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Abstract

Functional connectivity of in vitro neuronal networks was estimated by applying different statistical algorithms on data
collected by Micro-Electrode Arrays (MEAs). First we tested these ‘‘connectivity methods’’ on neuronal network models at an
increasing level of complexity and evaluated the performance in terms of ROC (Receiver Operating Characteristic) and PPC
(Positive Precision Curve), a new defined complementary method specifically developed for functional links identification.
Then, the algorithms better estimated the actual connectivity of the network models, were used to extract functional
connectivity from cultured cortical networks coupled to MEAs. Among the proposed approaches, Transfer Entropy and
Joint-Entropy showed the best results suggesting those methods as good candidates to extract functional links in actual
neuronal networks from multi-site recordings.
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Introduction
Large random networks of cortical neurons developing in vitro

and chronically coupled to Micro-Electrode Arrays (MEAs)

(Figure 1A) represent a well established experimental model for

studying the neuronal dynamics at the network level [1–5], and for

understanding the basic principles of information coding [6],

separation property [7], learning [8], and memory [9]. These

preparations, unlike other experimental models such as acute and

cultured cortical slices, are relatively free of predefined constraints

and allow neurons to establish several synaptic links, creating

highly-connected networks which exhibit complex dynamics

characterized by highly-synchronized bursts and random spiking

(Figures 1B and 1C).

The introduction of MEAs allows simultaneous recordings from

tens of microelectrodes, giving the opportunity to access several

‘‘nodes’’ of the network, to study how neurons are connected each

other, and which topological architectures underlie a specific

dynamic behavior [10,11]. Within this topic, recent technological

efforts (increase of the number of electrodes and of the spatial

resolution [12]), allow to obtain a more precise mapping of the

neuronal network up to a possible identification of its anatomical

connections (i.e., the set of physical or structural-synaptic

connections linking neuronal units at a given time [13]). Thus,

to better understand the neuronal dynamics of a wide variety of

complex networks, it becomes fundamental to investigate how

neurons are functionally connected. Within this general frame-

work, several approaches can be followed, depending on the scale

at which the nervous system is observed. Functional imaging or

optical methods, as fluorescent techniques, could be a possible

strategy to achieve such goal for in vitro preparations. However,

there are some drawbacks related to the limited access to single

units and large populations at the same time, and to a poor

temporal resolution [14].

A different approach relies on the identification of causal

relationships between pairs of neurons by means of electrophys-

iological measurements: this complementary method plays a

relevant role in the study of synaptic interactions at microcircuit

and at population level.

Nowadays, a promising technique to infer connectivity maps of

a cell culture seems to rely on an investigation of the statistical

properties of the spontaneous activity. This technique, also called

functional and effective connectivity method, relies on the pair-

wise spiking activities of the neurons.

Functional connectivity [13,15] captures patterns of deviations

from statistical independence between distributed neuronal units,

measuring their correlation/covariance, spectral coherence or

phase-locking. Functional connectivity is often evaluated among

all the elements of a system, regardless whether these elements are

connected by direct structural links; moreover, it is highly time-

dependent (hundreds of milliseconds) and model-free, and it

measures statistical interdependence (e.g. mutual information)

without explicit reference to causal effects.

On the other hand, effective connectivity [16] describes the set

of causal effects of one neuronal system over another one, either

directly or indirectly. Thus, unlike functional connectivity,

effective connectivity is not model-free, but it requires the

specification of a causal model which includes structural

parameters. Experimentally, effective connectivity can be inferred

by perturbations or by the observation of the temporal ordering of

neuronal events. Obviously, anatomical links play a critical role in
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determining which functional or effective connections can and

cannot occur.

In this work, we used correlation and information theory-based

methods to estimate the functional connectivity of in vitro neuronal

networks. The rationale consists in applying such methods to each

possible pair of electrodes which shows spontaneous electrophys-

iological activity. The connection strength (described by means of

the synaptic weight) between two neurons is supposed to be

proportional to the value yielded by the method.

In particular, we used, Mutual Information (MI) [17], Joint-

Entropy (JE) and Transfer Entropy (TE) [18] methods, compared

to the standard and well known Cross-Correlation (CC) [19]. CC

measures the frequency at which one cell fires as a function of time

relative to the firing of a spike in another cell. MI represents a

measure of the statistical dependence between two spike trains

recorded by two microelectrodes. JE, here introduced for the first

time in the field of Neuroscience, is a linear method as CC, but it is

built by considering the cross inter-spike-intervals (cISI) computed

across pairs of neurons. Measures based on cISI histograms are

well-known in the literature, also in the functional connectivity

investigation on simultaneous recorded spike trains [20]. Then,

cISI analysis was used on small networks (characterized by few

neurons and few connections) to uncover inhibitory connections

(which are expected to delay or even to take out spike generation),

as well to detect the temporal integration of successive stimulations

[21]. TE is an information theoretic measure able to estimate

causal relationships from time series taking into account their past

activity. In particular, TE estimates the part of a neuron activity

which does not depend on its own past, but which depends on

another neuron’s past activity. Moreover, TE takes into account

linear and nonlinear interactions, and thus it can represent a

general way to define the causality strength between two spikes

trains.

However, it is known [22] that inferring the strength of a

synaptic contact by just considering the pair-wise activities may be

difficult because, in the considered neuronal systems, cells are

highly connected, i.e., cells contact each others either directly (by a

single synaptic connection) or indirectly (by a di-tri or even longer

synaptic connection pathways). More recently, higher-point

mutual information techniques have been devised to dissect the

contribution of indirect pathways. In [23], the pair-wise activity of

two neurons is evaluated compared to a third one by means of a

redundancy measure. Although higher-point mutual information

techniques seem to be promising, no effort has been made to test

and validate the obtained connectivity maps on highly connected

neuronal assemblies. Recently [24], a Granger causality based

approach has been shown to be useful to recover the synaptic

strengths in a simplified neuronal network, but to our knowledge,

no attempts have been made to validate connectivity methods on

wider and more realistic neuronal networks.

Figure 1. MEA and recorded signals overview. (A) Dissociated cortical neurons coupled to a MEA. (B) Raster plot of the electrophysiological
activity: each row corresponds to a recording site, and each small vertical line corresponds to a detected spike. (C) Electrophysiological activity
recorded from one microelectrode.
doi:10.1371/journal.pone.0006482.g001
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The purpose of this work is to address this issue by applying

standard and ad hoc procedures to evaluate the performance of the

connectivity methods on realistic models of neuronal networks. To

achieve this goal, we built synthetic spike trains originated by the

simulations of neuronal network models made up of spatially

distributed and synaptically connected neurons (described by the

Izhikevich equations [25]), and we represented the topology of

these neuronal network models by a Synaptic Weight Matrix

(SWM).

