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Abstract: This paper presents a comparison between the electroencephalogram (EEG) 

channels during scoliosis correction surgeries. Surgeons use many hand tools and 

electronic devices that directly affect the EEG channels. These noises do not affect the 

EEG channels uniformly. This research provides a complete system to find the least 

affected channel by the noise. The presented system consists of five stages: filtering, 

wavelet decomposing (Level 4), processing the signal bands using four different criteria 

(mean, energy, entropy and standard deviation), finding the useful channel according to the 

criteria’s value and, finally, generating a combinational signal from Channels 1 and 2. 

Experimentally, two channels of EEG data were recorded from six patients who underwent 

scoliosis correction surgeries in the Pusat Perubatan Universiti Kebangsaan Malaysia 

(PPUKM) (the Medical center of National University of Malaysia). The combinational 

signal was tested by power spectral density, cross-correlation function and wavelet 

coherence. The experimental results show that the system-outputted EEG signals are neatly 

switched without any substantial changes in the consistency of EEG components. This 

paper provides an efficient procedure for analyzing EEG signals in order to avoid 
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averaging the channels that lead to redistribution of the noise on both channels, reducing 

the dimensionality of the EEG features and preparing the best EEG stream for the 

classification and monitoring stage. 

Keywords: electroencephalogram (EEG) signal; anesthesia; surgeries; channels; signal 

processing; features; decomposition; criteria 

 

1. Introduction 

The electroencephalogram (EEG) is a device used to determine the brain activity by electrodes 

placed in different places on the scalp. An EEG signal is a function of time and reported in terms of its 

frequency, amplitude and phase. Anesthesia is an irreplaceable portion of surgeries, where the 

anesthesiologists observe the depth of anesthesia (DOA) of patients based on monitoring the essential 

variations in physiologic indicators, such as eye movement, heartbeat, breathing rates and blood 

pressure, and their physical responses to excitation from the surgical procedure. The variation of the 

brain signal features are strongly related to the level of anesthesia; these variations are exploited to observe 

the DOA [1]. Unconsciousness is defined as lack of movement and unresponsiveness to painful stimuli, 

whereas the strength of operative stimulation depends on the duration and type of surgery [2]. 

Inappropriate general anesthesia, such as underdosage or overdosage, leads to intraoperative awareness 

or prolonged anesthesia. Under no circumstances, the common element that participates in appropriate 

general anesthesia is the ability to analyze the EEG signals to discern the stage of awareness, which 

leads to avoiding the risk of postoperative complications [3–5]. Scoliosis correction surgery is one of 

the most complicated operations that requires a long time under the influence of the anesthetic drugs 

(more than three hours). During these types of surgeries, surgeons use a lot of electronic devices and 

hand tools that increase the errors and noise level for the events of the EEG signal, such as 

neuromuscular monitoring, suction, cautery and X-ray. Most of these devices affects the channels that 

record EEG signals asymmetrically; they add DC voltage and noise to the recorded signal; thereby, we 

get a distorted wave and may not be able to it again [6,7]. In the same context, artifacts emerge from 

the patient, due to respiration, sweating, muscle activity, heartbeat and eye blinks [8–10]. The effect of 

these errors and noise on the EEG channels is discussed in detail in Section 3.3. 

There are many methods used to reduce the dimensionality of the EEG signal, such as Principle 

Component Analysis (PCA), Independent Component Analysis (ICA) and Linear Discriminant Analysis 

(LDA). All of these methods are not used to reduce the dimensionality of the recorded EEG data; they 

are used to reduce the dimensionality of the features that are extracted from the whole recorded data. 

These methods transform the features to coefficients to another dimension according to the eigenvalues 

and eigenvector. For example, if the feature dimension is (k × d); the new dimension will be (d × d) [11]. 

These methods are different from each other in the way of finding the coefficients for the features. One 

of the main disadvantages of these methods is the possibility of losing important features that describe 

the variation of EEG signals, especially if the signal changes its component rapidly. In our proposed 

system, the features are used only to assess the components of the EEG signal without any reduction. 

This system reduces the number of channels according to the features without any transformation. The 
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main advantage of the proposed system is to keep the important data, which enables us to predict the 

DOA, where we will not lose any of the components that make up the data. Certainly, this will be 

reflected in the features of the data and the accuracy of the classifier in the final stage. 

