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Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has disrupted
social and economic life globally. The global pandemic COVID-19 caused by this novel SARS-CoV-2
shows variable clinical manifestations, complicated further by cytokine storm, co-infections, and co-
agulopathy, leading to severe cases and death. Thrombotic complications arise due to complex
and unique interplay between coronaviruses and host cells, inflammatory response, and the co-
agulation system. Heparin and derivatives are World Health Organization (WHO) recommended
anticoagulants for moderate and severe Corona Virus Disease 19 (COVID-19), that can also in-
hibit viral adhesion to the cell membrane by interfering with heparan sulfate-dependent binding
to angiotensin-converting enzyme 2 (ACE2) receptor. Heparin also possesses anti-inflammatory,
immunomodulatory, antiviral, and anti-complement activity, which offers a benefit in limiting viral
and microbial infectivity and anticoagulation from the immune-thrombosis system. Here we present
a case study of the pathophysiology of unexpected COVID-19 coagulopathy of an obese African
American patient. While being on therapeutic warfarin since admission, he had a dismal outcome
due to cardio-pulmonary arrest after the sudden rise in D-dimer value from 1.1 to >20. This indicates
that for such patients on chronic warfarin anticoagulation with “moderate COVID 19 syndromes”,
warfarin anticoagulation may not be suitable compared to heparin and its derivatives. Further
research should be done to understand the beneficial role of heparin and its derivatives compared to
warfarin for COVID-19 inflicted patients.
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1. Introduction

Today, SARS-CoV-2 infection has caused a COVID-19 pandemic worldwide, disrupt-
ing our society’s social and economic aspects [1]. There have been more than 2.83 million
deaths worldwide. This is a challenging virus with unique transmission and infectivity
properties [2].

SARS-CoV-2 infection is responsible for variable clinical manifestations, ranging from
no symptoms to severe pneumonia with acute respiratory distress syndrome, septic shock,
and multi-organ failure resulting in death [3]. Current strategies like isolation and social dis-
tancing are being used to reduce the need for hospitalizations. Treatment of the disease mainly
focuses on symptomatic treatment and supportive care, including treatment of potential co-
infection agents and early anticoagulation. Moreover, there are no treatments of absolute proven
efficacy to reduce the progression of the disease from mild/moderate to severe/critical [4].
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One of the most important mechanisms underlying the deterioration of disease is the
cytokine storm [5], where elevated levels of pro-inflammatory molecules, such as inter-
ferons a and b, TNF alpha and interleukin-4 (IL-4), interleukin-6 (IL-6), and interleukin-8
(IL-8) [6] are seen. The latest trial has shown promise for remdesivir, lopinavir-ritonavir,
dexamethasone, methylprednisolone, IL-6 inhibitors, monoclonal antibodies, and convales-
cent plasma, to name a few [7]. Laboratory findings of COVID-19 include lymphopenia
with depletion of cluster of differentiation 4 (CD4) and cluster of differentiation 8 (CD8)
lymphocytes, prolonged prothrombin time (PT), elevated lactate dehydrogenase (LDH),
D-dimer, alanine transaminase (ALT), C-reactive protein (CRP), and creatinine kinase (CK) [8,9].

Severe disease is also complicated by coagulopathy and disseminated intravascular
coagulation (DIC) with a very high risk of death [10]. However, inflammation and coagula-
tion are linked. The innate immune defense and coagulation system, collectively known as
the immune-thrombosis system, produces a distinct intravascular thrombi compartment
early on to limit microbe insult on tissues and allow rapid healing. Insufficient coagulation
can result in bleeding and hemorrhage, while excessive clotting may lead to thrombosis
or even disseminated intravascular coagulation (DIC). Patients with progressive, severe
COVID-19 infection with acute lung injury or acute respiratory distress syndrome (ARDS)
have very high D-dimer levels and low fibrinogen levels because of consumptive coagu-
lopathy. Therefore, the use of anticoagulants for patients with severe COVID-19 has been
recommended by expert consensus and the World Health Organization (WHO) [11–13].
There is more than ample existing evidence on the use of heparin and related derivatives,
including fractionated heparin, low-molecular-weight heparin (LMWH), and direct oral
anticoagulants (DOACs), to prevent or treat thrombotic complications in moderate to
severe COVID-19 cases. This therapy balances the drug–drug interaction and individual
risk of thrombosis versus bleeding [14,15].