Performances were estimated by ROC (Receiver Operating

Characteristic) [26] and by a new defined complementary method

named PPC (Positive Precision Curve). ROC, widely used in the

signal theory, is useful for assessing the accuracy of a prediction.

However, the discriminating capabilities among different methods

are practically reduced to a single scalar value defined as the Area

Under the Curve (AUC). In addition to the coarse AUC

parameter, PPC allows to evaluate not only the absolute number

of the existing/non-existing connections identified by the connec-

tivity methods but also to recognize the synaptic weights following

the right ordering. Therefore, PPC adds further information

regarding how the connectivity methods identify the connections.

Materials and Methods

Cell culture, experimental set-up and data analysis
Dissociated cortical neurons were extracted from rat embryos

and plated on 60-channel MEAs precoated with adhesion

promoting molecules (poly-D-lysine and laminin), at the final

density of 5286104 cells/device, which means about 1200–

1400 cells/mm2. They were maintained in culture dishes, each

containing 1 ml of nutrient medium (i.e. serumfree Neurobasal

medium supplemented with B27 and Glutamax-I, [27]) and

placed in a humidified incubator having an atmosphere of 5%

CO2 and 95% O2 at 37uC. Under these environmental conditions,

cortical neurons showed excellent growth and robust synaptic

connections that allowed us to record spontaneous electrical

activity from 7 days in vitro (DIV) up to 5–6 weeks in vitro (WIV).

Further details about cell cultures can be found in [4].

The network electrophysiological activity was recorded after the

third-fourth WIV to allow the maturation of synaptic connections

among the cells of the network.

The experimental set-up was based on the MEA60 System

(Multi Channel Systems, MCS, Reutlingen, Germany).

The electrophysiological activity was recorded without any

chemical or electrical stimulation (i.e., it was referred only to the

spontaneous activity). The recorded signals ranged from random

spike activity to more complicated and synchronized burst signals

(Figures 1B and 1C).

Extracellular recorded signals were embedded in biological and

thermal noise. These raw signals were recorded and sampled at

10 kHz, and data were then processed off-line by using custom

software. Spiking and bursting activities were identified by using a

spike detection algorithm [28]. The previously validated algorithm

is based on a Differential Threshold (DT) for each channel, and it

is used to discriminate population spike events. Briefly, after setting

the threshold to 8 times the standard deviation of the biological

noise [29,30], the algorithm considers a portion of the signal and

looks for the Relative Maximum/Minimum whose peak-to-peak

amplitude is above the defined threshold. Then, a candidate spike

undergoes additional checks, such as the peak lifetime period (set

as 2 ms) and the refractory period (set as 1 ms), in order to ensure

the correct identification of a spike and its precise timing.

From the spike trains, we evaluated the common metrics used to

characterize both simulated and experimental data. In particular,

we computed the Inter-Spike-Interval (ISI), the Inter-Burst-

Interval (IBI), the Mean Firing Rate (MFR) and the Mean

Bursting Rate (MBR) [6].

Network Model
We implemented a neuronal network model mimicking the

electrophysiological activity of cultured cortical neurons under

spontaneous conditions.

Following the approach proposed by Izhikevich [25], we

developed a neuronal network model made up of 60 spatially

distributed and synaptically connected neurons. To test the above

mentioned algorithms, we implemented different network config-

urations at an increasing level of complexity and similarity with the

biological networks. The results presented in this work are related

to two main configurations.

Firstly, we implemented a simple neuronal network with only

excitatory connections and synaptic weights extracted from a

normal distribution. We named this configuration E. Secondly, we

developed a more physiological network model including also

inhibitory connections; we named this configuration EI. In this

configuration, we considered two different types of neurons to

model excitatory and inhibitory populations: the former type

belongs to the family of regular spiking neurons, and the latter to

the family of fast spiking neurons [25,31]. Regular spiking neurons

fire with a few spikes characterized by short ISI at the onset of an

input. Differently, fast spiking neurons exhibit periodic trains of

action potentials at higher frequencies without adaptation. To

preserve the main characteristics of the structure of the in vitro

cortical neurons, we set the ratio between excitatory and inhibitory

neurons to 4:1 [8,9,32]. These two families of neurons were

connected in a random way with the constraint that each neuron

can be connected (outgoing connections) to a maximum number

of other neurons. The most relevant parameters relative to E and

EI networks are summarized in Table 1.

Spontaneous activity was obtained by introducing a randomly

distributed stimulation reproducing the effect of fluctuation in the

membrane potential [33] due to the distributed background

activity.

All the simulations, performed in Matlab environment (The

Mathworks, Natick MA, USA), lasted 300 s at 0.1 ms integration

time-step. The simulation output was then peak-detected by

means of a simple hard-threshold algorithm.

To assess the stability of the considered connectivity methods,

we simulated 5 EI and E configurations, obtained by changing the

network configuration (i.e., the seed generating synaptic pathways

and weights). By averaging the MFR and MBR over the 5

realizations, we found a MFR = 11.160.7 spikes/s (mean6-

standard deviation) and a MBR = 8.761.0 bursts/min for the E

configuration model, and a MFR = 7.960.5 spikes/s and a

Table 1. Network model parameters considered in the
simulations.

Model
Name

Synaptic weights
(exc; inh)

Number of
neurons
(exc; inh)

Max # of
outgoing
connections

E 4413; 040 60; 0 23

EI 4416; 244216 48; 12 30

Synaptic weights are chosen randomly, with a uniform distribution, in the
reported interval (e.g. 4413 for excitatory connections of Model E). Positive
(negative) weights correspond to an excitatory (inhibitory) synaptic connection.
doi:10.1371/journal.pone.0006482.t001
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MBR = 15.861.1 bursts/min for the EI configuration model. In

order to verify that the dynamics of the EI configuration fit the

experimental data, we evaluated the network histograms ISI and

IBI (data not shown). ISI histograms showed a Poisson-like

distribution, and IBI distributions were characterized by marked

peaks in the first bins.

This dataset was used to test the performance of the connectivity

methods detailed in the next sections.

