
molecules

Article

Asymmetric Dearomative (3+2)-Cycloaddition Involving
Nitro-Substituted Benzoheteroarenes under H-Bonding
Catalysis †
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Abstract: In our studies, the organocatalytic 1,3-dipolar cycloaddition between 2-nitrobenzofurans or
2-nitrobenzothiophene and N-2,2,2-trifluoroethyl-substituted isatin imines has been developed. The
reaction has been realized by employing bifunctional organocatalysis, with the use of squaramide
derivative being crucial for the stereochemical efficiency of the process. The usefulness of the
cycloadducts obtained has been confirmed in selected transformations, including aromative and
non-aromative removal of the nitro group.

Keywords: organocatalysis; CADA reactions; dearomative (3+2)-cycloaddition; 2-nitrobenzofurans;
azomethine ylides

1. Introduction

Catalytic asymmetric dearomatization (CADA) reactions constitute popular strategies
for the synthesis of complex natural products, biologically active compounds, and phar-
maceuticals from readily available aromatic molecules [1–10]. Despite their high synthetic
potential, challenges related to the control of the regio- and stereo-selectivity of these
processes, while overcoming the loss of aromaticity, still constitute an important issue.

CADA reactions are primarily focused on transformations involving structurally
simple electron-rich arenes and heteroarenes, such as naphthols [11–18], phenols [19,20],
indoles [21–24], and pyrroles [25–28]. The application of (hetero)aromatic reactants as
electrophilic counterparts in such strategies is much less common. Recently, a novel ap-
proach based on the application of (hetero)aromatic derivatives bearing a suitable electron-
withdrawing substituent in their structure emerged as a useful strategy to reverse reactivity
of these systems, thus expanding the synthetic potential of CADA transformations.

CADA reactions involving electron-deficient nitro(hetero)arenes, such as 2- or
3-nitroindoles [29–38], 2-nitrobenzofurans [37,39–44], and 2- or 3-nitrobenzothioph
enes [39,40,43,45,46], have recently provided a direct route to highly substituted polycyclic
compounds with multiple stereogenic centers. Due to the immense biological importance
of benzo-fused units, the development of new approaches for the synthesis of these com-
pounds is highly desirable. In this context, enantioselective dearomative annulations
involving nitro(hetero)arenes leading to nitrogen-containing heterocyclic compounds are
in great demand. However, to the best of our knowledge, few literature reports describing
the asymmetric dearomative (3+2)-cycloaddition of 2-nitrobenzofurans with azomethine
ylides are available (Scheme 1). In 2019, Wang, Guo, and co-workers discovered the Cu(I)-
catalyzed dearomative 1,3-dipolar cycloaddition for the construction of chiral tricyclic
hydrobenzofurans for the first time (Scheme 1, eq. 1) [47]. Later, the same group developed
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a method for the preparation of chiral tropane derivatives via copper-catalyzed dearoma-
tive (3+2)-cycloaddition of 2-nitrobenzofurans and cyclic azomethine ylides (Scheme 1,
eq. 2) [48]. Very recently, Wang et al. reported the dearomative cycloaddition for the
stereoselective preparation of polycyclic benzofused tropane derivatives by employing
bifunctional phosphonium salts as phase-transfer catalysts (Scheme 1, eq. 3) [49].
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Scheme 1. Asymmetric dearomative (3+2)-cycloaddition between nitro-substituted benzoheteroarenes 1 
and N-2,2,2-trifluoroethyl-substituted isatin imines 2. 

2. Results and Discussion 
2.1. Optimization Studies 

Optimization studies were performed using 2-nitrobenzofuran 1a and N-2,2,2-
trifluoroethyl-substituted isatin imine 2a as model reactants. Initially, quinine 4a was 
employed as a catalyst and the reaction was run in CDCl3 for the ease of data processing 
(Table 1, entry 1). Pleasingly, the formation of desired 1,3-dipolar cycloadduct 3a was 
observed; however, low yield and diastereoselectivity were observed. Furthermore, chiral 
UPC2 analysis of isolated product 3a showed that the reaction proceeded without 
induction of asymmetry. Therefore, various Brønsted base-type catalysts were evaluated 
to improve effectiveness and stereoselectivity of the process. Interestingly, the use of 

Scheme 1. Asymmetric dearomative (3+2)-cycloaddition between nitro-substituted benzoheteroarenes
1 and N-2,2,2-trifluoroethyl-substituted isatin imines 2.