After World War II, researchers looked after improving the classification of brain signals, which 

allowed them to diagnose abnormal waves. In the 1950s, William Grey developed the topography of 

the EEG waves, where he covered the mapping of the electrical activity of the human brain. From the 

1980s, the initial stage of EEG data has been described by digital filters, which are used to remove the 

unwanted frequencies of the recorded signal. The chain of low–high-pass filters are used to remove the 

electrical line noise from the recorded EEG signal [12]. Nitschke et al. [13] reported that diagnosing 

the EEG signal in the time domain of the digital filter typically comprises cross-multiplication of each 

noisy datum and its neighbors with a set of weights. The discrete wavelet transform (DWT) is an 

efficient method used to denoise the acquired signals from various artifact waves that overlap with 

EEG signals, such as inherent noise, ocular artifacts and motion artifacts [14]. Other researchers 

combined the Wavelet (WT) and (ICA) to generate a new formula, Wavelet-Independent Component 

Analysis (WICA) technique. This technique exhibited the best performance to remove the artifacts 

from EEG signals with minimal information loss [15]. 

The aim of this paper is to analyze and test the recorded EEG signal during this type of surgery for 

choosing the channel that contains the minimum noise component. Averaging the EEG signal that 

comes from different channels leads to distributing of the noise that is carried by one channel to the 

other channel, which may worsen the errors in the EEG signal. This study adopted five stages to check 

the EEG channels. At the first stage, the recorded signals are filtered from the undesired noise and 

artifacts using four different techniques. The second stage is a Level 4 wavelet decomposition 

technique to decompose the signal of each channel to the details and approximation coefficients. The 

third stage tests these components by four different criteria (mean, energy, entropy and standard 

deviation). The fourth stage compares Channel 1 and Channel 2 to find the clean channel according to 

the criteria’s value in stage three. The fifth stage acts as switching mode between Channel 1 and 

Channel 2 to generate a new combinational signal according to the results in stage four. To assess the 

results, the power spectral density, cross-correlation function and cross-coherence are used as the 

evaluation criteria. The results showed that the recorded signals corrected significantly without 

effectively changing the shape of the EEG signal, making it ready for extracting accurate features. This 

paper is arranged as follows: Section 2 describes the anesthetic agents and the recording succession. 

Section 3 describes the characteristics of the EEG wave bands and the effects of errors and noise to the 

channels that are used to record the EEG signals during surgery. Section 4 illustrates the stages of the 

proposed system, describing the evaluation criteria. Section 5 discusses in detail the experimental 

results. Finally, Section 6 presents the conclusions. This paper provides an efficient procedure to solve 

the problem of the EEG signal during a noisy surgery with long-term anesthesia. 

2. Acquiring the EEG Data during Scoliosis Correction Surgeries 

Recording the EEG data during these types of surgery is somewhat difficult, because these surgeries 

are complex and take a long time (more than three hours), with a large number of staff in the operation 

room (four surgeons, three anesthetist and six nurses). Therefore, the data were acquired from six 
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patients, which were sufficient to obtain good results in this research. Two channels of EEG data 

recorded using the DOA monitoring system by Covidien are shown in Figure 1a. 

Figure 1. Depth of anesthesia (DOA) monitoring system by Covidien: (a) the screen of the 

monitoring system; (b) the distribution of the electrodes; and (c) the recording port. 

 
(a) (b) (c) 

The four Zipprep electrodes, usually arranged diagonally on the patient’s forehead to produce two 

EEG channels, are shown in Figure 1b. The electrode positions are arranged as follows: the common 

reference electrode at the center forehead (FPz) approximately five centimeters above the bridge of 

noise; the two channels directly above the eyebrow (FP2-AP8); and finally, the ground electrode on the 

temple between the corner of the eye and the hairline (FT10). The impedances of the electrodes should 

be below 5 Ω [16]. The USB port is used to export the data to a removable drive, as shown in Figure 1c. 