Connectivity methods
Connectivity maps of neuronal networks can be inferred on the

basis of the spiking activity of single neurons. This approach, also

known as functional connectivity, analyzes the series of spike train

timestamps (Figure 2). Functional connectivity was estimated by

using the above-introduced four methods: CC, MI, JE, and TE.

For each pair of neurons, the connectivity method provides an

estimation of the connection strength (one for each direction).

Thus, each method is associated to a matrix, the Connectivity

Matrix (CM), whose elements (X, Y) correspond to the estimated

connection strength between neuron X and Y.

High and low values in the CM are expected to correspond to

strong and weak connections. By using such approach, inhibitory

connections could not be detected because they would be mixed

with small connection values. However, non-zero CM values were

also obtained when no apparent causal effects were evident, or no

direct connections were present among the considered neurons. In

principle, by thresholding the CM, it would be possible to filter out

the noisy and non-causal values (because they are expected to be

small). Anyhow, for each threshold value, a connectivity map is

obtained. These maps, deduced by considering only the strongest

CM values, display the links which should correspond to the

strongest synaptic pathways. An exemplificative case is shown in

Figure 3. The CM is displayed in Figure 3B (right) and some

corresponding Thresholded Connectivity Matrix (TCM) are

reported in Figure 3D (right).

Cross-Correlation function. Cross-Correlation (CC)

function [19] was built by considering the spike trains (Figure 2A)

of two neurons. It measures the frequency at which one cell fires

(‘target’) as a function of time, relative to the firing of a spike in

another cell (‘reference’). Mathematically [34], CC reduces to a

simple probability Cxy(t) of observing a spike in a train Y at time

(t+t), because of a spike in another train X at time t [6]; t is called

time shift or time lag.

CC function was evaluated considering all the pairs of spike

trains. Connection strength among neurons was evaluated on the

basis of the peak value of the CC function. Therefore, CM is

defined by considering the peak values of each CC function: the

highest CC values should correspond to the strongest connections.

Additionally, directionality was deduced from the sign of the

corresponding peak latency (Figure 2C).

To compute CC function, the time lag was set to 0.1 ms and the

time frame was set to 150 ms.

Mutual Information. Mutual Information (MI) is a measure

of the statistical dependence between two processes. To compute

MI between two neurons, spike trains were represented as binary

strings. Time is discretized, such that each time bin (0.1 ms,

Figure 2. Schematic overview of the considered connectivity methods. (A) Binary string is created starting from the spike train. A window is
selected to evaluate the TE and to define the MI symbols (window = 0.3 ms). (B) Cross-inter-spike-intervals (cISI) between neurons X and Y are
highlighted by the red arrows. (C) Cross-correlation function between neuron 1 and 2. The directionality of the connection is evaluated considering
the peak latency from zero. (D) Mutual information (spike count approach) function related to a pair of nodes of the network model. The inset shows
that the MI peak value falls close to the zero time shift (value 20.1 ms).
doi:10.1371/journal.pone.0006482.g002
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Figure 2A) represents either the presence or the absence of a spike.

Successive time bins are aggregated to the extent of a fixed time

window (i.e., a binary string) in order to translate the entire spike

train into a sequence of binary symbols. Depending on which

mode of coding mechanism we are interested in, the binary strings

are regarded as temporal patterns (time code) or translated by

counting the spike occurrences (spike count code, e.g. in Figure 2A

‘1110’ correspond to 3 spikes). In principle, a time code approach

Figure 3. PPC working principle. A small network consisting of five neurons is considered. (A) Network graph. The numbers indicated on the
arrows are the synaptic weights. (B) SWM (left) and CM (right). The red, black and yellow circles on the TCM correspond to a true positive (TP), true
negative (TN) and false positive (FP), respectively. (C) Positive Precision Curve. The red curve corresponds to the best performance a given method
could achieve. The dashed black line corresponds to the number of synaptic weights present in the model (panel A). (D) By comparing the
thresholded SWM (left) to the TCM (right) the blue curve (drawn as an example) of the positive precision plot (panel C) is obtained. The white
background elements on the TCMs (right) correspond to the TFS elements being analyzed.
doi:10.1371/journal.pone.0006482.g003
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should give the best results. However, preliminary tests indicated

the best performances in terms of recovering connectivity maps

were obtained by considering small temporal windows. We varied

both the bin size and the time window of MI identifying an

optimal time window equal to a bin size of 0.3 ms (cf., ‘‘Bin choice

for the parametric methods’’ in the Results section). Considering

such time scale, the same tests also indicated that time and spike

code approaches behave similarly (data not shown).

MI is computed by evaluating joint and single probabilities of

the two neurons (X,Y):

MI X ,Yð Þ~
X
x[X

X
y[Y

p x,yð Þ:log2

p x,yð Þ
p xð Þ:p yð Þ

� �
ð1Þ

where x, y represent a single event (e.g., x = 2, y = 3 spikes). Each

joint probabilities, p(x,y), represent the probability of observing x

spikes emitted by neuron X, and y spikes by neuron Y on the same

time window.

All probabilities were estimated by their corresponding

frequencies. This approach, also called direct method [35], yields

MI values which are biased upward (also called MI naı̈ve). An

accurate estimation of the probabilities would require a large

number of samples [36]. Practically, we increased the period of the

simulations up to 20 minutes, and we noted that after 5 minutes

the estimation of the probabilities did not improve much the MI

value (less than 4%).

Mutual Information (Equation 1) is symmetric with respect to

the exchange of the variables X and Y. Consequently, it is not

suited to recover information on directionality and causality.

However, by evaluating MI of time-delayed time series (e.g. by

taking X as the reference spike train and Y as the delayed spike

train), we build a MI function of the time-shift, thus providing

information both on the synaptic strength and on causality

[17,37]. The peak of each MI function was used to create the CM,

so the highest MI values were associated to the strongest

connections. Directionality, instead, was determined, as for the

CC function, by evaluating the latency of the peak value.

Figure 2D shows an example where the MI function presents a

peak close to time zero.

Joint-Entropy. Cross-Correlation computed on two neurons

is essentially proportional to the amount of spikes present in a time

window around a reference spike. Thus, cross-correlation based

methods ignore any temporal information of the spike patterns.

Temporal information can be accounted for by defining an ISI

across a pair of neurons. Considering X as the reference neuron

(the one which actually makes Y to spike), then for each spike of X,

a subsequent spike of Y is considered and cross-inter-spike-

intervals were defined as time difference (cISI = tY2tX, cf.,

Figure 2B).