Recent studies have shown that the role of heparin in COVID-19 is more than just
anticoagulation. Studies have described its “pleiotropic activity”, but this must be further
proven in clinical trials [16]. Molecular modeling studies show that the SARS-CoV-2 spike
protein interacts with both host cellular receptor heparan sulfate and ACE2 through its
receptor-binding domain (RBD) [17]. Hence in a model in which viral attachment and
infection involves heparan sulfate-dependent enhancement of binding to the ACE2 receptor
(Figure 1), then exogenous heparin will not only be part of anticoagulation but also inhibit
viral adhesion to the cell membrane, affecting infectivity. This mechanism of infection
could reveal other targets to interfere with viral infection and spread.
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monary embolism (PE) from provoked leg injury-related deep vein thrombosis (DVT) on 
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both lungs diffusely with no other significant findings on other organ systems. Significant 
negative exam findings were no jugular venous pressure (JVP), heart murmur, or leg 
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replicate inside the cell and finally are released to increase the infection to the neighboring cell, (B) in the presence of heparin,
the accessibility to heparin sulfate proteoglycan is decreased, and hence the virus is not able to internalize, which results in
a decrease in virus binding to the cell surface.

2. Case Presentation

In our case observation, we had a 71-year-old obese (body mass index (BMI) 33, weight
204.8 pounds/92.9 kg, height 66 inches/167.64 cm) African American male who looked
younger than his age with a relevant past medical history (Table S1, Past medical history for
details and Table S2 for Home medication list) of uncontrolled hypertension but controlled
hyperlipidemia, compensated Class IA systolic cardiomyopathy with ejection fraction
35–40%, coronary heart disease, diabetes hemoglobinA1c (HgA1c 8.3%), pulmonary em-
bolism (PE) from provoked leg injury-related deep vein thrombosis (DVT) on warfarin
International Normalized Ratio (INR) 2–3 due to recurrence in 2015, pelvo-abdominal
horse-shoe kidney, Gold class 1A chronic obstructive pulmonary disease (COPD), fatty
liver, mild anemia, tobacco use in remission and intermittent alcohol. He presented with
4–6 days of subjective fever, and worsening sinus and cough symptoms causing dyspnea
and dizziness with mild exertion from walking to the bathroom from bed. He also had
generalized weakness and cough with clear to yellow phlegm. He had no chest pain,
orthopnea, or paroxysmal nocturnal dyspnea but had palpitations on mild exertion. Patient
denied nausea, vomiting, diarrhea, dysuria or leg swelling. On arrival, he was alert and
oriented. His significant vital signs at rest (Table S3) were afebrile, with a heart rate of
87–98 and BP (blood pressure) of 201/110–140/92, and RR (respiratory rate) of 14–18.
He was hypoxic on room air with O2 sats (oxygen saturation) of 93% at room air, but when
he stood up to go to the bathroom, his O2 sats dropped to 85% on room air, RR rose to 24,
HR rose to 120, and SBP (systolic blood pressure) dropped to 96. He was stabilized and
required 2–3 L of oxygen saturation with 94–96% and intravenous normal saline fluids
for hypotensive SBP. He also felt dizzy getting up. On exam, he was feeling weak but
alert and oriented to name, place and date. He was ambulatory, but only for a very short
distance before he would decompensate, as mentioned above. He had rhonchi in both
lungs diffusely with no other significant findings on other organ systems. Significant