2.1. The Characteristics of the Acquired Data 

The EEG data were recorded in the PPUKM-Universiti Kebangsaan Malaysia Medical center. The 

raw EEG data file is a binary file containing unfiltered EEG data. The data are saved as received from 

the monitoring device; starting with the value of Channel 1, followed by the value of Channel 2, then a 

Channel 1 value, and so on. The recorded data were sampled at 128-times per second per channel; each 

EEG sample is represented by a 16-bit signed integer with units of 0.05 μV. The recording sequence of 

EEG signals is as follows: recording five minutes before giving the anesthetic agents; five minutes 

starting from the first moment of injecting of the drugs; 90 min during the surgery; and finally, ten 

minutes starting from the moment of stopping the anesthetic agents. The recorded data were presented 

in an ASCII code format; initially, these data were turned to hexadecimal form, then were converted to 

signed numerical formula. These data are processed using HxD-Hexeditor 1.7.7.0 to change the data 

from ASCII code format to the signed numerical formula, EXCEL 7 for statistical analysis and 

MATLAB 2012 to processes the EEG data. 

2.2. The Anesthetic Agents 

After obtaining the ethical approval, six patients who underwent scoliosis correction surgeries were 

recruited. Figure 2a proclaims the shape of the spine before surgery. Figure 2b shows the tools that 

were used during this type of surgeries that directly affected the EEG signals. Finally, Figure 2c 

illustrates the success of the scoliosis correction surgery. 
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When the patient takes the proper dose of intravenous anesthetic agents (changed to a deep 

unconscious phase), we stop recording and disconnect the socket of the electrodes. The patient is 

turned over, facing downwards, in order to be ready for surgery, then the socket of the electrodes is 

reconnected. The patients were classified as American Society of Anesthesiologist class I (ASA I), the 

age between “13–22” years with an average of 16.1 years, a weight between “31–42” kg with an 

average of 36.7 kg and a height between “127–153” cm with an average of 141 cm. All patients had 

general anesthesia with total intravenous anesthesia using target controlled infusion (TCI) of propofol 

and remifentanil, oral tracheal intubation and oxygen with air ventilation. TCI propofol using 

Schneider’s protocol was set to 2–4 ng/mL and TCI remifentanil using Minto’s protocol was set to  

2–5 ng/mL. The Bispectrum Index (BIS) of the patients adjusted between “40–60”, as per normal 

anesthetic management. 

Figure 2. The spine: (a) before surgery; (b) during scoliosis correction surgeries;  

and (c) after surgery. 

 
 

(a) (b) (c) 

3. The Properties of the EEG Signal 

The shape and amplitude of the brain signal vary according to the level of anesthesia; also, the noise 

ratio varies from phase to phase during surgery. To analyze the EEG signals during the different stages 

of the surgery, we need to comprehend the characteristics of these signals, such as amplitudes, 

frequencies and internal and external effects that lead to a significant change in the form of the 

recorded signal. 

3.1. Characteristics of EEG Wave Bands 

As usual, ±100 µV is the dynamic range of the recorded EEG signal before amplification. 

Habitually, the brain wave is divided into five frequency bands according to the generators  

and rhythms [17,18]. 
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1. Delta band δ: Thalamus generates this signal with a frequency range of 0.1 to 4 Hz and 

amplitudes from 20 to 200 µV. Usually, this band is associated with young patients, underlying 

lesions, encephalopathies and deep sleep. 

2. Theta band θ: Customarily, this band is generated by neocortex and hippocampus with a 

frequency range from 4 to 8 Hz and amplitudes from 20 to 100 µV. This band is associated 

with childhood, adolescence, young adulthood and drowsiness. 

3. Alpha band α: Sometimes known as Berger’s wave, this band is generated by thalamus over the 

occipital (visual) cortex with a frequency range of 8 to 16 Hz and an amplitude from 20 to 60 µV. 

This band is so important, because it is related to the alert state of consciousness. 

4. Beta band β: The cortex generates this band with a frequency range of 16 to 32 Hz with a low 

amplitude (2 to 20 µV). Rhythmic beta waves are associated with the active concentration, 

thinking, drug effects and various pathologies. 

5. Gamma band γ: Some researchers classify these waves as beta band, because they have similar 

properties, but the frequency ranges from 32 to 64 Hz with very low amplitudes (3 to 5 µV). 

3.2. The Variation of the EEG Wave during Anesthesia 

The amplitude and frequency of the EEG signal is directly affected by increasing the concentration 

of the anesthetic agents. Other parameters also affect the brain signals, such as the patient’s age, the 

type of anesthetic agent and the type of surgery. Firstly, lower doses of agents will decrease the 

amplitude of the alpha band and increase the amplitude of the beta band in the frontal regions.  