This section deals with an entropy measure of the cISIs, called

Joint-Entropy (JE), defined as:

JE X ,Yð Þ~{
Xn

k~1

p cISIkð Þ:log2 p cISIkð Þð Þ ð2Þ

where p(cISIk) is the estimated probability of cISIk. The cISIs were

binned using a bin size equal to 0.1 ms, and cISIk was calculated

as k*binsize. The rationale of JE lies in assuming that if X and Y are

strongly connected, then the cISI histogram will show a peak at a

specific cISI value, and JE will be close to zero. Conversely, when

X and Y are not connected or weakly connected, the cISI

histogram will be nearly flat and consequently JE will be high.

We computed cISI as follows: for each reference spike (x), the

closest subsequent spike (y) is considered; if it falls before a new

reference spike, then cISI is computed as their time difference,

otherwise it is not accounted. Despite other approaches are also

possible (e.g. when two reference spikes are followed by just one

spike two cISIs could be computed), the method we used yielded

the best results. JE provides asymmetric values, and thus it may be

used to infer causality. Differently from the other methods here

presented, the strongest connections noticeable in the Synaptic

Weight Matrix should be associated to the lowest JE values.

Transfer Entropy. Transfer Entropy (TE) is an information

theoretic measure which allows to extract causal relationships from

time series [18]. It shares some of the desired properties of the

Mutual Information (MI), and also it takes into account the history

and the dynamics of the peak trains. Differently from MI, TE is

not symmetric with respect to the exchange of the variables X and

Y. Additionally, with respect to cross-correlation based methods,

TE is sensitive to linear as well as non nonlinear causal interactions

[38]. It seems therefore a promising technique to infer connectivity

maps.

If we indicate with xt the number of spikes (of the spike train X)

falling in the time window t (t being discrete), then:

xm
t ~ xt,xt{1,xt{2, . . . ,xt{mz1ð Þ ð3Þ

is the spike count vector of the past m time windows. Considering a

second spike train Y and its spike count vector ym
t , TE can be

defined as:

TEy{wx~
X

xtz1,xk
t ,yl

t

p xtz1,xk
t ,yl

t

� �
log

p xtz1 xk
t ,yl

t

��� �
p xtz1 xk

t

��� �
 !

ð4Þ

Mathematically, TE can be interpreted as a measure of the

deviation from the generalized Markov property:

p xtz1 xk
t

��� �
~p xtz1 xk

t ,yl
t

��� �
ð5Þ

where p denotes the transition probabilities conditioned to the past

k and l observations of the spike trains X and Y, respectively. Low

TE values indicate that yl
t has no influence on the transition

probabilities of the state of X, so that the assumption of a Markov

process holds. On the other hand, high TE values indicate the

spike train Y influences the response of X.

TE can also be written as [30]:

TEy{wx~MI xtz1, yl
t,x

k
t

� �� �
{MI xtz1,xk

t

� �
ð6Þ

Equation 6 states that TE measures the gain in information of

knowing the future and the past of xt, once yl
t is known.

The probabilities defined by Equation 4 were estimated from

the relative frequencies. As for MI computation, we tested the

reliability of the estimate by computing TE on longer simulation

time windows (from 5 to 20 minutes long). The smallest simulation

time window (5 minutes) turned out to be enough to yield an

unbiased TE.

Hence, as in other works [18], we restricted our analysis to the

case k = l = 1 (see also the computational considerations reported

in ‘‘Discussion and conclusions’’). The bin and the window size

were selected basing on an optimization process. Bin size = 0.3 and

window = 1 bin turned out to be optimal in terms of ROC

Cortical Networks Connectivity
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performance (cf., ‘‘Bin choice for the parametric methods’’ into

the Results section). Then, the connectivity matrix was built by

evaluating the TE for each possible pair of peak trains.

Validation Procedures
The connectivity methods introduced in the previous section

work well when applied on networks made up of few neurons (5–

10 neurons) and are almost independent of the synaptic strength

and the number of connections. However, in more realistic

networks and under increased connectivity conditions, the

performance of the connectivity methods rapidly decreases. To

validate and quantify the performance of these methods on

simulated networks, we used the receiver operating characteristic

(ROC) curve [18] and a new method that we called Positive

Precision Curve (PPC). All the results presented in this paper were

obtained by ignoring the negative weights of the Synaptic Weight

Matrix which are associated to inhibitory synapses. Finally, it is

worth noting that all the reported error bars represent standard

deviation values.

Receiver Operating Characteristic–ROC. As stated in the

introduction, the Receiver Operating Characteristic (ROC) curves

were used to compare the performance of CC, JE, TE and MI. To

better appreciate the comparison among these methods, we

reduced the ROC curve to a single scalar value (AUC)

representing the obtained performance [26,39]. Since AUC

represents the area of a portion of the unit square, its value will

be always between 0 and 1. However, since random guessing

produces the diagonal line between (0, 0) and (1, 1), which has an

area of 0.5, a classifier should have an AUC higher than 0.5 (good

classifiers should have AUC values close to 1).

A ROC curve was obtained by comparing the Synaptic Weight

Matrix (SWM) and the Thresholded Connectivity Matrix (TCM).

For a given threshold, all TCM elements were considered as

possible functional connections. If one of the TCM elements

corresponds to an existing connection (a non zero value in the

SWM), it is considered as a True Positive (TP) and if the

connection corresponds to a zero value in the SWM, then it is

considered as a False Positive (FP). Furthermore, the TCM

elements equal to zero either correspond to an existing connection

(a non zero value in the SWM), called False Negative (FN), or they

correspond to a null element, called True Negative (TN).

Figures 3B shows the comparison between SWM (left) and CM

(right) for the simple neuronal network of Figure 3A.

By changing the threshold (Figure 3D), a variable number of

TPs (red circle), FPs (yellow circle), TNs (black circle) and FNs

were obtained. Finally, they are reported on a two-dimensional

plot by using the following definition of true positive rate (TPR)

and the false positive rate (FPR):

TPR~
TP

TPzFNð Þ ð7Þ

FPR~
FP

FPzTNð Þ ð8Þ

One of the major limitations of ROC curves is that they do not

contain, explicitly, the information regarding the number of TP

and FP and that good AUC values (.0.7) can be associated to low

ratios of TP vs. FP (TPs,FPs). On the other hand, in order to

evaluate the connectivity method performances, also the variations

of the TPs and FPs values, as a result of changing the threshold in

the TCM, have to be taken into account. As an example, at the

beginning of the thresholding procedure of a network character-

ized by N connections, the FNs are limited by the actual number

of connections (FN,N), while the TN value is very high

(TN..N). Thus, by increasing the threshold, the FPR initially

will remain close to zero (TN is high) but the TPR will increase

more rapidly because of the limited number of FNs, according to

Equations 7 and 8. For these reasons, ROC curves alone are not

suitable to give a complete picture on the actual performance of

the connectivity estimation methods, thus, motivating the

introduction of a complementary evaluation method: the PPC.
Positive Precision Curve–PPC. In addition to ROC curves,

the sensitivity and specificity curves [26] are also used to quantify

the performance of classifiers. However, in the context of

functional connectivity, the performance of a connectivity

method can be stated differently from the context of classifiers.

