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A B S T R A C T

Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) was first identified in 2012, and it
continues to threaten human health worldwide. No MERS vaccines are licensed for human use, reinforcing the
urgency to develop safe and efficacious vaccines to prevent MERS. MERS-CoV spike protein forms a trimer, and
its receptor-binding domain (RBD) serves as a vaccine target. Nevertheless, the protective efficacy of RBD in its
native trimeric form has never been evaluated. In this study, a trimeric protein, RBD-Fd, was generated by
fusing RBD with foldon trimerization motif. It bound strongly to the receptor of MERS-CoV, dipeptidyl
peptidase 4 (DPP4), and elicited robust RBD-specific neutralizing antibodies in mice, maintaining long-term
neutralizing activity against MERS-CoV infection. RBD-Fd potently protected hDPP4 transgenic mice from
lethal MERS-CoV challenge. These results suggest that MERS-CoV RBD in its trimeric form maintains native
conformation and induces protective neutralizing antibodies, making it a candidate for further therapeutic
development.

1. Introduction

Middle East respiratory syndrome (MERS) coronavirus (MERS-
CoV) was first identified in Saudi Arabia in 2012, and since then, it has
resulted in increased incidence of human infection (Zaki et al., 2012;
Chan et al., 2012; Rha et al., 2015). As of October 04, 2016, a total of
1806 laboratory-confirmed MERS cases, including 643 deaths (mor-
tality rate ~36%), have been reported worldwide (http://www.who.int/
emergencies/mers-cov/en/). Bats are regarded as a natural reservoir of
MERS-CoV, and the potential mechanisms driving bat-to-human
transmission of MERS-CoV are being investigated by comparing
MERS-CoV with a closely related bat coronavirus, HKU-4 (Yang
et al., 2014; Memish et al., 2013; Ithete et al., 2013; Cui et al., 2013;
Wang et al., 2014). Dromedary camels are shown to be an important
intermediate host for MERS-CoV, and, as such, they are considered the
key to stopping MERS-CoV transmission (Adney et al., 2014; Yusof

et al., 2015; Gossner et al., 2016). The severe outbreak of MERS-CoV in
South Korea in 2015 demonstrated the ability of this virus to cause
human-to-human transmission (Khan et al., 2015; Ki, 2015). The
continuing spread of MERS-CoV and increase of MERS cases have
highlighted the urgent need to develop effective and safe vaccines
against MERS-CoV.

The native spike (S) of MERS-CoV is an envelope glycoprotein
presented as a trimer on the virus surface. It is cleaved during virus
infection by host cell proteases into S1 and S2 subunits. S1 is
responsible for MERS-CoV binding to host cells expressing viral
receptor dipeptidyl peptidase 4 (DPP4) via the receptor-binding
domain (RBD) (Raj et al., 2013; Lu et al., 2013; Wang et al., 2013;
Chen et al., 2013; Li, 2015). Meanwhile, S2 is engaged in fusion
between virus and cell surface membranes, thus mediating the entry of
MERS-CoV into target cells (J. Gao et al., 2013; Lu et al., 2014). These
activities make MERS-CoV S protein, in particular its RBD, an
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important vaccine target (Zhang et al., 2014; Du et al., 2013b; Du et al.,
2013a; Ma et al., 2014a, 2014b). A number of fragments have been
identified as constituents of MERS-CoV RBD, but the fragment
containing residues 377–588 in the viral S protein is the critical
neutralizing domain (CND) responsible for the induction of neutraliz-
ing antibodies in immunized animals (Ma et al., 2014a, 2014b; Zhang
et al., 2015). Nevertheless, the RBD in its native trimeric form has
never been evaluated for protective efficacy against MERS-CoV infec-
tion.

Foldon (Fd), a 27-amino acid phage T4 fibritin, is a trimerization
motif which is now being constructed as a fusion partner to guide
formation of ultra-stable protein fibers or promote trimerization of
recombinant fusion proteins (Bhardwaj et al., 2008; Papanikolopoulou
et al., 2004; Sissoeff et al., 2005). For example, influenza virus
hemagglutinins (HAs) with an Fd-formed trimerization domain have
increased binding affinity to neutralizing antibodies targeting the stalk
region of viral HAs (Krammer et al., 2012). In addition, recombinant
HIV-1 trimeric envelope glycoproteins induced more efficient and
broad-spectrum neutralizing antibodies with increased potency than
monomeric gp120 protein against divergent HIV-1 strains (Grundner
et al., 2005). These reports reinforce the importance of mimicking
native viral trimeric structures in the design of envelope glycoprotein-
based subunit vaccines. However, imitating conformational structures
of MERS-CoV S protein has never been attempted in MERS vaccine
design.

