identify high-risk patients, select precise and personalized treatment plans, as
well as to predict prognoses. This review comprehensively analyzes and summarizes the research
progress and clinical application value of AI technologies in CRC screening, diagnosis, treatment,
and prognosis, demonstrating the current status of the AI in the main clinical stages. The limitations,
challenges, and future perspectives in the clinical implementation of AI are also discussed.

Keywords: colorectal cancer; artificial intelligence; machine learning; deep learning; diagnosis;
prognosis; treatment; screening

1. Introduction

Colorectal cancer (CRC) is the third most common cancer and the second leading
cause of cancer death worldwide [1]. The World Health Organization has estimated that
more than 1.9 million new cases and 935,000 deaths occurred in 2020, accounting for about
one-tenth of all cancer cases and deaths [1]. Although significant improvement has been
made in CRC healthcare, the global incidence and mortality rates continue to rise and are
expected to increase by 15% to more than 2.2 million new cases and 1.1 million deaths by
2030 [2]. It is therefore of great significance to identify novel and effective strategies for
early diagnosis, accurate treatment assessment and prognosis prediction of CRC, which are
essential to increase the survival rate.

Artificial intelligence (AI) technologies, especially machine learning (ML) and deep
learning (DL), have advanced rapidly in medical care, providing new potential to build
powerful and accurate computer-assisted methods that can effectively screen, diagnose,
and treat cancer, and follow patient prognosis [3]. A large number of recent studies have
applied AI in the field of CRC [4–6]. From the perspective of clinical practice, the existing
applications of AI in CRC mainly involve four clinical parts (Figure 1):
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Figure 1. Clinical applications of AI for CRC. The inner circle represents the main data types in CRC 
research, including radiological images (i.e., Computed Tomography (CT), Magnetic Resonance Im-
aging (MRI), etc), endoscopic images, pathological images, clinical data, and omics data; the outer 
circle represents the four key clinical parts of CRC, i.e., screening, diagnosis, treatment, and prog-
nosis; for each clinical part, AI has subdivided and specific tasks, which are shown in boxes outside 
the circle respectively. OS, overall survival; DFS, disease-free survival; nCRT, neoadjuvant radio-
therapy. 

• Screening: Endoscopy is considered the gold standard for CRC screening, supple-
mented with fecal occult blood test (FOBT), but these methods are relatively depend-
ent on clinical experience and prone to omission and misdiagnosis. The increasing 
prevalence of endoscopic imaging datasets and electronic medical records (EMRs), 
AI-assisted endoscopy for polyp detection and characterization, and the use of high-
risk prediction models using clinical and omics data, are expected to improve the 
accuracy and efficiency of CRC screening. 

• Diagnosis: The qualitative diagnosis and staging of CRC mainly rely on radiography 
and pathological examination [5]. Thanks to advanced processing technology in the 
field of image recognition, DL can significantly improve medical image readability, 
eliminate differences in experience, and reduce misdiagnosis rates. 

• Treatment: The most commonly used methods for clinical treatment of CRC are sur-
gery, chemotherapy and radiotherapy [7]. Novel therapies and tools can be evaluated 
with the help of AI, such as neoadjuvant radiotherapy (nCRT) and chemotherapy, to 
improve curative effects and provide more precise medical care to patients. 

• Prognosis: Prognosis of CRC includes the predicting of recurrence and estimating of 
the survival period [3]. Statistical methods such as the Cox regression model are 

Figure 1. Clinical applications of AI for CRC. The inner circle represents the main data types in
CRC research, including radiological images (i.e., Computed Tomography (CT), Magnetic Resonance
Imaging (MRI), etc), endoscopic images, pathological images, clinical data, and omics data; the outer
circle represents the four key clinical parts of CRC, i.e., screening, diagnosis, treatment, and prognosis;
for each clinical part, AI has subdivided and specific tasks, which are shown in boxes outside the
circle respectively. OS, overall survival; DFS, disease-free survival; nCRT, neoadjuvant radiotherapy.

• Screening: Endoscopy is considered the gold standard for CRC screening, supple-
mented with fecal occult blood test (FOBT), but these methods are relatively depen-
dent on clinical experience and prone to omission and misdiagnosis. The increasing
prevalence of endoscopic imaging datasets and electronic medical records (EMRs), AI-
assisted endoscopy for polyp detection and characterization, and the use of high-risk
prediction models using clinical and omics data, are expected to improve the accuracy
and efficiency of CRC screening.

• Diagnosis: The qualitative diagnosis and staging of CRC mainly rely on radiography
and pathological examination [5]. Thanks to advanced processing technology in the
field of image recognition, DL can significantly improve medical image readability,
eliminate differences in experience, and reduce misdiagnosis rates.

• Treatment: The most commonly used methods for clinical treatment of CRC are
surgery, chemotherapy and radiotherapy [7]. Novel therapies and tools can be evalu-
ated with the help of AI, such as neoadjuvant radiotherapy (nCRT) and chemotherapy,
to improve curative effects and provide more precise medical care to patients.

• Prognosis: Prognosis of CRC includes the predicting of recurrence and estimating
of the survival period [3]. Statistical methods such as the Cox regression model are
traditionally used to predict patient prognosis; however, data-driven ML approaches
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allow for more effective exploitation of multidimensional data to accurately predict
survival and flexibly track disease progression.

In this review, we comprehensively analyze and summarize the research progress
and clinical value of AI technologies in the screening, diagnosis, treatment, and prognosis
of CRC, providing a complete picture of the current status of the AI in the main clinical
parts. We also discuss the limitations and challenges in the clinical implementation of
AI and describe the efforts needed to resolve these issues. We hope that this information
is beneficial to both clinicians and researchers interested in the applications of AI in the
clinical care of CRC.

2. Overview of Artificial Intelligence

The concept of AI was first introduced in the 1950s [8], and it has continued to develop
rapidly into the 21st century. The AI boom has also advanced medical fields, thanks
to the technical support of infrastructure hardware and the continuous development of
databases [9]. This section describes the basic concepts of AI, ML, and DL and focuses on
CRC specifically in terms of common algorithms and available data types.