The artifact appears clearly at this stage due to the eye movement. Increasing the concentration of 

anesthetic agents to the surgical level leads to a decrease in the frequency of delta and theta bands. 

Further increases in the concentration of the anesthetic agents will affect the EEG signal and generate a 

special pattern known as burst suppression (BS). Alternating periods of high amplitude and low 

voltage are the main feature of this pattern. Any further increases in the dose of the anesthetic agents 

will cause a suppression and electrical silence. Finally, the induction of anesthesia associated with the 

frontal portion of the brain with increased beta activity and delta activity appears in the posterior 

regions and migrates toward the frontal regions [19–21]. 

3.3. The Effect of Errors and Noise on the EEG Channels 

The severity of the errors varies from one channel to another according to the intensity of the 

intrinsic or extrinsic stimulation. Most of the bursts of errors occur during the surgery, due to extrinsic 

factors. During the operation, the patient is exposed to relatively violent movements, such as knocking, 

screw insertion and tightening of rods. These types of noise lead to change the value of some samples, 

because these samples overlapped with high-energy pulses, as shown in Figure 3a. This figure 

illustrates the occurrence of errors within the first 18 s due to the patient’s movement. The second 

source of errors is the electric devices, like cautery, suction and neuromuscular monitoring. In this 

case, the EEG signals will disappear, because they are embedded in a stream of high power pulses,  

as in Figure 3b. Finally, the third source of errors is the high frequency electronic devices, such as  

X-ray. The surgeons use this device from time to time during these surgeries to check the position of 

screws and rods [22]. Here, we can estimate the EEG signal if the error samples are not as shown in 
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Figure 3c. In all of these cases, the filters cannot perform their work, and the EEG signal appears  

fully distorted. 

Figure 3. The occurrence of errors and noise due to: (a) patient movement; (b) hand tools 

and electric devices; and (c) high frequency electronic devices. 

(a) (b) 

(c) 

The inherent noise that emerges due to the electronic equipment can be eliminated by the high-quality 

electronic components of the EEG recorder. A shielded operating room can reduce the noise that comes 

from the high frequency electromagnetic devices [12,23]. In the same context, sometimes the EEG 

channels detect various kinds of artifacts that travel through different tissues. This contamination in the 

EEG signals appears as spikes and sharp waves overlapping recorded signals. The main reasons for 

artifact occurrence are involuntary actions, such as heartbeat, breathing, sweating, muscle activity and 

eye blinks. The sources that lead to the emergence of the noise are the same sources that led to the 

emergence of errors, but that are less in power, such as the movements of electrodes, head and eyes 

(EMG signal), as shown in Figure 3a. The electrodes are exposed to the same environmental 

conditions, but the noise and the artifacts will not affect the EEG channels homogeneously. The 

electrodes are affected according to the instantaneous impedance of the electrode or location and the 

intensity and type of the noise or artifacts. Figure 4 shows Channel 1 affected by the noise, while 
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Channel 2 did not detect this noise in the same moment and vice versa. Furthermore, this figure shows 

that Channel 1 is affected by some artifacts, while Channel 2 detects these artifacts, but not in the  

same strength. 

Figure 4. The synchronization of the noise and the strength of the artifacts in EEG 

channels during 60 s. 

 

The digital filters cannot remove the noise components that have the same frequency as the EEG 

signal, which is confined between 0.1 and 60 Hz; therefore, we must check the signal that is acquired 

from channels before using it to estimate the depth of anesthesia. To check the components of EEG 

channels, we used the power spectral density (PSD). The PSD values were calculated second by 

second for each channel, where this consists of two steps. The first step is normalizing the EEG signal 

by subtracting the mean of each second from the recorded EEG signal. The second step is finding the 

Fast Fourier Transform FFT to the normalized signal according to the sampling frequency. At first, we 

used only one second to demonstrate the difference between the channels, as shown in Figure 5.  

Figure 5. The power spectral of EEG channels: (a) EEG signals acquired by two channels; 

(b) power spectral density (PSD) for Channel 1; and (c) PSD for Channel 2. 