For a given connectivity method, what effectively matters, is its

capacity to properly detect a connection, so that mainly TPs (a

connection properly detected) and FPs (a connection wrongly

detected) have to be taken into account. To this aim we introduced

the PPC. We defined the quantity true false ratio (TFR) as:

TFR~
TP{FPð Þ
TPzFP

ð9Þ

which represents the percentage of TPs detected relative to the

FPs. Then, we defined the true-false sum (TFS):

TFS~TPzFP ð10Þ

which corresponds to the number of elements being analyzed.

PPC is a 2D graph with TFS on the x-axis and TFR on the y-

axis. The PPC was built by considering the TFS-highest values of

both the SWM and the CM. An explanatory case is depicted in

Figure 3, where panel B shows SWM and CM of a hypothetical

simple neuronal network (Figure 3A). The PPC in Figure 3C was

built by comparing the sorted SWM and CM values, from the

highest to the lowest (white squares, cf., Figure 3D). The sorting

process can also be regarded, differently from ROC, as a double

threshold process applied to both the SWM and CM. An increase

in the TFR value corresponds to an increase of the TP vs. FP ratio.

Moreover, since the PPC plot was obtained by an ordered

comparison (Figure 3D) of SWM and CM (both thresholded), it is

also possible to recognize the capacity of the connectivity methods

to detect the right ordering (PPC slope) of the synaptic weights.

The PPC slope, in this case, provides information about the

performances of the connectivity method as well as the right order

in the identification of the connections.

An ideal connectivity method should follow the red curve

depicted in Figure 3C, so that TFR is equal to 1 till TFS reaches

the maximum number of connections actually present in the

SWM. In a real case, the curve would behave more like the blue

one (cf., Figure 3C). For instance (Figure 3D), when we consider

just one element (TFS = 1), the connection is not detected

(TFR = 21); when we include a second element (TFS = 2), two

connections of the SWM are properly identified (Figure 3C) and

TFR reaches 1.

The PPC peak corresponds to the best trade-off between TPs

and FPs detected by the method. Also, the position of the peak is

relevant because the identification of a minimum number of

connections is necessary to plot a functional connectivity map. To

better exemplify, let us consider a network characterized by

N = 600 connections with the peak of the PPC equal to 0.2. If the

peak is found in correspondence of TFS = 50, it means that the

Cortical Networks Connectivity
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connectivity method identifies 30 TPs and 20 FPs and if the peak

position is close to TFS = 500, it implies the identification of

300 TP and 200 FP. Therefore, the value of the PPC peak (TPR)

provides information on the ratio between TPs and FPs, while the

knowledge of the peak position (TFS) allows identifying the

absolute number of TPs and FPs.

Therefore, PPC helps to determine the threshold values to be

used for building the connectivity maps. Practically, the chosen

threshold value defines the number of selected connections (TFS)

and also the performance level (TFR). Since we are interested in

selecting a number of links close to the actual number of

connections (N) and to maximize the TPs vs. FPs ratio, a good

trade-off can be achieved by choosing a TFS between the PPC

peak and the estimate of the real number of connections (N).

Results

In this section, we present the performances of TE, MI, JE and

CC evaluated by means of ROC and PPC curves. We applied

these methods on two different simulated neuronal networks:

namely a network where only excitatory synapses are present (E

model), and a network which includes also inhibitory connections

(EI model). Firstly, we showed that the best results, for both the

models, are obtained by applying TE. Then, we showed that JE

gives rise to better performances with respect to CC when applied

to the more realistic EI model and, vice versa, that CC gives rise to

better results than JE on the simplified E one. Finally, we showed

that MI gives rise to the worst performances for both the models: a

possible interpretation of this behavior is proposed. The methods

which provided the best results (TE, JE, and CC) were then

applied to the experimental data recorded from in vitro cortical

neuronal networks coupled to MEAs.

Evaluation of the connectivity methods performance by
means of ROCs and PPCs curves

Figures 4A and 4B, respectively, show the ROC curves

concerning all the realizations of the excitatory (E) and

excitatory-inhibitory (EI) networks. From the standard error bars

(Figures 4A and 4B) we can state that stability is a common feature

for all the methods: in fact, we estimated variability between 0.019

and 0.092. The PPCs for E and EI models are indicated in

Figures 4C and 4D, respectively.

ROCs and PPCs concerning EI models (Figures 4B and 4D)

were evaluated comparing the CM and SWM matrices by

considering only the excitatory connections. When also inhibitory

connections were considered, ROCs and PPCs showed a

systematic reduction of performances. In particular, the decrease

was proportional to the performance value estimated on models

where inhibitory connections were not considered: TE decreased

by 10%, JE by 7%, CC by 2% and MI about 1.5%. Since

inhibitory connections cannot be identified by our approach, all

the presented analyses were performed just on excitatory

connections.

At a first glance, it is possible to note that PPCs (Figures 4C and

4D) report the same macroscopic results already shown by the

ROCs (Figures 4A and 4B): TE shows the best performances for

both the E and EI models, while JE displays a good trend only for

the EI models, and CC only for the E ones. Statistical tests (one-

way ANOVA, Bonferroni test for means comparison) performed

on the 5 considered realizations of EI models, indicate that the

mean difference of the PPC peaks is significant (except for the

couple CC-MI) at the confidence level of 0.05. The same statistical

tests indicate a significant AUC mean difference only between TE-

CC and TE-MI (confidence level of 0.05). On the other hand,

there are no significant differences as far as the E models are

concerned.

However, from a deeper analysis, it results that, although ROC

curves show an apparent positive behavior for all the methods

(they are all above the diagonal), PPCs clarify the real and effective

percentage of the synaptic connections properly identified. In

particular, PPCs fall below zero for all the considered methods

(i.e., the number of identified FPs is always greater than the

number of TPs). The best performance was obtained by the TE

method (Figure 4D) for TFS > 600 and TFR>20.1 which

corresponds to 270 TPs and 330 FPs.