In this study, we expressed a recombinant trimeric RBD protein by
fusing the MERS-CoV RBD sequence (residues 377–588) with Fd
trimerization motif (RBD-Fd). We then investigated its antigenicity,
receptor binding affinity, immunogenicity, neutralization potential, and
protective efficacy against MERS-CoV challenge in a human DPP4-
transgenic (hDPP4-Tg) mouse model. The outcomes of this study
indicate the potential of developing MERS subunit vaccines based on
the trimeric RBD of MERS-CoV S protein.

2. Materials and methods

2.1. Ethics statement

Four- to six-week-old female BALB/c mice and four-month-old
male and female hDPP4-Tg mice were used in the study. The animal
studies were carried out in strict accordance with the recommendations
in the Guide for the Care and Use of Laboratory Animals of the
National Institutes of Health. The animal protocols were approved by
the Committee on the Ethics of Animal Experiments of the New York
Blood Center (Permit Number: 194.17) and the Beijing Institute of
Microbiology and Epidemiology (Permit Number: PMB15-0012).

2.2. Construction, expression and purification of recombinant
proteins

The construction, expression and purification of the recombinant
proteins were carried out as previously described (Du et al., 2013a; Ma
et al., 2014a, 2014b; Du et al., 2013b). Briefly, recombinant RBD-Fd
(residues 377–588 of MERS-CoV RBD) containing a C-terminal Fd and
a His6 tag was constructed using hIgG-Fc vector (InvivoGen), and
expressed in the transfected 293T cell culture supernatants.
Recombinant MERS-CoV S1 (residues 18–725) containing a C-term-
inal His6 (S1-His) was constructed using pJW4303 expression vector,
and expressed as described above. Recombinant human DPP4 ectodo-
main (residues 39–766) containing a C-terminal His6 (sDPP4) was
expressed in insect cells using the Bac-to-Bac expression system
(Invitrogen), and secreted into cell culture medium (Chen et al.,
2013). The aforementioned His-tag proteins were purified using Ni-
NTA Superflow (Qiagen).

2.3. SDS-PAGE and western blot

RBD-Fd was analyzed by SDS-PAGE and Western blot as previously
described (Ma et al., 2014a; Du et al., 2013b). Briefly, the boiled and
non-boiled proteins were separated by 10% Tris-Glycine SDS-PAGE
gels and then transferred to nitrocellulose membranes. After blocking
overnight at 4 °C with 5% non-fat milk in PBST, the blots were
incubated for 1 h at room temperature with MERS-CoV S1-specific
antibody (1:1000). After three washes, the blots were incubated with
horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG
(1:3000) (GE Healthcare) for 1 h at room temperature, and the signals
were visualized using ECL Western blot substrate reagents and
Amersham Hyperfilm (GE Healthcare).

2.4. Size-exclusion chromatography with multi-angle light scattering
(SEC-MALS)

RBD-Fd protein was concentrated to 2 mg/ml in buffer containing
50 mM PBS and 150 mM NaCl, and analyzed in-line using tandem
miniDAWN TREOS MALS and Optilab rEX differential refractive index
detectors (Wyatt Technologies) at the PEPCC Facility of Case Western
Reserve University. The protein was loaded for molar mass determina-
tions, and the data were analyzed using the ASTRA 6.1 software
package (Wyatt Technologies). The size distribution of the protein was
measured by DynaPro NanoStar (Wyatt Technologies).

2.5. Co-immunoprecipitation assay

The binding between RBD-Fd protein and DPP4 receptor was
carried out by Co-immunoprecipitation (Co-IP) assay and Western
blot as previously described (Du et al., 2013a). Briefly, RBD-Fd (10 µg)
was incubated with DPP4-expressing Huh-7 cell lysates (5×107/ml)
plus Ni-NTA Superflow at 4 °C for 1 h, followed by washing with wash
buffer. The eluted proteins were boiled for 10 min and subjected to
SDS-PAGE and Western blot analysis to detect the binding using anti-
DPP4 antibody (0.2 µg/ml) (R &D Systems) and anti-MERS-CoV RBD
antibody (1:5000), respectively.