negative exam findings were no jugular venous pressure (JVP), heart murmur, or leg
edema. His significant bloodwork showed he was positive for the Covid-19 molecular
test, elevated liver function tests (LFT) (Table 1), elevated COVID inflammatory panel
with normal pro-BNP (brain natriuretic peptide) and troponin-I (Table 2), urine showing
glucosuria and a high specific gravity of 1.024. A low vitamin D of 11 and folate of 5.2 were
noted (Table 3). His prothrombin time and international normalized ratio (PT/INR) was
therapeutic at 2.5 with elevated platelets at 480/uL, and mild, stable anemia (Table 4).
Chest X-ray and CT angiography (CTA) showed no pulmonary embolism (PE) but bilateral
multilobe ground-glass opacities (GGO). His electrocardiogram (EKG) was sinus tachycar-
dia with no ST-T changes. Table 5 presents the blood chemistry. On admission, the patient
received fluids and methylprednisolone (80 mg drip), and remdesivir was started the
following day along with community bacterial pneumonia antibiotics (ceftriaxone 2 g with
azithromycin 500 mg) and mometasone inhaler. He received COVID-19 related supple-
ments including vitamin C, vitamin D, zinc, melatonin, thiamine, and folate as part of
his inpatient medications (Table S4). He declined experimental treatment. He repeatedly
declined consent for convalescent plasma. He was generally improving as perceived by
the patient symptomatically and based on his inflammatory markers (Table 4) and other
labs, except for platelet count, which was high on admission but dropped to normal on
day 4 (Table 1). He did not require supplemental oxygen at rest or walking short distances
within the room but it was still required for walking during physical therapy by day 3.
He expressed the desire to go home on oxygen as needed when remdesivir infusion was
completed. Unfortunately, on Day 4, he decompensated suddenly late afternoon with a
mild rise in troponin-I (0.06) and a D-Dimer rise to >20 from 1.1 (Table 4), while being
therapeutic on warfarin since admission. His anemia was stable although his white blood
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cells (WBC) rose (Table 1). We attributed this to methylprednisolone. His cultures showed
no growth in both blood and urine. His chest X-ray from late the night before showed wors-
ening of infiltrates. His oxygen requirement increased from 2 L to 4 L later on the day of
decompensation. The patient did not believe our concerns of an impending critical adverse
event. After educating the patient in the presence of our African American respiratory
therapist, we immediately ordered the conversion of warfarin to therapeutic Lovenox in
addition to EKG, telemetry, and CTA for PE. Unfortunately, we were too late; while going
for CTA, he died from cardio-pulmonary arrest with initial supraventricular tachycardia
(SVT) with a rapid ventricular response (RVR) and then pulseless electrical activity (PEA)
that could not be reversed. CPR (cardio-pulmonary resuscitation) teams documented right
heart strain on bedside echo when in PEA. Unfortunately, the family declined postmortem,
but we were able to get levels of IL-4, IL-8 and confirmed COVID-19 positive antibodies
(Table 6) from a small tube of blood left from that day. There was not enough blood for
other studies.

Table 1. Liver function profile.

Marker Units Day 0/Admit Day 1 Day 2 Day 3 Day 4/Death

Protein g/dL 7.1 6.7 6.0 L 6.1 L
Albumin g/dL 3.2 L 3.1 L 2.7 L 2.8 L

T.Bil mg/dL 1.1 1.1 0.5 0.6
AlkPhos U/L 68 67 68 77

A U/L 75 H 62 H 67 H 35 H
ALT01 U/L 59 H 53 61 H 50

Tbil: Total Bilirubin; AlkPhos: Alkaline Phosphatase; AST01: Aspartate Aminotransferase; ALT01: Alanine
Aminotransferase.

Table 2. Inflammatory labs profile.