2.1. Basics Concepts of AI

AI focuses on exploiting calculation techniques with advanced investigative and prog-
nostic facilities to process all data types, which allows for decision-making that mimics
human intelligence [10]. ML is a subfield of AI that enables a machine to become more
effective with training experience. The principal learning models are mainly supervised
learning, unsupervised learning, and reinforcement learning [3,11]. Semi-supervised learn-
ing is also gaining importance; this combination of supervised learning and unsupervised
learning allows the use of both unlabeled data and labeled data. Models differ depending
on the input data type and require various algorithms. Typical algorithms include Logistic
Regression (LR), Support Vector Machine (SVM), Naive Bayes (NB), Gradient Boosting
(GB), classification trees, and Random Forest (RF). Accruing massive amounts of data
led to the development of DL, a subset of ML. DL technologies offer more intelligent
computational networks and better predictive power by developing multiple layers of
artificial neurons. The available Neural Network (NN) approaches in CRC research include
convolutional NN (CNN), and recurrent NN (RNN). DL methods are widely employed
for medical image classification, image quality improvement, and segmentation. The basic
concepts and relationships of AI, ML, and DL are shown in Figure 2a.

The basic ML and DL workflows are summarized in Figure 2b. The ML process
can be roughly divided into four steps: data pre-processing, feature extraction, feature
selection, and classification/regression. DL processing merges these four steps into feature
engineering and classification/regression. The critical difference lies in their understanding
of features; in ML, the feature extraction is done manually by humans, while in DL, AI
automatically generates a variety of features [6].

2.2. Data Modality
2.2.1. Image Data

The key developments and enhancements of AI in CRC have been widely applied
in medical imaging. Relevant information can be extracted from various imaging data to
enable tumor segmentation, feature extraction, and model building, and finally quantitative
tumor evaluation. In CRC studies, we mainly focus on these four common types (Figure 3).

Image analysis is enhanced by the use of highly specialized algorithms. Detecting
suspicious polyps and distinguishing between the normal and abnormal are key compo-
nents of accurate diagnosis, which is especially important for early detection of CRC and
improves patient prognosis.
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Figure 2. Basics concepts of AI, ML, and DL. (a) The relationships of AI, ML, and DL; (b) The
workflows of ML and DL.
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2.2.2. Clinical Data

Clinical data are advantageous for identifying high-risk CRCs and predicting treat-
ment outcomes and prognoses. Because they are widely collected and accessible, clinical
data constitute a significant database in CRC. For AI applications, useful features are cap-
tured from three aspects: (1) patient demographic information (e.g., age, sex, race, and
smoking and drinking history); (2) laboratory test results (e.g., complete blood count (CBC),
carcinoembryonic antigen level); and (3) histopathologic information: (e.g., cancer and
tumor-related information such as location, tumor size, stage, margins).

EMR systems have the potential to capture large sets of clinical data relating to hospital
visits, medical history, lab and pathology results, prescriptions, and social and demographic
information [12]. With the increasing adoption of these systems come greater possibilities
for utilizing this data to improve patient outcomes.

2.2.3. Omics Data

“Precision medicine” is gaining momentum in medical AI applications. The analysis
of CRC omics data shows tumor pathogenesis at the molecular level, thus providing a
reliable reference for targeted therapy and genome sequencing, leading to improvements
in CRC diagnosis and prevention [13]. There are three main omics data in CRC: (1) ge-
nomics data can elucidate CRC pathogenesis and provide targets and evidence for targeted
treatment [14]; (2) proteomics data can identify proteins associated with CRC which have
the potential to provide biomarkers for CRC screening and early diagnosis of CRC [14];
and (3) metabolomic data of tissues, blood, and urine indicate that patients with different
stages of CRC present with multiple metabolic pathway abnormalities involving multiple
biochemical reactions [13].

Although there are cost and facility constraints that prevent the widespread use of
omics data, it has been shown to be highly valuable in CRC research settings. The utilization
of ML and DL techniques based on large-scale omics data enables active research and is a
novel medical approach to identifying the best treatment options for CRC patients.

3. Applications in CRC Screening

Screening is intended to effectively reduce CRC incidence and mortality, facilitate early
diagnosis and treatment, and thus improve patient prognosis [15]. Endoscopy and FOBT are
routine screening methods, but they have limitations. With applications of AI technology
in the field of tumor screening, many new CRC screening prediction models, techniques,
and potential biomarkers have emerged that are expected to improve the accuracy and
reduce the cost of CRC screening. A summary of recent studies on AI applications for CRC
screening is presented in Table 2.
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Table 1. Summary of AI applications for CRC screening. (DNN, deep neural network; SSD, single
shot multibox detector; RF, random forest; LMT, logistic model trees; SVM, support vector machine;
LR, logistic regression; NB, naïve Bayes; DT, decision tree; CNN, convolutional neural network; PPV,
positive predictive value; Faster R-CNN, faster region-based CNN; AUC, area under the curve).

Topic Task Dataset Model Performance Year Ref.

CRC
Screening

High-risk patient
detection

111 patients’ microarray
data including 22,278

features

LightGBM,
DNN Accuracy: 100% 2021 [16]

Polyp classification 47,555 endoscopy images
for 24 patients SSD

Accuracy: 0.9067,
precision: 0.9744,

recall: 0.9067,
F1: 0.9393

2021 [17]

Serum biomarker
detection

186 blood serum samples
(39 advanced adenomas,
90 CRC and 57 healthy

controls)

RF, Random
Tree, LMT, SVM Accuracy: 75% 2021 [18]

Serum biomarker
detection

263 blood serum protein
samples (213 individuals

undergoing screening
endoscopy and 50

non-metastatic CRC)

LR, SVM,
Gaussian NB,
DT, RF, and
extremely

randomized
trees

AUC: 0.75,
Sensitivity: 70%,
Specificity: 89%

2020 [19]

Polyp detection
and classification 27,508 endoscopy images CNN

Detection:
Sensitivity—0.92,

PPV—0.86;
Classification:

Sensitivity—0.83,
PPV—0.81

2020 [20]

Polyp localization
EAD2019, CVC-ClinicDB,

ETIS-Larib, in-house
dataset, Kvasir-SEG

RetinaNet Precision: 0.537 2020 [21]

Polyp detection
CVC-CLINIC, ASU-Mayo

Clinic,
CVC-ClinicVideoDB

Faster R-CNN,
SSD

Sensitivity: 0.9086,
precision: 0.8154,

F1: 0.8595
2020 [22]

Polyp detection
and classification

871 endoscopy images
from218 patients

ResNet50,
RetinaNet F1: 0.6872, F2: 0.6607 2019 [23]

Polyp detection 8641 endoscopy images CNN
Sensitivity: 90.0%,
Specificity: 63.3,
Accuracy: 76.5%

2018 [24]

Polyp
segmentation CVC-ColonDB CNN

Specificity: 74.8%,
Sensitivity: 99.3%,
Accuracy: 97.7%

2018 [25]

High-risk patient
prediction

Colon cancer screening
center data (EMRs) Colonflag

The odds of Colonflag
and normal

colonoscopies: 2.0
2018 [26]

Polyp classification 1930 NBI images CNN
Accuracy: 85.9%,
Precision: 87.3%,
Recall rate: 87.6%

2017 [27]

High-risk patient
detection

112,584,133 US
community-based insured

data
Colonflag AUC: 0.80 ± 0.01 2017 [28]
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Table 1. Cont.