In continuation of our efforts on the development of asymmetric dearomative trans-
formations [50–55], we became interested in CADA reactions involving electron-deficient
heteroaromatic systems. Herein, we report the organocatalytic dearomative 1,3-dipolar
cycloaddition between nitro-substituted benzoheteroarenes with azomethine ylides, as
realized under bifunctional catalysis, yielding optically active pyrrolidine-fused spirocyclic
dihydrobenzofuran and dihydrobenzothiophene derivatives bearing four contiguous stere-
ocenters. In the context of our studies, it should be noted that a complementary approach
involving bifunctional phase-transfer catalysis (PTC) was recently developed by Ren and
Wang et al. [56].

2. Results and Discussion
2.1. Optimization Studies

Optimization studies were performed using 2-nitrobenzofuran 1a and N-2,2,2-
trifluoroethyl-substituted isatin imine 2a as model reactants. Initially, quinine 4a was
employed as a catalyst and the reaction was run in CDCl3 for the ease of data process-
ing (Table 1, entry 1). Pleasingly, the formation of desired 1,3-dipolar cycloadduct 3a
was observed; however, low yield and diastereoselectivity were observed. Furthermore,
chiral UPC2 analysis of isolated product 3a showed that the reaction proceeded without
induction of asymmetry. Therefore, various Brønsted base-type catalysts were evaluated
to improve effectiveness and stereoselectivity of the process. Interestingly, the use of
commercially available dimeric catalysts 4b or 4c provided a significant increase in con-
version and diastereoselectivity (Table 1, entries 2–3). Moreover, when catalyst 4c was
used, 3a was obtained with satisfactory enantioselectivity (Table 1, entry 3). Subsequently,
the influence of bifunctional catalysts 4d–h on the studied transformation was examined
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(Table 1, entries 4–8). Performed experiments revealed that squaramide-based catalysts
4e–h derived from quinine were appropriate for the developed cycloaddition (Table 1,
entries 5–8). Finally, catalyst 4h was selected for further studies, as its utilization ensured
the formation of 3a with good yield and excellent diastereo- and enantioselectivity (Table 1,
entry 8). Subsequently, screening of solvents was initiated (Table 1, entries 9–15). Un-
fortunately, the decrease in reactivity caused by poor substrate solubility or diminished
imine 2a stability was observed. Decrease in concentration of the reaction mixture did
not bring improvement in terms of yield or stereoselectivity of the transformation, but a
longer reaction time was required (Table 1, entry 16). However, imine 2a degradation was
observed as the consequence of prolonged reaction time. This problem was eventually
solved by the use of 1.5-fold excess of 2a. This change resulted in almost full conversion
of 2-nitrobenzofurane 1a, and 3a was obtained with excellent yield and stereoselectivity
(Table 1, entry 17). In the hope of improving enantioselectivity, the reaction was performed
at lower temperature but, disappointingly, without any enhancement of cycloadduct 3a
enantiomeric ratio (Table 1, entry 18). Moreover, 20 mol% loading of the catalyst turned out
to be crucial for completion of the reaction, as its lowering led to an inhibition of the process
(Table 1, entry 19). Finally, it was found that the reaction proceeded with comparable results
in freshly distilled chloroform (Table 1, entry 20). It is worth noting that the presented
reaction was readily scalable to one-mmol scale, affording product 3a with a good outcome
(Table 1, entry 21).

Table 1. Asymmetric dearomative (3+2)-cycloaddition between nitro-substituted benzoheteroarenes
1 and N-2,2,2-trifluoroethyl-substituted isatin imines 2–optimalization studies [a].
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1 4a CDCl3 41 (39) 4:1 50:50
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Table 1. Cont.

Cat. Solvent Conv. (Yield)
[%] [b,c] dr [b] er [d]

10 4h DCE 52 >20:1 n.d.
11 4h AcOEt 51 >20:1 n.d.
12 4h CH3CN 25 5:1 n.d.
13 4h Et2O 49 >20:1 n.d.
14 4h THF 34 >20:1 n.d.
15 4h PhCH3 70 >20:1 n.d.

16 [e] 4h CDCl3 73 (68) >20:1 93:7
17 [f] 4h CDCl3 >95 (89) >20:1 96:4

18 [f,g] 4h CDCl3 85 (79) >20:1 95:5
19 [f,h] 4h CDCl3 <10 n.d. n.d.
20 [f,i] 4h CHCl3 >95 (88) >20:1 95.5:4.5
21 [f,j] 4h CHCl3 >95 (77) >20:1 95:5

[a] Reactions performed on a 0.05 mmol scale using 1a (1.0 equiv.), 2a (1.2 equiv.), and the catalyst 4 (20 mol%) in
the corresponding solvent (0.1 mL) for 48 h at rt. [b] Determined by 1H NMR of a crude reaction mixture. [c] In
parenthesis, isolated yields are given. [d] Determined by chiral UPC2 analysis. [e] Reaction performed in 0.2 mL
of the solvent for 96 h. [f] Imine 2a (1.5 equiv.) was used. [g] Reaction performed at 5 ◦C for 96 h. [h] Catalyst
(5 mol%) was used. [i] Freshly distilled over P2O5 chloroform was used as a solvent. [j] Reaction performed on
1 mmol scale. DCE—1,2-dichloroethane.