Moreover, the curves show that the connectivity strengths are

not properly identified by the connectivity methods. For instance,

if we compare the insets of Figures 4C and 4D with Figure 3C, it

appears that the methods fail in detecting the right strengths

ordering already for the strongest connections (small TFS values).

In addition, by moving from E to EI models, the performances

of JE improve, whereas they get worse for CC and MI. The mean

AUC values, reported in Table 2, support and confirm these

considerations. Furthermore, these values indicate TE as the best

connectivity method and show a slight improvement of the TE

performances on EI models.

The MI method shows the worst performances (AUC values,

Table 2): in particular, on the EI models, MI is characterized by

bad performances in comparison to other methods. However, on

small neuronal networks, characterized by few connections and

neurons, MI shows performances comparable to the CC ones

(data not shown). An increase in the number of connections and

neurons causes the bell-shape of the MI function (Figure 2D) to

become flatter while the shape of the CC function (Figure 2C)

changes to a lesser extent. The enlargement of the MI bell-shapes

causes similar peak values which impairs a proper identification of

the strength and of the causality in both E and EI models.

The high degree of connectivity of actual networks suggests the

reasons why MI fails in correctly identifying the connections. Since

MI is sensitive to all higher order correlations (both linear and

nonlinear), this measure is highly sensitive to a ‘‘general influence’’

caused by the high degree of connectivity. The presence of a

‘‘general influence’’ is also confirmed by the distribution of the

Inter Event Intervals (IEIs) evaluated on EI models (cf., next

section).

On the other hand, although TE method detects also nonlinear

correlations (similarly to MI), it displays good performances

because it accounts for the past history of each single neuronal

activity, thus allowing TE to better distinguish the causal effects

between two particular neurons among the ‘‘general information

flow’’.

Bin choice for the parametric methods
As mentioned in the previous section, CC, MI, and TE methods

can be defined as parametric methods: the results obtained by

applying such methods depend on the choice of the bin size and

temporal window widths. Thus, in order to find the best working

conditions, i.e., the set of parameters which maximize the AUC,

we tested such methods on the synthetic spike trains generated by

a particular realization of the EI model. We swept the values of the

bin size from 0.1 to 0.5 ms, in a 0.1 ms step, and we considered

values of the temporal window made up of 1, 2, 3, 5 and 6 bins.

Figure 5 shows the obtained results.

By comparing the performances of the MI (Figure 5A and 5B)

with the TE (Figure 5C and 5D), two main results were found.

AUC related to MI is always above the critical value of 0.5 (i.e.,

random choice, represented by means of a green plane). This

means that for every bin size and temporal window choice, the MI
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function yields values which range from 0.583 (bin = 0.5 ms,

window = 6 bin) to 0.673 (bin = 0.1 ms, window = 1 bin). By

inspection of Figure 5A, we can also appreciate a flat trend

except for the tiny bins and temporal windows, where the curve

grows and a weak peak is observed. Differently, TE is more

sensitive to the choice of the parameters. For a wide range of

parameters, the AUC is below the critical value of 0.5

(AUCmin = 0.427, bin = 0.4 ms, window = 5 bin): as depicted in

Figure 5B, for large bin size and temporal window, the AUC does

not show acceptable performances. By decreasing the bin width

and the temporal window, the curve overcomes the 0.5-plane

(random choice), and for the couple of values 0.1 ms and 3 bins,

the TE shows a maximum (AUCmax = 0.728), greater than the one

obtained for the MI. Therefore, for all the analyses and for both

the methods, we used a bin size of 0.1 ms and a temporal window

of 3 bins.

The choice of a temporal window of 0.3 ms (3 bins of 0.1 ms)

for the TE is compatible with the dynamics found in the neuronal

preparations [4]. To support the assumption that such a temporal

scale (0.3 ms) is sufficient to investigate the information transmis-

sion, we evaluated the Inter Event Interval (IEI). The IEI can be

Figure 4. ROC and PPC curves relative to the presented connectivity methods. (A) ROC curves relative to the completely excitatory network
models. (B) ROC curves relative to the network models where the connections are both excitatory and inhibitory. Black, blue, red, and green lines
indicate CC, MI, JE and TE, respectively. The diagonal (dashed) line (A–B) corresponds to the random detection. (C) PPC evaluated on the E network
models. (D) PPC evaluated on the EI network models. The insets (C–D) show a zoom of the first 100 TFS. The vertical dashed line (C–D) identifies the
number of the excitatory elements present in the SWM.
doi:10.1371/journal.pone.0006482.g004

Table 2. AUC (Area Under Curve) values (mean6standard
deviation) for the different connectivity methods.

Models TE JE CC MI

E 0.7460.09 0.6460.09 0.7060.05 0.6560.07

EI 0.7560.04 0.7160.02 0.6760.04 0.6560.04

doi:10.1371/journal.pone.0006482.t002
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defined as the probability density of time intervals between

successive spikes occurring at all the neurons of the MEA/model.

Computing the average value of the IEI distribution, we obtained

an estimation of the average time between two successive

activations of any pair of neurons in the array/network. By

evaluating the IEI over 5 realizations of the EI model, we found an

IEIAVG = 0.3560.06 ms, which corresponds to the choice of the

temporal window used to estimate the TE.

We performed the same analysis on the CC function, which is

characterized by only one significant parameter, i.e., the time shift

(cf., Cross-Correlation). Thus, we represented in the bar plot of

Figure 5E the AUC as a function of this parameter. The result

indicates a time shift equal to 0.1 ms for the maximum AUC value

(0.642).

Connectivity Maps from Experimental Data
TE, JE and CC were used to infer and build the functional

connectivity maps from experimental data. By applying different

thresholds (TCM), the strongest links can be identified and then

plotted. In this section, we report the connectivity maps of a

cortical network recorded by means of MEA after 26 DIVs.

Figure 6 show the maps obtained by considering different

numbers of connections (i.e., 40 and 200) by using TE (Figure 6A–

6B), JE (6C–6D) and CC (6E–6F) methods. It should be

underlined that we limited the number of detected connections

up to 200 for sake of clarity. Considering the PPCs of the model

networks (Figure 4C and 4D), they suggest to select about 600 links

to maximize the performance of the connectivity methods. The

position of the PPC peak is reminiscent of the connectivity level of

the considered models: it is located near the number of

connections actually present in the SWM of the model.