Topic Task Dataset Model Performance Year Ref.

CRC
Screening

High-risk patient
detection

17,095 patients from
KPNW (EMRs) Mescore Top 3% score > 97.02

Top 1% score > 99.38 2017 [29]

Polyp detection 24 endoscopy videos Energy map
AUC: 0.79,

Sensitivity: 70.4%,
Specificity: 72.4%

2016 [30]

High-risk patient
detection

606,403 Israelis and 25,613
UK dataset (EMRs) Mescore AUC: 0.82 ± 0.01 and

0.81 for validation sets 2016 [31]

Polyp classification 1890 NBI endoscopic
images

HuPAS version
3.1 Accuracy: 98.7% 2012 [32]

3.1. Polyp Detection and Characterization

Endoscopy is the most effective screening tool available today [33]. However, a sys-
tematic review showed that the miss rate of endoscopy for any size polyp was 22% and this
significantly increased for smaller lesions [34]. In addition, the combination of endoscopy,
a CRC-specific screening method, and AI is rarely addressed in other related cancer studies.
Given the excellent processing and analysis capabilities for complex images, AI-assisted
endoscopy has the advantages of improving the ability to detect and characterize polyps,
minimizes trauma to patients, and eliminates variation due to different clinicians.

The main focuses are on the detection [20,22–24,30] and classification of polyps [17,27,32].
Chen et al. [35] applied a deep NN (DNN) to narrow-band imaging endoscopy to automatically
identify hyperplastic or neoplastic polyps under 5 mm. A total of 1476 neoplastic and 681
hyperplastic polyp images from a tertiary Taiwan hospital were collected to train the DNN, and
a new cohort (96 hyperplastic and 188 neoplastic polyp images) was utilized for testing. The
results showed that this system achieved a sensitivity of 96.3%, specificity of 78.1%, positive
predictive value of 89.6%, negative predictive value of 91.5%, and reduced the image reading
time by 0.45 ± 0.07 s compared to endoscopists. This DL model yielded excellent classification
results and reduced the time required for examination, improving screening accuracy and
efficiency. In addition, for non-polypoid lesions, Yamada et al. [36] developed a real-time
AI diagnostic system that automatically detects early signs of CRC during endoscopy; the
sensitivity and specificity of the system were 97.3% and 99.0%, respectively, and the area under
the curve (AUC) was 0.975. This AI system notified endoscopists in real time to avoid missed
diagnoses such as non-polypoid polyps. It is expected to bridge the gap in diagnostic quality
among different clinician levels and improve early CRC detection.

There is also research about the localization and segmentation of polyps [21,25]. Akbari
et al. [25] proposed a CNN-based method for polyp segmentation. The CVC-ColonDB
database was used to evaluate the results and their model achieved a specificity of 74.8%,
sensitivity of 99.3%, and accuracy of 97.7%, thus achieving accurate region-of-interest
segmentation and providing a basis for subsequent processing.

3.2. Population-Based Risk Prediction

Large-scale, population-based data can be utilized to identify high-risk populations
and develop preventive intervention strategies for CRC. AI can assess the risk of CRC for a
broad population based on demographic data [26], blood/stool tests [18,19,28,29,31], and
omics data [16,37].

Complete Blood Count (CBC) laboratory test is a relatively new screening method
to help identify high-risk patients [28,31]. Kinar et al. [31] conducted a binational study
between Israel and UK to develop an ML-based prediction model (MeScore) for identifying
individuals at high risk of CRC based on EMRs. The AUCs for detecting CRC were
0.82 ± 0.01 and 0.81 for the Israeli and UK validation sets, respectively. When FOBT
was also taken into consideration, the number of new cases increased by 115%. This
study showed that MeScore could detect high-risk patients in a primary care setting and
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potentially decrease the risk of developing CRC. Hornbrook et al. [28] similarly proposed
an AI system that predicted early CRC by analyzing patient information, including gender,
age, and CBC data. This system provided a reference for whether an individual should
undergo endoscopy. As this system continues to improve, it is expected to be useful for
exploring important indicators for CRC diagnosis.

Serum biomarkers, such as N-glycans [18] and protein biomarkers can also provide an
efficient screening method for early CRC [19]. Ivancic et al. [19] investigated the utility of
mass spectrometry-based serum protein biomarker assays for screening for CRC. They col-
lected blood samples from individuals (n = 213) and non-metastatic CRC patients (n = 50).
ML models such as LR and SVM were used to make predictions. Peptides from EGFR
(Epidermal Growth Factor Receptor) and LRG1 (Leucine Rich Alpha-2-Glycoprotein 1)
were consistently identified as highly predictive. LRG1, EGFR, ITIH4 (Inter-Alpha-Trypsin
Inhibitor Heavy Chain Family Member 4), HPX (Hemopexin), and SOD3 (Superoxide
Dismutase 3) formed the best performing group with 70% specificity and over 89% sensi-
tivity (AUC = 0.86). On the other hand, Pan et al. [18] selected an N-glycan-based serum
biomarker to identify for screening and diagnosis of advanced adenomas and CRC. They
used ML models, including RF, LMT, and SVM, to classify 189 samples from CRC, advanced
adenomas, and healthy controls, obtaining an accuracy of 75% for the whole group and
87% for the disease group (CRC and advanced adenomas). The minimally invasive blood
biomarker approach has valuable potential as an alternative method for CRC screening.

Sequencing the CRC genome can improve understanding of tumor pathogenesis at
the molecular level, thus enhancing the early detection of CRC [38]. Wan et al. [37] applied
ML methods for whole-genome sequencing of plasma cell-free DNA to detect early CRC.
They extracted reads aligned to protein-coding gene bodies from 546 patients with CRC
and 271 non-cancer controls. The results yielded high accuracy (AUC = 0.92) and great
sensitivity and specificity, especially in early CRC cohorts.

3.3. Limitations

Overall, screening with AI technologies is likely to increase the detection rate of
clinically relevant polyps which may be precancerous lesions [26,27,34] and biomarkers
to prevent CRC [33,34,36]. However, it may also increase the overdiagnosis of early stage
cancers that have no malignant potential, enhancing patient suffering and wasting medical
resources [39]. Most previous studies focused on how to improve the polyp detection rate
and the accuracy of predicting early CRC [20], which is prone to overdiagnosis. In addition,
it is difficult to access long-term follow-up results, so the benefits and harms of AI in CRC
screening cannot be accurately evaluated.