(a) 

(b) (c) 
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Figure 5a represents one second of EEG signals for two channels; these signals are varying 

harmonically, but each channel carries different components. Figure 5b,c represents the PSD of Channels 1 

and 2, respectively. From these figures, Channel 2 carries extra frequency components compared to 

Channel 1. This indicates that the channels have been affected by noise disproportionately [24]. 

A question that may be asked here is whether these additional components in Channel 2 represent 

EEG signals or noise? However, these components will never have a great effect on the estimation of 

the DOA, since we only need the general description of the EEG signal change in power and 

frequency, where we do not need the instantaneous changing of the EEG data. Therefore, we have to 

choose a channel of minimum components in order to decrease the processing time and to get accurate 

features that greatly reflect the DOA. 

Figure 6. The stages of the proposed system for the comparison between the EEG channels 

to find the best channel representing the EEG signal. 
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4. Methodology 

As mentioned before, the noise does not affect the channels uniformly. The proposed system 

investigates the accuracy of the channels that were used to record the EEG signal, as well as choosing 

the channel that carries a lesser number of components. Any channel having fewer components 

indicates that the effect of the noise on this channel is less than the others. This system processes and 

tests the component of the signals for each channel separately, as shown in Figure 6. This system 

consists of five stages. The first one is a filtering stage, where it is undertaken to correct or delete the 

errors from the EEG signals and to denoise the acquired EEG signal. The second stage is dedicated to 

decomposing the signal using the wavelet decomposition technique to split the signal into several 

sections, according to the frequencies that contain it. In stage three, the system finds four different 

criteria (mean, energy, entropy and standard deviation) for each sub-band (ca4, cd4, cd3, cd2, cd1), 

where each channel is processed separately from another. The fourth stage is pinpointing the channel 

that carries minimum components according to the results that come from stage three. Finally, the fifth 

stage acts as a switching mode between Channels 1 and 2 to generate a new EEG signal from these 

channels according to the orders coming from stage four. 

4.1. Filtering Stage 

This stage is devoted to correcting and denoising the acquired EEG signals. This stage consists of 

four sub-stages: error correction, conventional digital filters, the wavelet denoising technique (WT) 

and Savitzky–Golay smoothing filtering (S–G Filter). The first sub-stage checks the error occurrence 

during the recording signal then corrects or removes the errors depending on the number of errors per 

second. If the errors are few and sporadic, the system can correct the error samples according to the 

previous samples. The system removes all 128 samples (one second) if a burst of errors occurs, 

because the EEG signals are embedded inside the error samples and the form of the original signal 

cannot be covered at all. The second sub-stage addresses removing the unwanted frequencies that 

appear in the EEG data using Band Stop Filter (BSF) or Notch Filter (NF) and Band Pass Filter (BPF). 

The notch filter removes the effects of AC line, while the band pass filters keep only the frequencies of 

the EEG signal that are confined between 0.1 and 64 Hz [25,26]. The third sub-stage is dedicated to 

removing the effect of the various kinds of artifacts, such as inherent noise, ocular artifacts and motion 

artifacts. The wavelet technique consists of three main steps. The first step is the decomposition the 

EEG signals to compute the wavelet coefficients (details and approximation). The second step is 

determining the threshold value from the coefficients that were founded in Step 1. To denoise the input 

signal, this technique resets the coefficients having an absolute value below the threshold level. 

Finally, the input signal is reconstructed by inverse WT according to the new coefficients. The mother 

wavelet “db4” function with Level 4 was used to remove the artifacts using wavelet denoising 

techniques (this will be explained in detail in the next section) [27,28]. The fourth sub-stage used the 

Savitzky–Golay smoothing filter to smooth out a noisy signal whose frequency span is large. To 

design this filter, we should define the order of the polynomial “N” and the frame size “M”, which 

represents the half width of the of the approximation interval [29]. Furthermore, the order of the 

polynomial must be strictly less than the frame size [30]. In this research, we used N = 17 and M = 33, 
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because these values gave a good balance between the smoothing and denoising techniques. Figure 7a,b 

illustrates the original EEG signal and the filtered signal by these four methods, respectively. 

Apparently, the EEG signals are truncated from the noise, and ready to be sent to the next stage. 

Figure 7. Sixty-second, two-channel of EEG signal: (a) unfiltered signal; and (b) filtered 

signal by the Band Stop Filter (BSF), Band Pass Filter (BPF), wavelet denoising technique 

(WT) and Savitzky–Golay filters (S-G Filter). 