2.6. Animal immunization and sample collection

BALB/c mice were immunized with RBD-Fd as previously de-
scribed (Ma et al., 2014a; Ma et al., 2014b). Briefly, mice were
subcutaneously (s.c.) vaccinated with RBD-Fd (10 μg/mouse) in the
presence of MF59 adjuvant (Schultze et al., 2008) and boosted with the
same immunogen and adjuvant at 3 weeks, 6 weeks, and 6 months
post-immunization. PBS plus adjuvant was included as the negative
control. Sera were collected monthly post-first dose for 6 months to
detect MERS-CoV S1-specific antibody responses and/or neutralizing
antibodies.

2.7. ELISA

ELISA was carried out to detect the binding between RBD-Fd and
sDPP4 proteins as previously described (Du et al., 2013a). Briefly,
ELISA plates were precoated with RBD-Fd (2 μg/ml) overnight at 4 °C
and blocked with 2% non-fat milk at 37 °C for 2 h. Serially diluted
sDPP4 was added to the plates and incubated at 37 °C for 1 h, followed
by four washes. Bound antibodies were sequentially incubated with
goat anti-DPP4 (0.2 µg/ml) and HRP-conjugated anti-goat IgG
(1:5000) (R &D Systems) antibodies at 37 °C for 1 h, followed by
addition of substrate 3,3′,5,5′-tetramethylbenzidine (TMB)
(Invitrogen) and H2SO4 (1 N) sequentially. The absorbance at
450 nm (A450) was measured by an ELISA plate reader (Tecan).

The binding between RBD-Fd protein and MERS-CoV RBD-specific
mouse mAb Mersmab1 and human mAbs m336, m337 and m338 (Du
et al., 2014; Ying et al., 2014) was carried out using a protocol similar
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to that described above, but replacing the primary antibody with
serially diluted mAbs. The HRP-conjugated anti-mouse (1:3000) (GE
Healthcare) or anti-human (1:5000) (Sigma) IgG antibodies were used
as secondary antibodies.

For detecting MERS-CoV S1-specific antibodies in mouse sera,
plates were coated with MERS-CoV S1-His protein (1 μg/ml), followed
by sequential addition of serially diluted mouse sera and HRP-
conjugated anti-mouse IgG (1:3000), IgG1 (1:2000), or IgG2a
(1:5000) antibodies (Invitrogen).

2.8. MERS pseudovirus inhibition and neutralization assays

These assays were carried out as previously described with some
modifications (Zhao et al., 2013; Du et al., 2010). Briefly, 293T cells
were co-transfected with a plasmid encoding Env-defective, luciferase-
expressing HIV-1 genome (pNL4-3.luc. RE) and a plasmid encoding S
protein of MERS-CoV prototypic strain (EMC-2012), or each of the
representing strains isolated in the 2012–2015 outbreaks that carry
respective mutations in the RBD (Qiu et al., 2016), using the calcium
phosphate method. The pseudovirus-containing supernatants were
harvested 72 h post-transfection for single-cycle infection of Huh-7
cells. For the inhibition assay, Huh-7 cells were incubated with serially
diluted RBD-Fd protein at 37 °C for 1 h, followed by removal of the
protein-containing media and then infection with MERS pseudovirus.
For the neutralization assay, MERS pseudovirus was incubated with
serially diluted mouse sera at 37 °C for 1 h, followed by addition of the
mixture to the cells. The cells were refed with fresh medium 24 h later,
lysed at 72 h with cell lysis buffer (Promega), and transferred into 96-
well luminometer plates. Luciferase substrate (Promega) was added to
the plates, and relative luciferase activity was determined in an Infinite
200 PRO Luminator (Tecan). MERS pseudovirus inhibition and
neutralization were calculated as previously described (Chou, 2006),
and expressed as 50% inhibition dose (ID50) and neutralizing antibody
titer (NT50), respectively.