4. Applications in CRC Diagnosis and Staging

Diagnosis of CRC includes qualitative and staging diagnosis, determining whether
a patient has the CRC pathologically, and an assessment of the severity of the tumor [40].
The current qualitative diagnostic approach for CRC includes biopsy collection during
endoscopy or surgery followed by histopathology. The staging diagnosis mainly relies on
radiological examinations, such as CT, MRI, etc. The incorporation of AI technology is
intended to help clinicians improve diagnostic efficiency, reduce workload, and improve
medical image readability, ultimately reducing the rates of misdiagnosis and missed diag-
noses. Table 2 presents a summary of recent studies on AI applications for CRC diagnosis
and staging.
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Table 2. Summary of AI models for CRC diagnosis and staging session. (CNN, convolutional neural
network; AUC, area under the curve; SVM, support vector machine; PNN, probabilistic neural
network; NL, normal mucosa; AD, adenoma; ADC, adenocarcinoma; WSI, whole slide images; RNN,
recurrent neural network; TCGA, The Cancer Genome Atlas; ResNet, residual network architecture;
HP, hyperplastic polyp; VGG, visual geometry group; RF, random forest; PET-CT, positron emission
tomography or computed tomography; LR, logistic regression; NN, neural network; XGBoost,
extreme gradient boosting; CT, computed tomography; MRI, magnetic resonance imaging; Faster
R-CNN, faster region-based CNN; CAD, computer aided diagnosis).

Topic Task Dataset Model Performance Year Ref.

Pathological
diagnosis

Tumor mutational
burden-high
prediction

278 HE slides CNN AUC: 0.934 2021 [41]

Low/high-grade
classification

Immunohistochemically
stained biopsy of 67

patients

hDL-system
(VGG16, SVM)

hDL-system accuracy:
99.1%; sML-system

accuracy: 92.5%
2021 [42]

NL/AD/ADC
classification 4036 WSI CNN, RNN AUC: 0.96 for ADC;

0.99 for AD 2020 [43]

Tumor immune
microenvironment

analysis

404 CRC and 20 adjacent
non-tumorous tissues CIBERSORT

C-index: stage I-II 0.69;
stage III-IV 0.71; AUC:

0.67
2019 [44]

NL/Tumor
classification

94 WSI, 370 TCGA-KR, 378
TCGA-DX ResNet18 AUC > 0.99 2019 [45]

NL/HP/AD/ADC
classification 393 WSI (12,565 patches) CNN Accuracy: 80% 2019 [46]

NL/Tumor
classification

57 WSI
(10,280 patches) VGG Accuracy: 93.5%,

Sensitivity: 95.1% 2018 [47]

NL/AD/ADC
classification

27 WSI
(13,500 patches) VGG16 Accuracy: 96%,

Specificity: 92.8% 2018 [48]

NL/AD/ADC
classification

30 multispectral image
patches CNN Accuracy: 99.2% 2017 [49]

Cancer subtypes
classification 717 patches AlexNet Accuracy: 97.5% 2017 [50]

Polyp subtypes
classification 2074 patches 936 WSI ResNet Accuracy: 93.0% 2017 [51]

Radiological
diagnosis

Metastatic CRC
prediction

MRI from 55 stage VI
patients with known

hepatic metastasis
RF

AUC: 0.94 (Add
imaging-based

heterogeneity features)
2021 [52]

Metastatic lymph
node prediction

PET-CT scan images from
199 CRC patients

LR, SVM, RF,
NN, and
XGBoost

AUC of LR: 0.866; AUC
of XGBoost: 0.903 2021 [53]

Colorectal liver
metastasis
prediction

103 metastasis samples
and 80 non-cancer tissues

Probe
electrospray
ionization-

mass
spectrometry,

and LR

Accuracy: 99.5%,
AUC: 0.9999 2021 [54]
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Table 2. Cont.

Topic Task Dataset Model Performance Year Ref.

Radiological
diagnosis

Colorectal liver
metastasis
prediction

CT scan images from 91
patients

Bayesian-
optimized RF
with wrapper

feature
selection

AUC of radiomics
features model: 86%;

AUC of clinical
features model: 71%;
AUC of combination:

86%

2021 [55]

KRAS mutations
detection

CT scan images from 47
patients

Haralick
texture analysis,

SVM,
LightGBM, NN,

and RF

Accuracy: 83%, kappa:
64.7% 2020 [56]

Classification of T2
and T3

290 MRI images from 133
patients CNN Accuracy: 0.94 2019 [57]

Metastatic lymph
node prediction

MRI images from 414
patients Faster R-CNN r-radiologist-Faster

R-CNN 0.912 2019 [58]

Polyp detection 825 CT scan images CNN
Accuracy: 0.87,

Sensitivity: 0.8877,
Specificity: 0.8735

2017 [59]

Polyp detection 154 CT scan images CNN Accuracy: 0.971 2017 [60]

Polyp classification 1035 endomicroscopy
images

Mathworks
“NAVICAD”

system
Accuracy: 84.5% 2016 [61]

Polyp detection
and classification 148 CT scan images

Haralick
texture analysis,

SVM
ROC: 0.85 2014 [62]

CAD system for
polyp detection

24 T1 stage patients’ CT
scan images

Coloncad API
4.0, Medicsight

plc

True positives rate
>96.1% 2008 [63]

4.1. Pathological Diagnosis

As the “gold standard” for tumor diagnosis, pathology characterizes the disease before
surgery and serves as the basis for postoperative CRC staging [64]. However, biopsy sample
diagnoses can be easily biased by individual pathologists’ experience and knowledge, leading
to inter- and intra-observer variations. Current applications of AI technology in pathological
diagnosis are mainly focused on gland segmentation and tumor classification.

For gland segmentation, Ding et al. [65] showed the state-of-the-art. They developed a
three-class classification multi-scale fully convolutional network model (TCC-MSFCN) with
165 histological images of Hematoxylin & Eosin (HE)-stained slides with associated intensive
ground truths. The model achieved better performance by combining features such as dilated
convolution, high-resolution branch, and residual structure. The foremost advantage is that
the MSFCN model can also segment the glands with a variable dataset, and TCC can precisely
differentiate very closely spaced glands. The authors also performed a series of experiments
with a variable dataset to check the robustness of their combined features.