(a) (b) 

4.2. Wavelet Decomposition Technique Stage 

This stage is dedicated to decomposing the filtered signal to provide sub-bands that represent the 

energy distribution of the EEG signal in time and frequency. This technique decomposes the EEG 

coefficients into the details and approximation coefficients. The approximation and detail frequency 

band of the DWT is directly related with the sampling rate and dominant frequency components of the 

original signals. The input EEG signal is decomposed into details and approximation coefficients into 

N + 1 sub-bands by an N-level WT. The sub-bands represent the approximation coefficient with the 

frequency band (0, FS/2N+1) and the sub-bands dj represent the detail coefficients with the frequency 

sub-band (Fs/2j+1, FS/2j), where j = 1,…, N. The sub-bands corresponding to four decomposition levels 

for wavelet db4 with a sampling frequency of 128 Hz of the EEG signals are listed in Table 1. The 

signals were decomposed into details d1–d4 with one final approximation a4 [31,32]. 

Table 1. The sub-band frequency corresponding with the Level 4 wavelet decomposition technique. 

Decomposition Levels Frequency Bands Frequency Bandwidth (Hz) 

ca4 Delta 0–4 
cd4 Theta  4–8 
cd3 Alpha 8–16 
cd2 Beta 16–32 
cd1 Gamma 32–64 

This decomposition was accomplished by a successive chain of low-pass and high-pass filters in a 

discrete time domain (adaptive filter). The input signal passes through a low-pass filter to get the 
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approximation coefficients, and the same input is passed simultaneously through a high-pass filter to 

get the detail coefficients with a down sample of two at each stage, as shown in Figure 8 [27,33]. 

Figure 8. The four levels wavelet decomposition technique. 

 

The samples of EEG signals are passed through a high-pass filter with impulse response H0; this 

convolution generates the detail coefficients d1 with a down sample of 2. The EEG signal also goes 

simultaneously through a low-pass filter with impulse response L0. The output of the convolution gives 

the approximation coefficients a1 with a down sample of 2. The approximation coefficients a1 also 

pass through a high-pass filter and a low-pass filter to generate the coefficients d2 and a1, respectively. 

This context will be continued, until we get the coefficients dN and aN [27]. 

This technique essentially depends on the suitable choice of a mother wavelet. There are a large 

number of mother wavelet functions; each one conforms to a specific application. If the form of 

mother wavelet function is chosen close to the form of the EEG signal, the WT process leads to the 

best possibility of energy localization in time domain. In fact, there is no well-defined rule for 

selecting a wavelet basis function in a particular application or analysis; some wavelet properties make 

a particular mother wavelet more acceptable for a given application and signal type [34,35]. 

Based on the previous general studies and our former study, the Daubechies function with the order 

of “db4” is a good mother wavelet to analyze the EEG signal, due to the optimality in the  

time-frequency localization properties, as shown in Figure 9a. Added to that, the waveform is so close 

to the recorded waveforms, as in Figure 9b [36–38]. From these figures, we can note clearly that the 

variance of the EEG signal has the same variation of the mother wavelet. This similarity will lead to 

correct decomposition and denoising of the EEG signal. 

Figure 9. The compatibility between mother wavelet and the EEG signal: (a) mother 

wavelet “db4”; and (b) the variation of EEG signals.  
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4.3. Processing Stage 

This stage analyzes the contents of the sub-bands (ca4, cd4, cd3, cd2 and cd1) second by second to 

find the channel that has the minimum components (representing the best EEG channel). This stage 

consists of three steps. The first step calculates four criteria (mean, energy, Shannon entropy and 

standard deviation) for each band in both channels to extract the features from these bands, as shown 

in Figures 10–13, respectively. These figures represent 60 s of the EEG signal during the scoliosis 

correction surgery, which are decomposed by the wavelet technique and analyzed by the four criteria 

that were mentioned above. From this figure, we can note that the concentration of the frequencies 

varies from one band to another, where most of the power is concentrated within the frequencies,  

0–4 Hz and 4–8 Hz. The concentration of power could change from one band to another based on two 

factors: the first depends on the level of anesthesia, while the second factor depends on the severity of 

the noise [39,40]. The second step is comparing the features of Channel 1 with the corresponding ones 

of Channel 2, where the upper band counts for the features that have the minimum absolute value. For 

example, the system compares (Mean-ca4-channel1) with (Mean-ca4-channel 2), (Mean-cd4-channel1) 

with (Mean-cd4-channel 2), and so on. Thus, we get five results for each criterion. The third step 

identifies the dominant channel within each criterion by comparing the results that got it in the 

previous step. The final results of the four criteria will be sent directly to the comparison stage. 