2.9. Live MERS-CoV neutralization assay

A micro-neutralization assay was carried out to detect neutralizing
antibodies against live MERS-CoV infection as previously described
(Tao et al., 2013; Ma et al., 2014b). Briefly, mouse sera were diluted at
a serial 2-fold in 96-well tissue culture plates, followed by incubation
for 1 h at room temperature with ~100 infectious MERS-CoV (EMC-
2012) before transferring to Vero E6 cells. After 72 h, cells were
observed for the presence or absence of virus-induced cytopathic effect
(CPE), and the neutralizing antibody titers were determined as the
reciprocal of the highest dilution of sera that completely inhibited
virus-induced CPE in at least 50% of the wells (NT50).

2.10. Animal challenge studies

The challenge studies were carried out in hDPP4-Tg mice using our
previously optimized protocols (Zhao et al., 2015). Briefly, mice were
intramuscularly (i.m.) immunized with RBD-Fd (5 μg/mouse) plus
aluminum adjuvant and boosted once at 4 weeks. Immunized mice
were challenged with MERS-CoV (EMC-2012 strain, 104 TCID50) 12
weeks later, and observed for 3 weeks post-challenge to detect survival
rate, body weight, and pathological changes.

3. Results

3.1. Characterization and antigenicity of RBD-Fd protein

To determine whether MERS-CoV RBD containing the CND
(residues 377–588) would form a native trimeric structure, we fused
its C-terminus to Fd trimerization motif (Fig. 1A), expressed RBD-Fd
protein in 293T cell culture supernatants, and further characterized the
protein by SDS-PAGE and Western blot analysis. A high molecular-
weight band (trimer) was shown in the non-denatured (non-boiled)
sample, which was 3 times that of the denatured (boiled) protein

Fig. 1. Construction, characterization and antigenicity evaluation of MERS-CoV RBD-Fd protein. (A) Schematic structure of MERS-CoV S1 subunit and construction of
RBD-Fd. A His6 tag was added at the C-terminus of RBD-Fd for easy purification. (B) SDS-PAGE and Western blot analysis of purified RBD-Fd protein. Denatured (boiled) or non-
denatured (non-boiled) samples (5 µg) were subjected to SDS-PAGE (left) and Western blot analysis (right) using MERS-CoV S1-specific antibody. The molecular weight marker (kDa) is
indicated on the left. (C) SEC-MALS analysis of purified of RBD-Fd protein. RBD-Fd (2 mg/ml, 100 μl) was subjected to the analysis. The data are presented as mean molar mass (Da).
(D) ELISA detection of the binding between RBD-Fd and RBD-specific neutralizing mAbs. RBD-Fd (2 μg/ml)-coated ELISA plates were incubated with serially diluted mAbs for the test.
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(monomer) (Fig. 1B, left). The trimeric molecule of the RBD-Fd protein
was further confirmed by SEC-MALS analysis, indicating the molar
mass of about 1.043×105 ( ± 0.036×105) Da (Fig. 1C). These results
demonstrate that recombinant RBD formed a trimeric conformation in
the presence of Fd trimerization motif. In addition, RBD-Fd had a
strong reactivity with antibodies against a recombinant S1 protein of
MERS-CoV (Fig. 1B, right), suggesting that the trimeric RBD is derived
from MERS-CoV S protein.

We further investigated the antigenicity of RBD-Fd protein by
testing its binding affinity with neutralizing mAbs specific to the
conformational epitopes in MERS-CoV RBD (Ying et al., 2014; Du
et al., 2014). ELISA data revealed that RBD-Fd bound strongly to these
antibodies and that the binding occurred in a dose-dependent manner
(Fig. 1D), suggesting that trimeric MERS-CoV RBD maintains the
antigenicity required to recognize RBD-specific antibodies that target
conformational epitopes.

3.2. Binding affinity of RBD-Fd protein to DPP4, the receptor of
MERS-CoV

Co-IP assay and ELISA were performed to determine the affinity of
RBD-Fd binding to cell-associated and recombinant DPP4, respec-
tively. Co-IP results revealed two clear bands in the pull-down samples
containing Huh-7 cell lysates and RBD-Fd protein, which correspond
to the size of DPP4 and RBD-Fd monomers, and were identified by
anti-DPP4 (Fig. 2A) and anti-MERS-CoV-RBD (Fig. 2B) antibodies,
respectively. However, soluble DPP4 (sDPP4) or RBD-Fd protein alone
could only be recognized by either anti-DPP4 or anti-MERS-CoV-RBD,
but not by both antibodies (Fig. 2A and B). The results from ELISA
further revealed a strong binding between RBD-Fd and sDPP4 proteins
in a dose-dependent manner (Fig. 2C). These data confirm the binding
affinity of the trimeric MERS-CoV RBD protein to the cell-associated
and recombinant DPP4 proteins.