Marker Units Day 0/Admit Day 1 Day 2 Day 3 Day 4/Death

PT Sec 26.7 H 27.5 H 26.1 H 26.4 H
INR Ratio 2.50 H 2.60 H 2.43 H 2.48

Fibrinogen mg/dL 818 H
D-Dimer ug/mL 1.14 H 1.04 H - >20.0 H

CRP mg/L 126.6 H 81.8 H - 60.7 H
Ferritin ng/mL 2495.0 H 2432.0 H - 1845.0 H

Procalcitonin ng/mL 0.14 0.09 - 0.06
LDH-V U/L 650 H 646 H - 780 H

Lactic Acid mmol/L 1.5 1.5 - 1.5
CPK U/L 496 H 318 H - 165

Troponin-I ng/mL 0.0 0.028 - - 0.063 H
BNP pg/mL 58 50 36

Cortisol ug/dL 2.6
PT: Prothrombin time; INR: International Normalized Ratio; F-Xa: Factor Xa; CRP: C-Reactive Protein;
LDH-V: Lactate Dehydrogenase; CPK: Creatine Phospho-Kinase; BNP: Brain Natriuretic Peptide.
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Table 3. Preventive labs profile.

Marker Units Day 0/Admit Day 1 Day 2

HgbA1c % 8.3 H
Chol mg/dL 138
Trigly mg/dL 84
HDL mg/dL 39
LDL mg/dL 82.2

TSH (0) ulU/mL 0.6
VitD ng/mL 11

B12 (0) pg/mL 379
FolA (0) ng/mL 5.2 L

Iron ug/dL 34 L
HgbA1c: Hemoglobin A1c; Chol: Cholesterol; TriGly: Triglycerides; HDL: High-Density Lipoprotein; LDL: Low-
Density Lipoprotein; TSH: Thyroid Stimulating Hormone; VitD: Vitamin D; B12: Vitamin B12; FOLA: Folic Acid.

Table 4. Complete blood count (CBC) profile.

CBC Units Day 0/Admit Day 1 Day 2 Day 3 Day 4/Death

WBC4 103/uL 10.66 H 8.96 H 12.29 H 11.43 H 11.61 H
HGB4 g/dL 12. L 11.6 L 10.6 L 10.9 L 10.60 L
HCT4 % 35.0 L 32.9 L 29.9 L 30.7 L 29.8 L
PLT4 103/uL 480.0 H 468.0 H 517.0 H 544.0 H 293 H

NEUT%4 % 87.5 H 78.4 H 86.9 H 85.7 H 80.0 H
LY%4 % 7.5 L 15.4 L 6.8 L 7.2 L 8.9 L

WBC4: white blood cells; HGB4: Hemoglobin; HCT4: Hematocrit; PLT4: Platelets; NEUT%4: Neutrophils;
LY%4: Lymphocyte.

Table 5. Blood chemistry profile.

Chemistry Units Day 0/Admit Day 1 Day 2 Day 3 Day 4/death

Na mmol/L 137 139 133 L 136 136
K+ mmol/L 3.3 L 3.2 L 4 4 3.6

CL− mmol/L 97 L 99 L 101 104 103
CO2-V mmol/L 29 H 27 22 23 21 L
BUN mg/dL 15 17 26 H 19 19

Creat2 mg/dL 0.96 0.97 1.12 0.96 0.83
Gluc mg/dL 133 H 139 H 323 H 242 H 236 H
Ca mg/dL 8.3 L 8.2 L 7.8 L 8.0 L 8.0 L
iCa nmol/L 0.99 L 1.01 L 1.05 L 1.14 L

Phos mg/dL 1.5 L 2.9 2.2 L 2.6
Mg++ mg/dL 1.6 2.8 1.9 1.6
EGFR mL/min 78 78.2 93.4 110.5

Na: Sodium; K+: Potassium; Cl−: Chloride; CO2-V: Carbon dioxide/Bicarbonate; BUN: Blood urea nitrogen;
CREAT2: Creatine; GLUC: Glucose; CA: calcium; iCA: ionized Calcium; Phos: Phosphate; Mg++: Magnesium;
eGFR: estimated glomerular filtration rate.

Table 6. Interleukin and antibody tests after death.