Several ML models have been developed to reduce the variation in classifying tumors
into various subtypes [41,42,45–51,66]. Rathore et al. [66] developed a novel CRC detection
system based on the SVM radial basis function algorithm, which classified normal colon
biopsy images and malignant images, and then automatically determined malignancy
grades. Compared to previous techniques, this system showed superior cancer detection
(accuracy 95.40%) and grading (accuracy 93.47%) capabilities. Based on this system, the
same team subsequently proposed a hybrid feature-space-based colon classification (HFS-
CC) technique that classified biopsy sample images using multiple features, including
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geometric features, morphology, and texture. An SVM was used as a classification tool to
classify 176 subjects, and the HFS-CC technique achieved a test accuracy of 98.07%.

Furthermore, some models achieved both gland segmentation and classification in
two stages. Xu et al. [50] proposed a CNN-based approach for gland segmentation and
classification in benign and malignant CRC tissues. The system constructed two CNNs for
pixel-level classification of HE-stained images. The first classifier separated the glands from
the background and the second classifier identified the gland separation structure. The
results showed that 98% and 95% accuracies were achieved in distinguishing benign and
malignant tissues, respectively. Moreover, Takamatsu et al. [67] also performed a prediction
of lymph node metastasis with immunohistochemistry images. Several morphological
parameters were extracted from 397 T1 CRC immunohistochemistry images and then
RF was applied to train and test. Comparing their results with HE-stained slides, there
were no significant differences and even fewer false-negative cases. This suggests that
immunoimaging is a potential alternative to T1 CRC diagnosis.

In terms of immunotherapy, current research is also mainly in diagnosis. In particular,
immunotherapy usually requires precise target selection as a basis, and genetic testing is
one of the important tools used to determine the target. Existing research attempts to use
pathological images combined with genes for analysis. Ge et al. [44] used a deconvolution
algorithm, CIBERSORT, to analyze the infiltration of 22 immune cell types in the tumor
microenvironment and the expression of immune-related genes in 404 cases of CRC and 40
cases of adjacent non-tumor tissues. Such research results have further optimized gene-
based and individualized diagnosis methods, which are conducive to providing support for
future targeted therapies and immunotherapy. However, in-depth research on the impact
of diagnosis on treatment and the prognosis after treatment is still lacking.

4.2. Radiological Diagnosis

Since the concept of “radiomics” was introduced, it has become a hot spot for clinical
research [68]. Radiomics extracts information from various imaging data, and finally
realizes quantitative evaluation of CRC through tumor segmentation, feature extraction,
and model development. DL technology, which is widely used in the field of image
recognition, can significantly improve medical image readability and provide reliable and
comprehensive references for clinicians.

CT is a rapid non-invasive radiography test to detect polyps [59–63] and results in a
lower risk of adverse effects than endoscopy [69]. Taylor et al. [63] utilized a computer-
aided detection (CAD) system to assess the ability to detect flat polyps on CT images.
Endoscopic reports annotated by joint experts were considered as the standard, in which
24 stage T1 patients were classified as type IIa (n = 11) and Iia + Iic (n = 13). The results
showed that >96.1% of true positives on CAD were classified as lesions, supporting the use
of this CAD system to detect flat polyps.

Moreover, Khalili et al. [70] used CT scan images to detect small hypoattenuating
hepatic nodules (SHHN) in CRC with CNNs. They constructed supervised learning CNNs
and a multivariate model, which was for compensating other representations. Results
were presented as the Receiver Operating Characteristic (ROC) and Area Under the ROC
Curve (AUC) and compared with three radiologists. Radiologists outperformed CNNs
in classifying SHHN as benign or malignant (ROC = 0.96, ROC = 0.84 respectively), but
were comparable to CNNs adjusted for multivariate modeling. CNN combined with liver
metastasis status was almost equivalent to expert radiologists’ diagnostic accuracy but
with better diagnostic confidence.

González-Castro et al. [56] utilized the Haralick texture feature of CT scan images
to detect KRAS mutations, classified as KRAS+ and KRAS-. This was achieved by four
ML algorithms, SVM, Gradient Boosting Machine (GBM), NN, and RF, where the wavelet
transformed and Haralick coefficients were used as the feature vector for the NN classifier,
resulting in the highest accuracy and kappa values of 83% and 64.7%, respectively. It is
an advance to identify gene mutations directly from CT, as it avoids the diverse effects



Curr. Oncol. 2022, 29 1784

caused by invasive testing; this approach also prevents errors from biopsying only part of
the tumor and provides more personalized and effective treatment.

MRI is the preferred modality for assessing tumor location and lymph node metastasis,
which is a key indicator to assess tumor severity. Lu et al. [71] developed a model of
lymph node metastases using Faster R-CNN based on 28,080 MRI images and performed
multicenter clinical validation among 414 patients across six medical institutions. The
results indicated that the system had an AUC of 0.912, which was clinically feasible, and it
took 1/30 of the time needed by radiologists. The Faster R-CNN algorithm is very efficient
and accurate in predicting lymph node metastases, which reduces the workload on the
radiologist and minimizes differences between different diagnostic levels. Some other
representative research about lymph node metastasis are listed in Table 2 [52–55,57,58,72].

4.3. Limitations

Most applications in CRC diagnosis have focused on radiological and pathological
images [64,73–75]. The advanced image processing capabilities of AI could assist clinicians
in decision making and reduce unnecessary variation between clinicians with varying
expertise [76]. CNN is the most widely used method for CRC diagnosis, however, due to
the “black-box” nature of DL, medical interpretability is difficult guarantee [77]. Moreover,
the method and quality of image acquisition largely influences decisions, a standardized
public image database will be needed in the future. At the same time, there is a relative
lack of research using clinical data for AI diagnosis. In addition, because targeted therapies
and immunotherapy are still in ongoing clinical research, there are few AI studies related
to these treatments.

5. Applications in CRC Treatment

Treatment options for CRC include nCRT, chemotherapy, and other comprehensive
approaches [78]. Applying AI technology to CRC treatment can help clinicians choose the
appropriate treatment options for patients and improve treatment efficacy by designing
personalized and precise treatment plans. There is some integration with AI technology
focusing on the prediction of nCRT and chemotherapy response. Table 3 provides a
summary of recent studies on AI applications for CRC treatment.

Table 3. Summary of AI applications for CRC treatment session (nCRT, neoadjuvant radiotherapy;
ANN, artificial neural network; AUC, area under curve; KNN, K-nearest neighbors; SVM, support
vector machine; NBC, naïve Bayesian classifier; MLR, mixed logistic regression; LR, logistic regression;
NN, neural network; BN, Bayesian network; RF, random forest; CPT-11, Irinotecan; IC50, half maximal
inhibitory concentration).