3.3. RBD-Fd protein strongly inhibited MERS-CoV infection and
induced long-term potent antibody responses with cross-neutralizing
activity against MERS-CoV infection

To test the ability of trimeric RBD-Fd to inhibit MERS-CoV
infection, we incubated this protein with Huh-7 cells, and calculated
the corresponding inhibition of infection as ID50. The data demon-
strated that RBD-Fd strongly blocked MERS pseudovirus entry into the
target cells, with the ID50 as low as 1.5 μg/ml, whereas the control
protein had no inhibitory activity even at the highest concentration
(Fig. 3A). These data suggest the potential application of RBD-Fd as an
effective therapeutic agent against MERS-CoV infection.

To investigate the immunogenicity of trimeric RBD-Fd, we used
this protein to s.c. immunize BALB/c mice in the presence of MF59
adjuvant since this protocol has been previously optimized for RBD-
based vaccines in the test mouse strain (Zhang et al., 2016). We then
measured the generation of MERS-CoV S1-specific IgG antibodies, as
well as IgG1 and IgG2a subtypes, using ELISA in the immunized mouse
sera. As shown in Fig. 3B, RBD-Fd induced highly potent MERS-CoV
S1-specific IgG antibodies, which maintained for at least 6 months
during the detection period. As expected, only a background level of
IgG antibody responses was induced in the control mice. Evaluation of
IgG1 and Ig2a subtypes further demonstrated that both Th1 (IgG2a)
and Th2 (IgG1) antibody responses could be elicited by RBD-Fd and
for at least the next six months, all maintained titers similar to, or
higher than, those induced at 2 months post-immunization (Fig. 3C
and D). In contrast, no specific IgG1 and IgG2a antibodies were
induced in the control mice injected with PBS. These data confirm
high immunogenicity of trimeric MERS-CoV RBD in inducing long-
term, strong humoral immune responses in mice.

The neutralizing antibodies in the sera of mice immunized with
trimeric RBD-Fd were detected by MERS pseudovirus and live MERS-

Fig. 2. Functionality of RBD-Fd protein in binding to the DPP4 receptor of
MERS-CoV. (A-B) Co-IP and Western blot analysis of the binding between RBD-Fd and
cell-associated DPP4. RBD-Fd was incubated with DPP4-expressing Huh-7 cell lysates in
the presence of Ni-NTA Superflow, followed by detection of the binding by Western blot
using DPP4- (0.2 µg/ml) (A) or MERS-CoV RBD-specific antibody (B) (1:5000). sDPP4
and RBD-Fd proteins only were included as the controls. The molecular weight marker
(kDa) is indicated on the left. (C) ELISA measurement of the binding between RBD-Fd
and sDPP4 proteins. RBD-Fd (2 μg/ml)-coated ELISA plates were incubated with serially
diluted sDPP4 for the test.
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Fig. 3. Inhibitory activity of RBD-Fd and its immunogenicity and neutralizing ability in immunized mice. (A) Inhibitory activity of RBD-Fd protein against infections of
pseudotyped MERS-CoV (EMC2012) in Huh-7 cells. An unrelated SARS-CoV RBD protein was included as the control. The data are presented as 50% inhibition dose (ID50). (B) MERS-
CoV S1-specific IgG antibody titers. Mouse sera from different months were used for the test. MERS-CoV S1-specific IgG1 (C) and IgG2a (D) antibody titers. Mouse sera from 2 and 6
months post-1st immunization were used for the test. The antibody titers are expressed as the endpoint dilution that remains positively detectable, and presented as mean titers ± SD of
five mice in each group. RBD-Fd-induced neutralizing antibodies against infections of pseudotyped (E) and live (F) MERS-CoV of EMC2012 strain, as well as pseudotyped MERS-CoV of
representative strains isolated from the 2012 (L506F), 2013 (A434V, A431P-A482V, S460F), 2014 (Q522H, T424I), and 2015 (V530L, V534A) outbreaks, respectively (G). Shown here
are respective mutations in the RBD of S protein, as compared with those of EMC2012 strain (Qiu et al., 2016). Neutralizing antibody titers were calculated as the reciprocal of the
highest dilution of sera that resulted in a complete inhibition of MERS pseudovirus infection (E and G) or MERS-CoV-induced CPE (F) in at least 50% of the wells (NT50). Mouse sera
from 2 and 6 months were used for the test, and the data are presented as mean titers ± SD of five mice in each group. For (B)-(G), PBS was included as the control.
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CoV-based neutralization assays. Indeed, RBD-Fd elicited highly
potent neutralizing antibodies against infections of both pseudotyped
and live MERS-CoV of prototypic EMC2012 strain in susceptible Huh-
7 and Vero E6 cells, respectively, maintaining similar levels at 2 and 6
months. Importantly, these antibodies strongly cross-neutralized in-
fections of MERS pseudoviruses expressing S proteins of divergent
strains isolated in the 2012–2015 outbreaks, demonstrating their
cross-neutralizing activity. However, no specific neutralizing antibody
was induced in the PBS control mice (Fig. 3E–G). The above results
suggest that trimeric MERS-CoV RBD has ability to elicit long-term
and potent neutralizing antibodies in mice.