Similarly to the network models, we expect to maximize the

performance of the connectivity methods by selecting a number of

connections near the number of direct connections of a hypothetic

SWM of the culture. Marom and Shahaf [9] estimated the average

connectivity level of these networks claiming that at their mature

phase each neuron is mono-synaptically connected to 10630% of

all the other neurons; these percentages were implemented in our

developed models. Therefore, by considering the information

contained in the PPCs shown in Figure 4, we could expect to

maximize the performance of the connectivity methods by

choosing about 600–700 connections also on the experimental

data.

By comparing the maps shown in Figure 6, we can notice the

presence of some common connections. In particular, the

connectivity maps inferred by TE and CC (Figure 6A–6B and

6E–6F) show the most similarity, indicating the most promising

methods to be used to estimate connectivity on these experimental

preparations.

In order to better compare the inferred connectivity maps

evaluated by means of TE, JE and CC, Figure 7A indicates the

number of connections commonly identified on the experimental

data considering the methods between pairs. TE and CC (red

curve) are characterized by the highest number of common links

while CC-TE (black) and JE-TE (green) show similar results. For

example, considering 1500 links, TE-CC identified about 1200

common connections, and CC-TE and JE-TE about 800.

Moreover, the similarity between TE and CC is also reflected

by the correspondence of the optimal threshold value (around

500/700 links).

For comparison, we built also the overlap graph for the

simulated dataset coming from the EI neuronal network model

(Figure 7B).

As expected, TE and CC are characterized by the highest

number of connections commonly identified, and the similarity

between the results reported in Figure 7A and 7B can be

interpreted as a further confirmation of the validity of using these

two methods for estimating functional connectivity.

In Figure 7B, we plotted the number of TP values commonly

identified by both the methods (dashed lines). In the inset of

Figure 7B, a zoom of the first 600 connections is reported. It

should be noted that although TE and CC (red curve) identify the

highest number of common connections, CC-JE (black curve) and

in particular TE-JE (green curve), identified a similar amount of

common TPs. Thus, it emerges that TE and CC identify several

common FPs. Starting from this observation, we can hypothesize

that TE and CC identify also some common indirect causal effects

really present in the network which are classified as FPs because

they are not accounted by the SWM, where only the direct links

are explicitly represented.

Figure 5. Evaluation of the AUC as a function of the bin size and of the temporal window. (A–B) 3D and false color map representation of
the AUC obtained by using the MI method. (C–D) 3D and false color map representation of the AUC obtained by using the TE method. (E) Bar plot of
the AUC obtained by using the CC method.
doi:10.1371/journal.pone.0006482.g005
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Figure 6. Functional connectivity maps. Connectivity maps obtained on experimental data (MEA) by (A–B) TE, (C–D) JE, (E–F) CC. The threshold
values correspond to 40 and 200 links respectively.
doi:10.1371/journal.pone.0006482.g006

Cortical Networks Connectivity

PLoS ONE | www.plosone.org 11 August 2009 | Volume 4 | Issue 8 | e6482



Firing characterization of the neuronal networks
In order to further characterize the firing patterns of the

neuronal network models and the experimental data, we

performed additional analysis on the ISI distributions.

The ISIs of the E model, EI model and experimental data were

binned by using a bin size of 0.2 ms to build the ISI histograms. To

summarize the information contained in these histograms, we

evaluated both the spread of the density distribution values (y histo-

gram axis) measured in terms of the Fano Factor (FF) [40] and the non-

null ISI percentage (the non-null bins relative to the total number of

ISIs). The FF is computed on the ISI distribution by evaluating the

mean and the variance among the networks ISIs. It is defined as the

ratio between the variance s2
ISI and the mean mISI of the ISI

distribution. The analyses reported in Figure 8 concern 5 realizations

of the simulated models (both E and EI) and 5 experimental sessions.

The FF was computed on the density distribution values, so that

equally distributed ISIs correspond to a FF = 0. Therefore, the

definition of the FF on the density distribution values, rather than

on the density distribution, implies that small (big) FF values

correspond to a flat (peaked) distribution. Figure 8A shows that the

ISI distribution of the EI model is more spread than the E one and

closer to the experimental data.

On the other hand, Figure 8B shows the percentage of non-null

ISI (with respect to the total number of ISI occurrence) decreases

when the network complexity increases (EI vs. E model).

Interestingly, the percentage of non-null ISI in the EI models

(Figure 8B) well matches the experimental ones. A higher

percentage of non-null ISI implies a higher variability in the

number of different ISIs and a higher variability in the neuronal

firing patterns.

The percentage of non-null ISI and the FF allows quantifying

the firing properties of a given neuronal network. A smaller FF and

a smaller percentage of non-null ISI means that the firing activity

in the EI model is more structured than in the E one. As it could

be intuitively expected, we can deduce that the presence of

inhibitory connections plays an important role in structuring the

firing dynamics of the models by influencing the interaction

among single neurons [41,42].

Further, the error bars (Figure 8A and 8B) show that completely

excitatory models are characterized by a high variability among

different E realizations, while EI models and experimental data are

characterized by more similar one. Thus the analyses performed

on the ISI distributions (Figure 8A and 8B) allow to conclude that

the EI model better mimics the dynamics exhibited by the

Figure 7. Overlap curves show the number of common links identified by different connectivity methods. (A) Overlap curves from
experimental data, (B) overlap curves from the synthetic dataset (mean6standard deviation). The dashed curves show the number of TP values
commonly identified by both the methods. The inset highlights the first 600 connections.
doi:10.1371/journal.pone.0006482.g007

Figure 8. ISI parameters evaluated over simulated and experimental data. (A) Fano Factor evaluated on the probabilities values (y-axis) of
the ISI histogram. ISI bin size of 0.2 ms. (B) percentage of non-null ISI bins with respect to the total ISI number.
doi:10.1371/journal.pone.0006482.g008
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experimental data and, therefore, confirming the plausibility of

validating the connectivity methods on the EI models.

Discussion and conclusions
In this work we compared the performances of well established

and novel techniques to estimate the functional connectivity in

cultured cortical neurons. Although in the literature several papers

deal with the identification of functional connections, they usually

consider very simplified working conditions (linear time series or

networks of few neurons) where the connectivity methods obtain

optimal performances for cross-correlations or information theory-

based methods [43]. In those cases, considering simplified

simulated configurations, visual comparisons between effective

connectivity and functional maps were directly performed.