Tests Units Result Flag Ref. Intervals

IL-4, Serum pg/mL <31.2 0.0–31.2
IL-8, Serum U/mL 437.1 HIGH 0.0–66.1

SARS-CoV-2 Semi-Quant
Total Ab U/mL 224.9 HIGH <0.80

IL-4: interleukin-4; IL-8: Interleukin-8; Ab: Antibody.

3. Discussion

In our patient, it is concerning that while inflammatory markers were improving,
the patient had suddenly developed a D-dimer of greater than 20 despite having therapeu-
tic levels of warfarin. We also noted a minor rise in troponin-I (Table 4). It was interesting to
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see that IL-4 was not detected while IL-8 was very high. Noted SARS-coV-2 total antibodies
were elevated but less than 300 (Table 6). Coagulopathy due to progressive cytokine storm
is a significant complication of COVID-19 and needs to be studied further for treatment
modification. Troponin rise seems to be due to type 2 ischemia related to right heart
strain from hyper-coagulopathy. It was surprising to see that IL-4 was undetected. In the
literature, IL-4 has been shown to increase in COVID-19 patients [18], unless the patient
had severe lung injury due to depletion of innate antiviral immune response defenses.
When the D-dimer rose to >20, the patient seemed to have lost all immune defenses. How-
ever, the patient was not in disseminated intravascular coagulation (DIC) based on stable
hematocrit and INR. Very high IL-8 was expected with disease progression with the rise
in SARS-CoV-2 antibodies. The level of antibodies <300 indicated that immunity was not
yet fully developed. This case indicates that warfarin may not be an effective treatment
for COVID-19 related coagulopathy. Instead, heparin and its derivates might be more
efficacious alternatives. This was the only patient we did not give heparin products to
on admission, who died unexpectedly thinking he was anticoagulated. The inability of
therapeutic warfarin anticoagulation to control the progression of COVID-19 hypercoagu-
lation in moderate COVID 19 syndromes is hidden in the uniqueness of heparin and its
relationship to the immune-thrombosis system.

Inflammation and coagulation are linked. The coagulation pathway (Figure 1) is a
cascade of events that leads to hemostasis and allows rapid healing. Acute infections,
including viral ones, induce host cell/tissue disruption leading to systemic inflammatory
response and coagulation disruption [19]. Tissue injury leads to a decrease in antithrombin
(AT), which potentiates the coagulation process. Both the coagulation pathways, intrinsic
and extrinsic, come together at factor Xa in a common pathway (Figure 1). The innate
immune defense and coagulation system, collectively known as the immune-thrombosis
system, produces a distinct intravascular thrombi compartment with antimicrobial peptides
to limit microbial dissemination [20,21]. Heparin and its derivatives are involved in the
immune-thrombosis system in containing early infection [17,22].

Heparin and warfarin characteristics are summarized in Figure 1. As an anticoagulant,
heparin and its derivatives bind to ATIII, which inactivates factor Xa and IIa, affecting
the intrinsic pathway, measured as prolonged PTT. The anticoagulant activity of heparin
is associated with the formation of the heparin-antithrombin complex. Antithrombin is
a plasma α2 globulin that inhibits the activity of coagulation factors, which are serine
proteases. The complex of antithrombin with heparin increases the inhibitory effect of
antithrombin on coagulation factors by up to 1000-fold. The heparin-antithrombin complex
inhibits enzymatic activity and neutralizes the active form of factors X and XII, XI, IX,
and thrombin. In the case of thrombin, the effect of the heparin-antithrombin complex is
mainly due to thrombin formation rather than inhibition of thrombin activity. High concen-
trations of heparin may also inhibit platelet aggregation [23]. At the same time, warfarin
inhibits the synthesis of Vit K-dependent factors (factors II, VII, IX, X, protein C and S),
which slows the body’s ability to form clots, affecting the extrinsic pathway, measured as
prolonged PT/INR. Warfarin, a vitamin K antagonist anticoagulant drug, belongs to the
4-hydroxycoumarins like acenocoumarol. The primary mechanism of the anticoagulant ac-
tivity of 4-hydroxycoumarins is the inhibition of vitamin K epoxide reductase. This enzyme
restores the active form of vitamin K by converting the inactive alkoxide-epoxide form of
vitamin K into its active reduced hydroquinone form. Reduced vitamin K is an essential
cofactor of hepatic γ-glutamyl carboxylase activity. This enzyme adds a carboxyl group to
the glutamic acid residues in immature clotting factors II, VII, IX, and X as well as proteins
S, C, and Z. Inhibition of γ-glutamyl carboxylase activity due to a deficiency of reduced
vitamin K leads to the formation of immature forms of coagulation factors that cannot be
converted to the active forms. This leads to a reduction in blood clotting [24,25]. Studies
have shown that both heparin [26] and coumarins such as acenocoumarol [24,27,28] and
warfarin [25,29] have anti-inflammatory and therapeutic effects in experimental pancre-
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atitis. This observation suggests that in other diseases with an inflammatory component,
heparin and warfarin may be helpful in the treatment of these diseases.