3.4. RBD-Fd protein elicited long-term protective immunity in
hDPP4-Tg mice against lethal infection of MERS-CoV

To investigate the ability of trimeric RBD-Fd to induce protective
immunity against MERS-CoV challenge, we utilized this protein to i.m.
immunize hDPP4-Tg mice, a small animal model on the C57BL/6
background that is susceptible to MERS-CoV infection (Zhao et al.,
2015), in the presence of aluminum adjuvant. The above immunization
protocol was selected because that it is optimized for hDPP4-Tg mice
(unpublished data), and that aluminum is an approved adjuvant for
using with human vaccines (Lee and Nguyen, 2015). We then
challenged the immunized mice with MERS-CoV at a lethal dose, and
evaluated for their survivals, weight, and pathological changes.

The data demonstrated that 83% of the RBD-Fd-immunized mice
survived from lethal MERS-CoV infection (Fig. 4A). These mice had
neutralizing antibody titers ranging from 1:100 to 1:673 (average
1:312) against live MERS-CoV infection before virus challenge
(Fig. 4B). Although the challenged mice slightly reduced weight during
day 8–14 after MERS-CoV challenge, they rapidly recovered to the
normal weight (Fig. 4C). In contrast, the control mice with a back-
ground level of neutralizing antibodies in their sera kept continual
reduction of the weight after virus challenge, and all mice (100%) died

at day 11 (Fig. 4A–C). Observation of pathological changes in the
challenged mouse lungs revealed almost normal lung tissues in the
RBD-Fd-immunized mice (Fig. 4Da). These lung tissues were similar to
those of normal mice (Fig. 4Db), with only slightly thickened alveolar
wall (Fig. 4Da). By comparison, the PBS control mice challenged with
MERS-CoV had marked interstitial pneumonia, including inflamma-
tory cell infiltration, alveolar septal thickening, focal exudation, and
hemorrhage (Fig. 4Dc). The hDPP4-Tg mice were immunized with
RBD-Fd at 4 months old, boosted once 4 weeks later, challenged with
MERS-CoV at 12 weeks post-boost, and survived for 3 weeks post-
challenge before being sacrificed for evaluating pathological changes.
Thus, the above results demonstrate the ability of RBD-Fd to induce
long-term protective immunity in aging mice against MERS-CoV
infection.

4. Discussion

Rapid development of a safe and efficacious vaccine with high
potency has become the first priority to prevent continuous infection of
MERS-CoV in humans. We have previously demonstrated that a RBD
fragment containing residues 377–588 of MERS-CoV S protein is a
critical neutralizing domain (CND) capable of inducing neutralizing
antibodies against MERS-CoV infection (Ma et al., 2014b; Du et al.,
2013a, 2016) and, hence, an important target for the development of
subunit vaccines. It is known that native MERS-CoV S protein forms a
trimer and is cleaved to form functional S1 and S2 subunits (Wang
et al., 2013; Lu et al., 2013; Du et al., 2016), but it is still unknown
whether the trimeric form of RBD (CND) of MERS-CoV S1 protein can
induce protective immunity against MERS-CoV infection.