Nevertheless, in these conditions, it is also possible to assess

whether the observed correlations derive from either direct or

indirect connections, or result from a common input.

In our work we extended this approach by testing standard

methods (CC, MI, TE) and a novel one (JE) to more realistic and

highly-connected simulated networks and by testing the best

techniques on actual data obtained from electrophysiological

recordings of cultured neurons coupled to MEA devices.

We quantified the performance of four selected connectivity

methods by means of Receiver Operating Characteristic (ROC)

curves and of a new function named Positive Precision Curve

(PPC). Although ROCs curves are widely used, their capability of

evaluating the performance of a given method is practically

reduced to a single scalar value defined as the Area under the

Curve (AUC). This value is useful to have a synthetic outlook of

the methods capability to identify network connections but, on the

other hand, it does not allow quantifying how many True Positives

(TP) and False Positives (FP) there are. On the other hand, PPCs

not only allow evaluating the absolute number of the existing/non-

existing connections correctly identified by the connectivity

methods, but also provide further information regarding how the

connectivity methods identify them. In fact, by analyzing the PPC

slope, it is possible not only to recover the number of TPs and FPs,

but also to investigate if the identified links follow the right

synaptic weight ordering. Further, PPC proved to be a reliable

technique for selecting the threshold value for maximizing the

performances of a specific connectivity method. Similarly to what

obtained on the network models, where the position of the PPC

peaks (Figure 4C and 4D) are located near the number of the

connections effectively present into the models, we expect to

maximize the performances by selecting a number of connections

close to the estimated synaptic ones actually present on the

experimental data (about 600/700 connections).

The first introduced method was CC, one of the most common

analytical tool used to study the joint activity of neurons [34,44]

and widely utilized for analyzing synchronized patterns of activity

in neuronal cell assemblies. Summarizing the results, we can

conclude that CC is a reliable tool with reasonable performances

in many contexts. Nevertheless, in our particular application, the

degradation of the performances on the EI models can be

interpreted as a major drawback of the method to work well on

data collected by highly connected neuronal cultures. The main

problem of the CC method is that linear dependencies are unlikely

to govern such neuronal connectivity.

Mutual Information (MI) [45] is a mathematically rigorous

approach for the detection of the interdependences between time

series, and it is widely used in many fields (e.g., telecommunica-

tion, machine learning); differently from CC [46], MI depends on

all higher order moments of the probability distribution.

Therefore, MI measures are not restricted to the second order

(as the CC ones), but they are sensitive to all higher order

correlations, both linear and nonlinear. Since MI is a symmetrical

measure, it cannot detect directional flow of information and

causal relationships. In order to overcome this limitation, we built,

for each pair of neurons, a MI function by delaying the peak

trains. Although the introduction of a time delay allows good

connectivity maps to be obtained on small networks, on large and

highly connected networks MI performances decreases. In fact, MI

showed the worst performances on E and EI models and, as a

consequence, on the experimental networks. The general influence

among neurons, due to the high density of the cultures, makes MI

unable to accurately detect causal relationships on complex models

and on experimental data.

Two entropy measures were also considered. Transfer Entropy

(TE) [38,47] is a recent tool for investigating neuronal assemblies

and for quantifying the fraction of neuron information found in

the past history of another one [43]. Since TE estimates the part of

activity of a neuron that is not dependent on its own past but on

the past activity of another neuron, the obtained results are likely

to be more precise with respect to the ones provided by other

methods. Moreover, TE takes into account linear and nonlinear

interactions and thus may represent a very general way to define

the causality strength between two spikes trains. Considering the

results here presented, TE showed the best results both on E

(Figure 4A and 4C) and on the EI models (Figure 4B and 4D). TE

is then a good estimation method which can be conveniently

applied also on real datasets.

Joint-Entropy (JE) is a novel measure of entropy which was

applied for the first time in the field of neuroscience. Analyzing

purely excitatory networks, JE shows the worst performances

(similarly to MI), while it provides interesting results with

inhibitory-excitatory networks. Considering the results presented

in Figure 8, pointing out the similarity between the experimental

data and the EI model, and considering that JE measures are

computed based on cISI distributions [20,21], it turns out that JE

is sensitive to the activity patterns showed by the neuronal

networks and is capable to distinguish the influence of a specific

neurons on the activity of another one. For these reasons, despite

its simplicity, the JE measure can be considered as a good

alternative method to TE to be applied to real data.

In order to better evaluate the efficiency of these connectivity

methods, it is also interesting to know the performance in terms of

required computational time. All the tests were carried out on an

INTEL Quad Core, clock 2.83 GHz, RAM 4 GB, by using the

same dataset and parameter values reported in the paper. JE

proved to be the fastest method. Considering a 5 minutes

simulation, JE method took around 15 minutes to analyze the

data. CC, TE, and MI took respectively 30 minutes, 16 hours and

2 days. Next, we extended the same analysis to longer simulations,

lasting from 5 to 30 minutes. The time needed to accomplish the

same analysis increased linearly for all the proposed methods with

increasing slopes of 4, 12 and 200 for JE, CC and TE respectively.

MI was not included in this analysis because of its bad

performances and prohibitive time needed to process the data.

The qualitative evaluation of the goodness/efficiency suggests JE

as an optimal trade-off method especially for recordings including

a very large number of neurons.

The overlap curves (Figure 7A), which underline the number of

common links identified by the different methods, are the only

possible feedback regarding the performance of the connectivity

methods when applied to experimental data. By observing these

curves, we can note the good agreement between TE and CC, as

in the case of model networks (Figure 7B). Interestingly enough,

this agreement is not restricted to the TP values: TE and CC
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identify also a high number of common FPs. From this, we can

speculate that TE and CC recognize some strong indirect

connections actually present on the neuronal network but not

classified as TPs because only direct links are represented into the

Synaptic Weight Matrix.

The approach we adopted, by considering the connection

strength proportional to the value of the connectivity method, does

not allowed us to identify inhibitory connections. A previous report

[21] showed that inhibitory connections could be detected by

looking at the time shifts of the cISI histogram built on the cross

activities of two neurons. However in the EI network models we

observed that the cISI histograms built on neurons contacted by

zero to up to 5 inhibitory neurons did not showed any significant

time shift. We therefore believe that the collective highly

synchronous and bursting activity across the whole network

prevents to recover inhibitory connections by simply looking to

pair wise activities.
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