2.2. Scope Studies

With the optimized reaction conditions in hand, the scope of the reaction was eval-
uated. In the first step, structurally diversified dipole precursors 2a–k were tested in
an organocatalytic process (Scheme 2). Imines 2a–c with different protecting groups at
the nitrogen atom were well tolerated in the developed (3+2)-cycloaddition, providing
products 3a–c in good yields and with excellent stereocontrol. Moreover, non-protected
isatin-derived imine 2d worked well, giving access to 3d with similar results. It is worth
noting that the developed reaction was unbiased towards the electronic properties of
substituents in dipole precursors 2, as products with both electron-donating (2e,f) and
electron-withdrawing groups (2g–j) were efficiently obtained in a highly stereoselective
manner. Moreover, imine 2k with a double substitution pattern gave access to product 3k
as a single diastereoisomer, in high yield but with diminished enantiocontrol.

In the next step, the scope of dipolarophiles 1 was examined (Scheme 3). 2-
Nitrobenzofuranes 1b–f substituted in the 5-position with groups of different electron
properties reacted smoothly in the developed cycloaddition, providing products 3l–p
in high yields and with excellent stereoselection. Notably, the bulky tert-butyl group
in 1d and the strongly electron-withdrawing nitro substituent in 1f were well tolerated,
as demonstrated in the synthesis of 3n and 3p, where the desired reaction proceeded
without any loss in enantioselectivity. Notably, cycloadduct 3q with the benzofuran ring
functionalized in the 6-position was efficiently obtained following the developed method.
Moreover, the substrate scope was further expanded by the use of 2-nitrobenzothiophene
1h. Surprisingly, the developed cycloaddition provided 3r in high yield but with poor
enantiocontrol under standard conditions. Thankfully, short re-optimization studies re-
vealed that thiourea catalyst 4d significantly enhanced the stereocontrol affording 3r with
good enantioselectivity.
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2.3. Synthetic Utility of Products 3

With the scope studies accomplished, the usefulness of obtained products 3 was
demonstrated in selected transformations (Scheme 4). Base-promoted nitro group removal
gave access to spirocyclic compound 5 with aromatic benzofuran moiety. Furthermore,
the reductive denitration of the starting material 3a was easily performed by utilization of
tributyltin hydride and AIBN, providing dihydrobenzofuran 6 in high yield. Notably, the
stereochemical composition of the starting material 3a was fully preserved in both cases, as
products 5 and 6 were obtained as single diastereoisomers.
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2.4. Absolute Configuration Assignment and Mechanistic Considerations

The absolute configuration of product 3a was assigned by X-ray analysis (Scheme 5,
top) [57]. The stereochemistry of products 3b–r was determined by analogy. The absolute
stereochemistry allowed us to propose a plausible stereochemical model of the cycload-
dition (Scheme 5, bottom). The reaction is initiated by two independent processes. The
substrate 1 is activated and oriented by the hydrogen bonds of squaramide moiety of the
catalyst 4h. Simultaneously, the quinuclidine moiety of the alkaloid catalyst deprotonates
the N-2,2,2-trifluoroethyl-substituted isatin imine 2, leading to the formation of azomethine
ylide 7. According to the proposed dual-activation model (3+2)-cycloaddition between 1
and 7 takes place providing 3 in a stereoselective manner.
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3. Materials and Methods
3.1. General

NMR spectra were acquired on a Bruker Ultra Shield 700 instrument, running at
700 MHz for 1H and 176 MHz for 13C, respectively. Chemical shifts (δ) are reported in ppm
relative to residual solvent signals (CDCl3: 7.26 ppm for 1H NMR, 77.16 ppm for 13C NMR).
Mass spectra were recorded on a Bruker Maxis Impact spectrometer using electrospray
(ES+) ionization referenced to the mass of the charged species. Optical rotations were
measured on a PerkinElmer 241 polarimeter and [α]D values are given in deg·cm·g−1·dm−1;
concentration c is listed in g·(100 mL)−1. Analytical thin layer chromatography (TLC)
was performed using pre-coated aluminum-backed plates (Merck Kieselgel 60 F254) and
visualized by ultraviolet irradiation or Hanessian’s stain. The enantiomeric ratio (er) of the
products was determined by chiral stationary phase UPC2 (Daicel Chiralpak IA column).
Unless otherwise noted, analytical grade solvents and commercially available reagents were
used without further purification. For flash chromatography (FC), silica gel (60, 35–70 µm,
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Merck KGaA, Darmstadt, Germany), 2-Nitrobenzofurans 1, 2-nitro-benzo[b]thiophene 1r,
and imines 2 were obtained using literature procedures [58–60].