Topic Task Dataset Model Performance Year Ref.

nCRT

nCRT response
prediction

Medical records from 282
patients (248 training and 34

validation)

ANN, KNN,
SVM, NBC,

MLR

ANN model
outperformed others:

Accuracy: 0.88, AUC: 0.84,
Sensitivity: 0.94

2020 [79]

nCRT response
prediction

6555 patients’ records from the
SEER LR 3-year OS rate: 92.4% with

pCR; 88.2% without pCR 2019 [80]

nCRT response
prediction

98 patients MRI (53 training
set and 45 validation set)

SVM, NN, BN,
KNN

Test: AUC: 97.8%,
Accuracy: 92.8%,

Validation: AUC: 95%,
Accuracy: 90%

2019 [81]

nCRT response
prediction 55 patients MRI RF Mean AUC: 0.83 2019 [82]

Chemotherapy
The toxicity of CPT-11

prediction

Demographic data, liver
function bloody tests and
tumor markers from 20
advanced CRC patients

SVM

Accuracy: 91% for
diarrhea,

76% for leukopenia,
and 75% for neutropenia

2019 [83]

Drug IC50 detection 18,850 organic compounds KNN, RF, SVM Accuracy: over 63% 2018 [84]
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5.1. nCRT Response Prediction

nCRT is of great clinical importance for patients with CRC, especially those with rectal
cancer [7]. It provides a chance of achieving pathological complete response (pCR), which
is associated with a good prognosis and may preclude the need for surgery [80]. Therefore,
if the effect of nCRT can be predicted in advance, it will better help clinicians to select an
appropriate treatment plan.

Current nCRT research is based on two considerations, basic clinical data [79,80], and
radiology images [81,82]. Tan et al. [80] performed pCR prediction based on demographics
and tumor characteristics in patients with non-metastatic rectal cancer who underwent
radical resection after nCRT. They used the LR to determine independent predictors of
pCR and showed that clinical T4 and N2 stages were the most important independent
clinical predictors. The 3-year overall survival rates of patient with and without pCR were
92.4% and 88.2%, respectively. Ferrari et al. [82] used RF to construct two models based on
texture analysis of high-resolution T2 weighted MRI to predict the pCR and pathological
non-response (pNR) rates, and the efficiencies of these two systems for identifying the two
types of cases were 0.86 and 0.83 respectively. This study screened pCR and pNR cases
after nCRT, thus providing a guarantee for partial resection or observational treatment for
pCR patients and the selection of further appropriate treatment for pNR patients.

5.2. Adjuvant Chemotherapy Response Prediction

Accurate AI prediction of the chemotherapy response provides better personalized
medicine options for patients and improves the survival rate [85].

Irinotecan (CPT-11) is a commonly used in chemotherapy drug for CRC. However, due
to its high adverse reactions, the effect–risk ratio in adjuvant chemotherapy for patients is
too low. Oyaga-Iriarte et al. [83] developed an ML model to predict the toxicity of CPT-11.
Their study collected basic information and serum biomarker levels at different stages from 20
patients and constructed an SVM model based on the irinotecan levels and metabolites. The
prediction accuracy of the algorithm was 91% for diarrhea, 76% for leukopenia, and 75% for
neutropenia, which could provide a reference for clinicians’ decisions. In addition, from the
current research reports, there is no similar AI research on the effects and risks of oxaliplatin.

AI technology also contributes to new drug research. Cruz et al. [84] detected the half
maximal inhibitory concentration (IC50) of a new drug targeting the HCT116 cell line. The
Quantitative Structure–Activity Relationship (QSAR) was assessed using molecular and
Nuclear Magnetic Resonance (NMR) descriptors based on KNN, RF, and SVM techniques.
This NMR QSAR classification model achieved an overall prediction accuracy of over 63%.
Their method provided support for the development of new drugs to treat CRC.

5.3. Limitations

There is limited research on the application of AI in CRC treatment, most studies have
assessed algorithms’ ability to predict the response after nCRT and chemotherapy. The sam-
ple sizes of these studies are small and therefore lack good generalization performance [9].
For larger samples, AI research on common chemotherapy regimens based on guidelines
is still lacking [86,87]. It should be noted that surgery is the most important treatment for
CRC, although how its therapeutic effects and risks can be predicted through AI, is yet to
be determined. Moreover, the combination of data transformed by surgical technology and
AI technology is likely to become the unique feature of AI technology’s application in CRC.
The surgical techniques of CRC not only brings about the clinical treatment effect, but may
also affect the quality of life of the patient. For example, the surgical technique of rectal
cancer takes into account the patient’s subjective appeal of preserving the anus. However,
AI can also provide personalized treatment options by matching similar patients’ treatment
modalities with past data. This is an area where we hope AI could be greater utilized in
CRC treatment.
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6. Applications in CRC Prognosis

CRC prognosis involves the recurrence and survival of patients [9]. Traditional sta-
tistical analysis cannot provide desired prognosis effect and it is difficult to predict the
progress of patients. However, AI can process and analyze significant features based on
previous data to predict cancer prognosis more accurately, as well as patient survival time
and disease progression. Table 4 demonstrates the detailed information of recent research
studies on CRC prognosis.

Table 4. Summary of AI models for CRC prognosis session. (C-index, concordance index; LR,
logistic regression; DT, decision tree; GB, gradient boosting; LightGBM, light gradient boosting
machine; CNN, convolutional neural network; AUC, area under curve; PET-CT, positron emission
tomography or computed tomography; HR, hazard ratio; GSEA, gene set enrichment analysis; PPI,
protein-protein interaction; HE, hematoxylin and eosin; WSI, whole slide image; MLP, multilayer
perceptron; AdaBoost, adaptive boosting; LSTM, long short-term memory; EHR, electronic health
record; SVM, support vector machine; NB, naïve Bayesian; KNN, K-nearest neighbors; NN, neural
network; RF, random forest).

Topic Task Dataset Model Performance Year Ref.