The role of heparin in COVID-19 infection is complex. In the form of heparan sulfate
proteoglycans (HSPGs), heparin has the added benefit of being host cell surface receptors
for pathologic proteins and viruses [30]. Hence, heparin is involved in “pleiotropic activity”,
which is anti-inflammatory, immunomodulatory, antiviral, and anti-complement [16].
Interestingly, experimental studies have shown that the SARS-CoV-2 spike protein interacts
with not just ACE2; but also cellular heparan sulfate proteoglycans (HSPGs) through its
RBD (receptor binding domain) [12]. Hence, both ACE2 and HSPG receptors on the cell
surface are needed for the SARS-CoV-2 virus to enter the target host cell. Thus, heparin and
heparan sulfate can antagonize the binding of pathogens to HSPGs on host cells and stop
their cellular internalization and dissemination, acting as a therapeutic armamentarium
against COVID-19 in addition to the anticoagulation effect [17,31]. A model representing
viral replication with and without heparin is depicted in Figure 2.
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lipid; PLa: activated Phospholipid; HSP: Heparan Sulphate Polysaccharides; LMWH: Low molecular weight heparin;
UFH: Unfractionated heparin, “a” next to the names: activated form, AT: Antithrombin.

4. Conclusions

The patient’s dismal outcome due to progression of moderate COVID-19 to sudden
severe and then critical COVID-19 status while on therapeutic warfarin indicates that
alternatives to warfarin anticoagulation such as heparin and related derivatives should be
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considered. Since the patient was not on heparin, we hypothesize that continued viral cellu-
lar internalization through HSPGs, and ACE2 receptors bound to related COVID-19 spike
proteins leads to virus dissemination and increasing host viral infectivity. Unlike warfarin,
studies have shown that heparin possesses anti-inflammatory, immunomodulatory, antivi-
ral, and anti-complement activity against microbial injury, which could have benefited from
limiting viral and microbial infectivity from immune-thrombosis and anticoagulation. Fur-
ther studies should be done comparing the efficacy of warfarin versus heparin in COVID-19.
The patient had COVID 19 antibodies and elevated IL-8, but no IL4 was detected. Coagu-
lopathy due to the progressive cytokine storm of COVID-19 needs to be studied further
for treatment modification on therapeutic warfarin pre-COVID 19 infections. Further
studies are also needed on HSPGs affecting COVID-19 virus entry, inflammation, immune
activation, and the pleiotropic role of heparin in COVID-19 to reduce host viral infectivity.