Figure 10. The mean values for two channels of the EEG signal sub-bands (a4, d4, d3, d2 and d1). 

 

Figure 11. The energy values for two channels of the EEG signal sub-bands (a4, d4, d3, d2 and d1). 
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Figure 12. The Shannon entropy values for two channels of the EEG signal sub-bands (a4, 

d4, d3, d2 and d1). 

 

Figure 13. The standard deviation values for two channels of the EEG signal sub-bands 

(a4, d4, d3, d2 and d1). 
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Figure14. The last decision for 60 s of the EEG signal according to the status of the criteria. 

 

4.5. Switching Stage 

As we mentioned above, this stage will generate a new EEG signal from Channels 1 and 2 

according to the status of these channels that has been received from the previous stages, as shown in 

Figure 15. This figure shows the EEG signal of Channels 1 and 2, the status of the channels (active or 

not) and the new combination. 

Figure 15. Combining the EEG channels: (a) 60 s of Channel 1; (b) 60 s of Channel 2; and 

(c) the new combination according to the status of the channel. 
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5. Experimental Results and Discussion 

As we mentioned in the previous sections, our system consists of five stages for pinpointing the 

channel that carries the minimum components after filtering the EEG data during scoliosis correction 

surgeries. In this type of surgery, the surgeons use many types of electronic equipment and hand tools 

that increase the errors and noise, which directly affects the EEG signals. Moreover, some artifacts 

arise from the patient due to heartbeat, muscle activity, sweating, breathing and eye blinks. Practically, 

most of noise and artifacts are removed in the first stage, but some of the residual unwanted signals 

overlap with the original EEG signal, changing the amplitude of some samples or shifting the 

frequencies. It is impossible to identify the effects of such noise directly; only by the comparison 

between the components of EEG channels. If the channel component carries the same characteristics, 

this means that the noise did not affect the signal components drastically. However, if there is 

significant variation between the channel components, then we must compare between them and 

choose the lowest channel components (as shown in Figure 6 at the stages 2–5). 

To assess the performance of the proposed system, we used 60 s of EEG signals for each patient at 

different stages of surgery. The experimental results were divided into three categories; power spectral 

density (PSD) [24,41], cross-correlation function (CCF) [42,43] and wavelet coherence (WC) [44,45]. 

To verify the proposed system in detail, these criteria were applied to the signals of Channel 1, 

Channel 2 and the combinational signal (the output of the system). 

Returning to the first analysis of the signal, which is PSD, we notice that the combinational signal 

has the same power distribution of the original signal, Channel 1 and Channel 2, as shown in  

Figure 16a–c, respectively. These subfigures show that the emerging signal does not change drastically 

from the original signal. Added to this, this figure indicates that the combinational signal carries only 

the useful components of the EEG signals, which are disposed from the residual noise that overlapped 

with the original signal, which will lead to an increase in the calculation speed of the depth of 

anesthesia. In an example that is illustrated in Figure 16, most of the combinational signal is composed 

from the data that is coming from Channel 2, because they carry less components than Channel 1. We 

conclude from the above that the dimension of the data is reduced from two channels × 128 sample/s to 

one channel × 128 sample/s with pure EEG signals. This procedure reduced the processing time by 

half, with a signal carrying the most important components describing the variation of the EEG signal 

during anesthesia (without any residual noise). 

Figure 16. The power spectral density of: (a) Channel 1; (b) Channel 2; and (c) the 

combinational signal. 
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Figure16. Cont. 
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between the average of the left and right side of the CCF are different from patient to patient, 

according to the strength of the residual noise and artifacts that overlapped with the recorded signal. In 

all cases, this is chosen randomly; Channel 2 gave the lowest difference between the left and right side 

of CCF, which means that Channel 2 is the predominant channel for generating the combinational 

signal, because it contains less components than Channel 1. These results confirm the results of PDS 

and prove the accuracy of the proposed system. 