Recurrence

Recurrence
perdition of stage II

CRC

Clinicopathological data of
350 patients after curative
resection for stage II CRC

Nomogram C-index: 0.585 in the
validation set 2020 [88]

Recurrence
prediction of Stage
IV CRC after tumor

resection

EHR data from 999
patients of stage IV CRC

LR, DT, GB
and

LightGBM
LightGBM: AUC: 0.761 2020 [89]

Recurrence
prediction of local

tumor

PET-CT images from 84
patients

CNN,
Proportional

hazards
model

C-index: 0.64 2019 [90]

Risk prediction of
recurrence of

gastrointestinal
stromal tumor

Clinical data of 2560
patients

Proportional
hazards,

Non-linear
model

AUC: 0.88 2012 [91]

Recurrence
perdition after

surgery

Clinicopathological data of
1320 nonmetastatic CRC

patients

NomogramCOX
regression C-index: 0.77 2008 [92]

Survival

Genetic risk factors
Identification

National Center for
Biotechnology Information
Gene Expression Omnibus

GSEA, PPI
network, Cox
Proportional

Hazard
regression

4 sub-networks and 8
hub genes as potential

therapeutic targets
2021 [93]

Prognostic
prediction for stage

III CRC

Clinicopathological data of
215 patients CNN, GB HR: 8.976 and 10.273 2020 [94]

Outcome
prediction 12,000,000 HE images CNN

HR: 3.84 and 3.04 with
established prognostic

markers
2020 [95]

Survival prediction 7180 HE images of 25
patients CNN Nine-class accuracy:

>94% 2019 [96]

Survival prediction PET-CT images of 84
patients

CNN,
proportional

hazards
model

C-index: 0.64 2019 [90]
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Table 4. Cont.

Topic Task Dataset Model Performance Year Ref.

Survival

Outcome
prediction, and

remaining lifespan
prediction

SEER
tree-based
ensemble

model

Accuracy: 0.7069,
Sensitivity: 0.8452,

Specificity: 0.66
2019 [97]

Outcome
prediction

75 WSIs from stage I and II
CRC patients with surgical

resection
CNN F1: 0.67 2019 [98]

Outcome
prediction

EHR data of 58,152
patients CNN

AUC: 0.922, Sensitivity:
0.837, specificity: 0.867,

PPV: 0.532
2019 [99]

Prediction of Stages
and Survival

Period

Clinicopathological data of
4021 patients

RF, SVM, LR,
MLP, KNN,

and AdaBoost

RF: F-measure: 0.89,
Accuracy: 84%, AUC:

0.82 ± 0.10
2019 [100]

1/2/5 years
Survival prediction SEER data DNN AUC: 0.87 2019 [101]

Outcome
prediction

Digitized HE tumor tissue
microarray samples of 420

patients
CNN, LSTM

LSTM: AUC: 0.69,
histological grade

AUC: 0.57, the visual
risk score AUC: 0.58

2018 [102]

5-year survival
prediction

EHR data of 1127 CRC
patients

Ensemble
(bagging and

voting)
classifier

Ensemble voting
model AUC: 0.96 2017 [103]

5-year survival
prediction

EHR data of 334,583 cases
from Robert Koch Institute

SVM, LR, NB,
DT, KNN, LR,

NN, RF

Average accuracy of
the clinicians: 59%, ML:

67.7%
2015 [104]

6.1. Recurrence Prediction

Estimation of recurrence is integral to patient management and forms the basis of
cancer staging and treatment planning [92]. Historical data can be used to build predictive
models that try to identify the relationship among patient characteristics.

Patients at high risk of recurrence after undergoing curative (R0) resection for CRC
may benefit most from adjuvant therapy and follow-up for early detection and recurrence
treatment [88,89]. Weiser et al. [92] developed a nomogram for predicting recurrence after
R0 surgery, based on a dataset of non-metastatic CRC patients. The recurrence nomogram
allowed for better consideration of tumor and patient heterogeneity, thus providing more
personalized prognoses of outcomes.

Besides methods that rely on manual feature extraction, some studies use DL to optimize
feature selection [90,91]. Li et al. [90] integrated CNN models into a proportional risk model to
improve image features and build a survival regression model. Positron Emission Tomography
(PET)-CT imaging data of patients with advanced rectal cancer were used to learn informative
features to predict the time of local tumor recurrence. The results showed that the model had
better predictive ability compared with the survival prediction models of the Cox proportional
hazard model and random survival forest model (c-index = 0.60, 0.58, and 0.64, respectively).

In addition to predicting short-term post-operative recurrence, Joensuu et al. [91]
established a long-term risk stratification scheme (10 and 15 years). The risk of recurrence
was accurately predicted using a nonlinear model (AUC = 0.88, 0.86–0.90), as well as
independent prognostic factors were sorted including tumor size, high mitotic count, non-
gastric location, presence of rupture, and sex. Risk stratification schemes can help us
identify patients who may be cured by surgery alone.
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Recurrence prediction focusing on a specific stage is also required. Although existing
staging systems such as the American Joint Committee on Cancer (AJCC) are easy to
implement, there is significant heterogeneity within each group, so a refined method is
needed. Takenaka et al. [88] focused on stage II CRC, evaluating recurrence-free survival
(RFS) as the primary outcome. Proportional hazards models were statistically analyzed
to identify factors associated with RFS and a nomogram was developed to depict the
results. Xu et al. [89] predicted the feasibility of post-operative recurrence risk in stage IV
CRC patients and ranked important influencing factors. They compared four basic ML
algorithms and showed that GB and LightGBM outperformed LR and DT.

6.2. Survival Prediction

Survival predictive models allow clinicians to evaluate CRC prognosis and make
patient-individualized choices for interventions. Current state-of-the-art analytic methods
in CRC prognosis for survival analysis are statistical approaches [3], but they are not well-
suited to handle large volumes of data or identify complex relationships between variables.
AI may be able to utilize this data more effectively to better estimate patient viability and
survival time.

CRC prognosis is highly dependent on pathology [95,96,98,102]. Kather et al. [96]
automatically extracted prognostic factors based on HE-stained CRC tissues using CNN.
This study performed tissue disaggregation of 862 HE slides collected from 500 stage I-IV
CRC patients and achieved a classification accuracy of over 94%. The authors demonstrated
that CNN could assess the tumor microenvironment and predict prognosis directly from
histopathology images as well as detect additional prognostic markers on pathology sec-
tions. Similarly, Bychkov et al. [102] also employed pathology images to predict patient
outcomes. Their model was based on a hybrid network, with a pre-trained CNN to extract
feature vectors, and a recurrent neural network (LSTM) to read the CNN sequences to
predict survivorship. However, they did not classify the intermediate tissues like Kather
et al. [96]; rather, they directly used 420 digitized HE-stained samples to predict the 5-year
CRC-specific survival of patients with an AUC of 0.69, showing an expert-level accuracy.
Although their model was simpler and achieves equally good performance, additional
validation is required due to the difficulty of interpreting the intermediate process and the
small sample size.

Based on clinical data, we can find the relationships between patient characteristics and
survival, allowing for a more precise prediction [94,97,99–101,103,104]. Sailer et al. [104]
compared 10 common data mining algorithms to predict the binary target of 5-year survival
based on seven attributes (sex, Union for International Cancer Control stage, etc.). The
average accuracy of the ML was 67.7%, which was slightly higher than that of clinicians’
judgment, 59%.