Heparin and heparan sulfate antagonizes the binding of these pathogens to HSPGs
and stops their cellular internalization. However, the anticoagulant effect of these agents
has been limiting their use in the treatment of viral infections. Perhaps heparin-binding
peptides (HBPs) are suitable nonanticoagulated agents that may be capable of antagonizing
binding of heparin-binding pathogens (HBP) to HSPGs. Thus, the use of HBPs as viral
uptake inhibitors may address their benefits and limitations to treat viral infections. Further-
more, a variant of these peptides can be considered a novel therapy in coronavirus disease
2019 (COVID-19) infection [16,22]. Recently, a retrospective cohort study analyzed the
relieving effect of LMWH in patients with COVID-19 to investigate the anti-inflammatory
effects of heparin and the delay of disease progression [32]. Compared to the control
group, patients treated with heparin improved hypercoagulability, and showed a reduction
in IL-6 and neutralization of its biological activity, and an increase in the percentage of
lymphocytes. However, the same benefit and safety of heparin as anti-inflammatory and
antiviral agents in a clinical setting are yet to be defined due to conflicting results reported
by previous clinical trials.

5. Clinical Relevance

Our observation of a patient on therapeutic warfarin, despite high dose steroids
and remdesivir, progressed suddenly to death with a sudden rise in D-dimer greater
than 20. For such patients who are on chronic warfarin anticoagulation, when they are
diagnosed with “moderate COVID 19 syndrome”, warfarin anticoagulation may not be as
suitable compared to heparin and its derivatives. In addition, D-dimer comes from both
intravascular and extravascular fibrin. It is known that this test is characterized by a high
sensitivity and low specificity [33]. This may happen in patients with nCoV-19 infection
who suffer from pneumonitis, which can be the source of D-dimer from extensive alveolar
fibrin deposition [34]. However, this patient had low IL-4 [21].

Based on the studies mentioned above, since the patient was not on heparin-related
anticoagulation, we hypothesize that continued viral uptake and cellular internalization
through the patient’s HSPGs related COVID-19 receptors lead to dissemination of virus
and increasing host viral infectivity. Unlike warfarin, studies have shown that heparin
possesses anti-inflammatory, immunomodulatory, antiviral, and anti-complement activity,
which could have offered a benefit in limiting viral and microbial infectivity along with
anticoagulation to inhibit the progression of moderate COVID 19 syndromes. Unfortu-
nately, this patient did not reduce infectivity, leading to worsening cytokine storm and
hemostasis. The patient had COVID 19 antibodies and elevated IL-8, but no IL-4 was
detected. We did not have enough blood to check other cytokines. The family opted not to
get an autopsy. Inflammatory and angiogenic biomarker IL-8, similar to IL-6 but with a
more extended life, is a chemotactic factor that attracts neutrophils, basophils, and T-cells
during the inflammatory process. It is close to platelet factor 4.

While serum IL-6 becomes elevated in severe COVID-19 patients, serum IL-8 was
quickly detectable in COVID-19 patients with mild syndromes and severe disease [20].
In addition, various studies of COVID-19 patients have detected elevated IL-4 levels as
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part of the cytokine storm associated with severe respiratory symptoms [21], which is
also puzzling.

Further studies should be done comparing the efficacy of warfarin versus heparin in
moderate COVID-19. Data analysis is critical to compare COVID patients on chronic war-
farin and other anticoagulants. Perhaps a pilot should be done for such patients on warfarin
with and without heparin-based therapeutic anticoagulation. Fondaparinux properties
are equally crucial as heparin derivatives [35] and can also be studied as AT III inhibitors.
There may be genetic and race factors contributing to this coagulopathy. We wondered if
horse-shoe kidney had any role to play. It is true that neither heparins nor warfarin may
be able to reverse this severe “cytokine’ storm”. It is also known that the course of the
COVID-19 disease can suddenly be worse. Either way, based on drawbacks of warfarin [36]
compared to the advantages of using heparin and its derivatives, we strongly recommend
further conclusive research for considering a change in the treatment protocol for COVID
19 syndrome patients on chronic warfarin to be converted to therapeutic anticoagulation
with heparin and its derivatives for improved survival outcome.
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Ambroży, T.; Dembiński, A. Protective Effect of Pretreatment with Acenocoumarol in Cerulein-Induced Acute Pancreatitis. Int. J.
Mol. Sci. 2016, 17, 1709. [CrossRef]
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