3.2. General Procedure for the Enantioselective Synthesis of 3

In an ordinary 4 mL glass vial equipped with a Teflon-coated magnetic stirring bar
and screw cap, nitro-substituted benzoheteroarene 1 (1.0 equiv., 0.05 mmol), catalyst 4h
(0.2 equiv., 0.01 mmol, 6.3 mg), and the corresponding imine 2 (1.5 equiv., 0.075 mmol)
were dissolved in freshly distilled CHCl3 (0.1 mL). The reaction mixture was stirred for
the indicated time at ambient temperature. After full conversion of the starting material 1
(as confirmed by 1H NMR of a crude reaction mixture), the reaction mixture was directly
subjected to flash chromatography on silica gel to obtain pure products 3. The standard
samples of products 3 for chiral UPC2 separation studies were prepared using equimolar
mixture of quinine and quinidine as catalyst (See Supplementary Materials).

3.3. Procedure for the Enantioselective Synthesis of 3a on a 1 mmol Scale

In an ordinary 12 mL glass vial equipped with a Teflon-coated magnetic stirring bar
and screw cap, 2-nitrobenzofuran 1a (1.0 equiv., 1.0 mmol, 163 mg), catalyst 4h (0.2 equiv.,
0.2 mmol, 126 mg), and corresponding imine 2a (1.5 equiv., 0.15 mmol, 363 mg) were
dissolved in freshly distilled CHCl3 (2 mL). The reaction mixture was stirred for 48 h at
ambient temperature and was directly subjected to flash chromatography on silica gel
(eluent: from hexanes/dichloromethane 1:1 to 100% dichloromethane) to obtain product
3a as a single diastereoisomer (>20:1, 95:5 er) in 77% yield (312.1 mg).

3.4. Procudure for the Diastereoselective Synthesis of 5

To a stirred solution of 3a (1.0 equiv., 0,128 mmol, 51 mg) in MeCN (1.5 mL), 1,8-
diazabicyclo[5.4.0]undec-7-ene (DBU) (2.0 equiv., 0,256 mmol, 39 mg) was added. The
reaction mixture was stirred for 72 h at room temperature and subsequently purified by
flash chromatography on silica gel (eluent hexanes/ethyl acetate 4:1) to obtain product 5 as
single diastereoisomer (>20:1) in 75% yield (34.4 mg).

3.5. Procudure for the Diastereoselective Synthesis of 6

To a stirred solution of 3a (1.0 equiv., 0.05 mmol, 20.3 mg) in dry toluene (0.5 mL),
tributyltin hydride (4.0 equiv., 0.2 mmol, 58 mg) and AIBN (2.0 equiv., 0.1 mmol, 16.4 mg)
were added at room temperature. The reaction mixture was stirred for 3 h at 80 ◦C,
cooled to room temperature, and CCl4 (0.15 mL) was added dropwise. After stirring for
5 min, saturated KF aq. solution (10 mL) was added and resulting mixture was extracted
with AcOEt (3 × 10 mL). Combined organic layers were dried over Na2SO4, filtered, and
concentrated under reduced pressure to obtain crude product, which was purified by flash
chromatography on silica gel (eluent: hexanes/dichlorometane 1:1 to dichloromethane
100%) to obtain product 6 as single diastereoisomer (>20:1) in 68% yield (12.3 mg).

4. Conclusions

In conclusion, asymmetric dearomative (3+2)-cycloaddition between nitro-substituted
benzoheteroarenes 1 and N-2,2,2-trifluoroethyl-substituted isatin imines 2 was developed.
A squaramide-based cinchona alkaloid derivative efficiently promoted the reaction, en-
suring high stereoselectivity of the process. Substrate specificity of the catalysts with
regard to heteroaromatic framework was observed. Enantiomerically enriched products
underwent chemoselective transformations that involved removal of the nitro group pro-
ceeding either with the concomitant aromatization of the heteroarene framework or in a
non-aromative manner.

Supplementary Materials: The following are available online. Characterization data for obtained
products, X-ray data for product 3a, copies of 1H and 13C NMR spectra, UPC2 plots for the cycload-
dition products 3.
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