Notably, there is also research that not only predicted the survival of patients but also
regressed the remaining life span. Wang et al. [97] constructed a two-stage tree model
with the Surveillance, Epidemiology, and End Results (SEER) Program dataset; in the first
stage, a tree model based on unbalanced samples was proposed that predicted whether
patients survived >5 years; in the second stage, data from group with <5 years’ survival
were regressed by a selective ensemble model to predict the specific number of survival
months. The results showed that the proposed two-stage model achieved more accurate
predictions compared to the single-stage regression model.

6.3. Limitations

Current prognostic research focuses on linking clinical features to prognostic status
through AI algorithms, resulting in highly accurate prognostic prediction systems that
provide clinicians with diagnostic and treatment advice [93]. However, there are still
significant differences in the sensitivities, specificities, and accuracies of the relevant AI
technology applications, and most studies have been retrospective, so open prospective
investigations are needed [31,99,105].
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7. Current Challenges

While AI technology is rapidly being incorporated into clinical CRC research, the
application of AI in CRC is still in its infancy compared to other oncology fields such as
lung cancer and breast cancer [13]. Several challenges need to be addressed to translate
these studies into clinically meaningful applications.

Generalizability of the AI algorithms is one of the biggest barriers preventing their
widespread clinical adaptation. The predictive models with high sensitivity, specificity, and
accuracy constructed by AI algorithms need to be based on a large amount of high-quality
clinical data, so standardized data annotation and multicenter data sources are highly
desired. To date, most of the AI algorithms in CRC are confined to data from one single
medical institution [100], which may lead to model over-fitting and models that are not
fully applicable in a broader context, especially for large and heterogeneous populations of
CRC patients. Thus, external validation is necessary prior to widespread clinical adaptation
of the AI applications.

In addition, interpretability is an important consideration for AI applications in CRC.
Although DL models showed excellent accuracy in the diagnosis, and prognosis of CRC [90],
they are considered “black boxes” due to their lack of interpretability. This issue is currently
addressed in two main ways [106]. One is the interpretable model, such as linear models or
DT. Most CRC research focuses on traditional statistical ML methods [12], and the results
can be understood as a series of choices made based on features. The second involves
model-independent interpretation methods, such as partial dependence plots [77], and
the surrogate Mmodel. Visualization or a modular interpretation approach explains the
internal working mechanism of predictive models, but this comes at the extra expense
of some computational complexity and increased cost. There is still much to be done to
improve model interpretability.

Moreover, most existing studies on the applications of AI in CRC were designed retro-
spectively [96,105]. Although the results from these studies appeared to be promising, solid
evidence on the effectiveness of AI applied in CRC is still lacking. Due to potential selection
bias in the retrospective study design, further prospective and multicenter investigations
are required to confirm the utility of AI in clinical practice of CRC.

Furthermore, the safe management and use of clinical data are also important chal-
lenges. Compared with other research fields, establishing of AI applications for CRC
requires a large amount of clinical data from patients, which requires privacy protection
and raises ethical issues. There is ongoing research to address these problems; for example,
Li et al. [107] proposed a multicenter RF prognostic prediction model that performed with
desirable predictive capability and provided privacy guarantees. Drawing on such meth-
ods, it is expected that secure and reliable multicenter data sharing platforms for CRC can
be established.

8. Future Prospects

Given the current status of AI in CRC clinical applications, we believe that future
research in screening, diagnosis, treatment and prognosis will be directed as follows:

In the screening of CRC, the current gold standard is endoscopy and pathological
biopsy [33]. In future, the research direction of AI technology should be focused on
less-invasive technology compared to colonoscopy, while the diagnostic accuracy must
remain close to pathological biopsy, or improve the diagnosis of precancerous lesions.
Future research should first choose to use clinically apparent data, that is, the patient’s
health status, disease history, symptoms that may seem unrelated, and treatment records
before the discovery of CRC. Using these clinical data, combined with the information of
the first diagnosis of CRC, AI technology can be used to establish a model of comorbid
characteristics to help healthy people early warning of the occurrence of CRC.

Aiming at the diagnosis of CRC, AI technology should focus on the accuracy of
TNM staging [108]. In other words, we need to establish a more accurate AI prediction
system, not only for the T, N, and M staging, but also the overall preoperative staging
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status and the high-risk factors for recurrence in CRC patients before surgery. Through
the establishment of preoperative clinical AI-TNM staging, accurate decision-making on
the choice of neoadjuvant therapy and the formulation of surgical plans is possible. The
consideration of this clinical staging requires a breakthrough in pure imaging technology,
and comprehensive proteomics, metabolomics, genetic, and clinical epidemiological data
should be considered.

However, the research of AI technology in the treatment of CRC still lacks break-
through progress. The key point is how to closely integrate AI with surgical treatment.
This close integration does not refer to AI technology-related operating methods, such as
the application of robotic technology [109], but rather to the evaluation of the effect of AI
technology on the surgical process, evaluation of the difficulty, and judgment of the quality
of the operation. Because surgery is the most important link in the treatment of CRC, and it
has been the technology of surgeons since the very beginning, how to associate AI with
surgical technology is the key to the application of AI technology in CRC treatment.

For prediction of the prognosis of CRC, the AI technology needs to expand the applica-
tion of the overall sample size and cross-crowd ethnographic database. A sufficiently large
CRC database is sufficient to support the prediction of prognosis by AI technology [107],
and it can help clinicians to find the factors that have the greatest impact on the prognosis,
so as to establish future prospective prognostic intervention research. At the same time, for
important clinical events such as CRC recurrence and metastasis, AI technology can also be
used to predict serious oncology changes, which is also a valuable clinical breakthrough.

9. Conclusions

Due to the explosion of clinical data, and groundbreaking research in ML, and espe-
cially DL, AI has shown a great application potential in various clinical aspects of CRC,
allowing machines to assist clinicians in many important tasks, such as colorectal polyp
detection, qualitative and staging diagnosis of CRC, therapeutic assessment, as well as
recurrence and survival prediction. The power of AI is poised to make practice-changing
impacts on the clinical field of CRC. However, we should acknowledge that AI is still in its
infancy with regard to its actual clinical application in CRC. Several challenges that must be
addressed include the validation and generalizability of the clinical predictive models, the
construction of interpretable models, concerns over prospective and multicenter evaluation,
and the safe management and use of clinical data. We believe that in the near future, AI
technologies will play a more significant role in minimally invasive screening, TNM staging
prediction, and surgical treatment to further improve CRC screening, diagnosis, as well as
the evaluation of treatment and prognosis.
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