Figure 17. The cross-correlation function (CCF) between the signals: (a) Channel 1 and 

the combinational signal; and (b) Channel 2 and the combinational signal. 

 

Table 2. The numerical analysis of cross–correlation function (CCF) for 60 s for each patient. 

Patients 
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The Difference between the 
Average of the Left and Right 

Side of the CCF  

The Difference between the 
Average of the Left and Right 

Side of the CCF 

Ch1 Ch2 Channel 1: combinational signal Channel 2: combinational signal 

P1 29 31 0.0103037 0.0030128 
P2 21 39 0.0034 0.00064823 
P3 16 44 0.0030 0.0026 
P4 21 39 0.0056 0.0026 
P5 15 45 0.0131  0.000076276 
P6 15 45 0.0035 0.000 90878 
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Figure 18. The analyzed signal–wavelet coherence modulus and phase between the 

combinational signal and Channels 1 and 2. 

 

The arrows in the figures represent the relative phase between the two signals as a function of scale 

and position. The plot of the relative phases is superimposed on the wavelet coherence. From this 
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components (Channel 2). For example, at the modulus and phase figure of Patient 1, the combinational 
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modulus and phase figure, we can notice clearly that the combinational signal is in phase with the 

signal in Channels 1 or 2. From all of the above, the resulting signal does not change the shape or the 

phase of the original signal, which means that it is compatible with the changing of the EEG signals 

during different stages of anesthesia. 
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surgery, because this system has been tested under noisy signals. As we mentioned before, this 

proposed system is completely different from the methods that were used for feature reduction, such as 

PCA, ICA and LDA. These methods change the whole signal to the features, then reduce the 

dimension according to eigenvalues and the eigenvector. Changing the whole signal to features will 
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take a lot of processing time, and reducing the dimension of these features may lead to the loss of 

useful information. 

6. Conclusions 

EEG signals carry valuable information for the brain system. These signals are often contaminated 

with artifacts and noise arising from many sources. During scoliosis correction surgeries, the surgeons 

use several types of electronic devices and hand tools, leading to the increase of the noise level for the 

events of EEG signals. The noise does not affect the channels uniformly. This research proposed an 

automatic system to reduce the dimensionality of the errors and noise from the recorded EEG signal by 

investigating the accuracy of the channels that were used to record the EEG signal, as well as choosing 

the channel that carries a smaller number of components. Any channel having fewer components 

indicates that the effect of the noise on this channel is less than the others. The suggested system 

consists of five stages; a filtering stage (error correction, conventional digital filters, wavelet denoising 

technique (WT) and the Savitzky–Golay smoothing filter), the wavelet decomposition stage (Level 4), 

the processing stage to process the contents of the sub-bands (ca4, cd4, cd3, cd2 and cd1) by four 

different criteria (mean, energy, entropy and standard deviation), the comparison stage to identify the 

channel that carries the lowest number if compounds and giving the last decision and, finally, the 

switching stage to generate a new EEG signal from Channels 1 and 2 according to the status of these 

channels. Power spectral density (PSD), the cross-correlation function (CCF) and wavelet coherence 

(WC) were used to assess the proposed system. The experimental results show that most of (not all) 

the signal in Channel 2 is the best, and there is no significant change when it is combined with the 

signal of Channel 1 (no gaps, no delay and no distortion). Intentionally, we used the EEG signal 

prevailing for one of the channels in order to prove that the final signal is not different from the 

original signal, even after merging parts of the two channels. Furthermore, the experimental results 

show that the proposed system does not change the property of the recorded signals, and the 

combinational signal is completely compatible with the changing of the EEG signals during different 

stages of anesthesia. The reduced number of channels that are used to analyze the brain signal will lead 

to an increase of the speed and accuracy of the DOA indicator. Practically, the proposed system will 

convert only the most representative channel (combinational channel) to features. This technique 

increases the processing speed by reducing the number of arithmetic operations, which will be 

reflected in reducing the cumulative errors. This system provides an efficient procedure to solve the 

problems with the EEG signal during a noisy surgery with long-term anesthesia. If monitoring DOA 

becomes economic, safe and simple, all anesthesia cases can be monitored easily. 
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