Fd, a trimerization motif, has been previously fused with recombi-
nant proteins, such as influenza virus HA and HIV-1 glycoproteins and
promotes them to form trimeric structures, subsequently stabilizing the
proteins to broaden and increase their immunogenicity against infec-
tions from divergent virus strains (Grundner et al., 2005; G. Gao et al.,

Fig. 4. Protective efficacy of RBD-Fd in hDPP4-Tg mice. Groups of 6 mice were challenged with MERS-CoV at 12 weeks post-last dose and then observed for 3 weeks for survival
rate (A) and body weight changes (C). The data are presented as mean with SD. (B) Neutralizing antibodies were detected in the sera of immunized mice before MERS-CoV challenge.
Neutralizing antibody titers are presented as mean NT50 ± SD of six mice in each group. For (A)–(C), PBS was included as the control. (D) Evaluation of pathological changes in lung
tissues of challenged mice. Representative images from mice immunized with RBD-Fd (a) and PBS (c) challenged with MERS-CoV (EMC2012) and normal mice (b) are shown. Lung
tissue sections were stained with hematoxylin and eosin (H&E) and observed under light microscopy (100×magnification).
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2013; Nkolola et al., 2010; Du et al., 2013c; Li et al., 2013). Using
MERS-CoV RBD fused with Fd (RBD-Fd) as a model antigen, this
study attempts to generate a MERS-CoV RBD trimer, and then evaluate
its antigenicity, receptor binding affinity, immunogenicity, neutralizing
potential, and protective efficacy against MERS-CoV infection.

Indeed, RBD-Fd protein formed a trimeric structure that bound
strongly to MERS-CoV RBD-specific, conformational epitope-targeting
mAbs, as well as MERS-CoV's receptor DPP4, demonstrating its
capacity to elicit highly efficacious IgG antibodies, along with Th2-
based IgG1 and Th1-based IgG2 antibody responses. These results
suggest that the trimeric MERS-CoV RBD maintains potent antigeni-
city, strong receptor-binding affinity, and high immunogenicity to
induce robust antibody responses in the immunized animals.
Particularly, RBD-Fd protein was able to induce long-term and highly
potent neutralizing antibodies against infections of live and pseudo-
typed MERS-CoV of divergent strains isolated in the 2012–2015
outbreaks, possibly because RBD-Fd forms a trimeric structure to
mimic the native conformation of the CND in MERS-CoV S protein,
thus eliciting vigorous cross-neutralizing antibodies.

Due to the low expression of RBD protein monomer in the
mammalian cell expression system, we were unable to obtain sufficient
monomeric RBD protein to include it as a control in this study.
Nevertheless, 83% of the survival rate and minimal pathological
changes in the RBD-Fd-immunized hDPP4-Tg mice demonstrate its
high protective efficacy against lethal MERS-CoV challenge. To further
improve its protective immunity, RBD-trimer could be optimized by
stabilizing its trimeric structure with disulfide bonds, adding other
trimeric motifs, such as GCN4, adjusting linker sequences between the
RBD and Fd, or combining these approaches, as reported for other viral
proteins (Yang et al., 2000a, 2000b; Ringe et al., 2015). Since RBD-Fd
only induced a background level of T cell responses (data not shown),
its protective efficacy is largely associated with neutralizing antibodies.
This is evidenced by that all of the mice survived from MERS-CoV
infection had relatively high serum neutralizing antibody titers, sug-
gesting that neutralizing antibodies, rather than cellular immune
responses, may play a key role to prevent MERS-CoV infection in
trimeric RBD-based subunit vaccines.

Overall, this report confirms the capability of MERS-CoV RBD's
critical neutralizing epitopes to form a trimeric structure, resulting in
the induction of strong humoral immune responses, potent neutraliz-
ing antibodies, and significant protective efficacy. It further emphasizes
the importance of maintaining the native conformational structure of S
protein in developing MERS subunit vaccines. In this context, our
study provides valuable guidance for the rational design of efficacious
subunit vaccines against MERS-CoV and other viruses with class I
membrane fusion proteins.
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