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Abstract: The relationship between parasite virulence and transmission is a pillar of evolutionary
theory that has implications for public health. Part of this canon involves the idea that virulence
and free-living survival (a key component of transmission) may have different relationships in
different host–parasite systems. Most examinations of the evolution of virulence-transmission
relationships—Theoretical or empirical in nature—Tend to focus on the evolution of virulence,
with transmission being a secondary consideration. Even within transmission studies, the focus
on free-living survival is a smaller subset, though recent studies have examined its importance in
the ecology of infectious diseases. Few studies have examined the epidemic-scale consequences
of variation in survival across different virulence–survival relationships. In this study, we utilize
a mathematical model motivated by aspects of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) natural history to investigate how evolutionary changes in survival may influence several
aspects of disease dynamics at the epidemiological scale. Across virulence–survival relationships (where
these traits are either positively or negatively correlated), we found that small changes (5% above and
below the nominal value) in survival can have a meaningful effect on certain outbreak features,
including R0, and on the size of the infectious peak in the population. These results highlight the
importance of properly understanding the mechanistic relationship between virulence and parasite
survival, as the evolution of increased survival across different relationships with virulence may have
considerably different epidemiological signatures.

Keywords: virulence; free-living survival; disease dynamics; evolution of infectious disease

1. Introduction

Interactions between the life history of a pathogen and the environment in which it is embedded
drive the evolution of virulence. These interactions thus dictate both the experience of disease at the
individual host level and the shape of disease dynamics in host populations [1,2]. The nature of the
interaction between virulence and transmission has been the object of both theoretical and empirical
examination [2–8]. Free-living survival, here defined as the ability of a pathogen to persist outside
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of its host, is one of many transmission life-history traits associated with virulence. The relationship
between the two varies between host–pathogen types and different environments [4,8–10].

Several hypotheses serve as the canon in the evolution of virulence, theorizing its relationship
with transmission traits. The Curse of the Pharaoh hypothesis—Named after a tale about a mythical
curse that torments individuals who dig up tombs of Egyptian pharaohs [11]—Suggests that, if a
parasite has high free-living survival, then it is far less dependent on its host for transmission and,
consequently, will have no evolutionary incentive to decrease virulence [2,4,12]. The potential negative
fitness consequences of killing hosts rapidly (being highly virulent) can be counteracted by persisting in
the environment until the arrival of new susceptible hosts. Any presumptive selection on beneficence
may be relaxed: parasites can detrimentally affect the health of hosts at no cost to transmission because
most of their life cycle is spent outside of a host. Previous studies support a positive correlation
between free-living survival and mortality per infection (a common proxy for virulence) [13].

Alternatively, the “tradeoff” hypothesis suggests that there is some intermediate level of parasite
virulence [3,6,14] that is optimal for a given setting. In this scenario, too high a virulence kills the host
and parasite and too low a virulence leads to failure to transmit. Applying this hypothesis specifically
to free-living survival would suggest that selection for increased free-living survival should come
at the expense of virulence (producing a pathogen that is less harmful to the host). Mechanistically,
as a consequence of increased adaptation to a nonhost environment, a virus may be less fit to replicate
inside a host [9,15]. For example, a more robust viral capsid may help to survive harsh environmental
conditions but may make it more difficult to package RNA/DNA [15]. More generally, the tradeoff

hypothesis can be framed in the context of a life-history tradeoff: investment in certain parts of the life
cycle often comes at the expense of others [2,16].

Theoretical studies have explored varying evolutionary relationships between heightened
virulence and extreme pathogen longevity [4,5,12,17–19]. One critical component of these studies
revolves around whether virulence evolves independently of free-living survival. For example, some
models have argued [4] that pathogen virulence is independent of survival under a set of conditions:
when the host–pathogen system is at an equilibrium (evolutionary and ecological), if host density
fluctuates around an equilibrium, or if turnover of the infected host population is fast relative to
the pathogen in the environment. However, if the host–pathogen system is at disequilibrium and
if the dynamics of propagules in the environment are fast compared to the dynamics of infected
hosts, then virulence is, as hypothesized, an increasing function of propagule survival [4]. Kamo and
Boots [17] examined this hypothesis by incorporating a spatial structure in the environment using
a cellular, automata model and found that, if virulence evolution is independent of transmission,
then long-lived infective stages select for higher virulence. However, if there is a tradeoff between
virulence and transmission, there is no evidence for the Curse of the Pharaoh hypothesis, and in
fact, higher virulence may be selected for by shorter rather than long-lived infectious stages. Further,
the evolution of high virulence does not have to occur solely through a transmission–virulence tradeoff.
Day [18] demonstrated how pathogens can evolve high virulence and even select for traits to kill the
host (e.g., toxins) if pathogen transmission and reproductive success are decoupled. These studies
emphasized the context-dependence of virulence–survival relationships. Understanding where in the
relationship between virulence and survival a given pathogen population exists may allow one to
understand how virus evolution will manifest at the level of epidemics.

In this study, we examine the epidemic consequences of different virulence–survival relationships—
Positive and negative correlation—In a viral disease with an environmental transmission component.
In order to measure how pathogen survival influences disease dynamics, we included an environmental
compartment in our model, which represents contaminated environments that act as a reservoir for
persisting pathogens, causing disease spread when they come in contact with susceptible individuals
(infection via “fomites”) [20,21].

We find that the identity of the virulence–free-living survival relationship (e.g., positive vs.
negative) has distinct implications for how an epidemic will unfold. Some, but not all, features of an
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outbreak are dramatically influenced by the nature of the underlying virulence–survival relationship.
This indicates that signatures for evolution (adaptive or other) in a pathogen population will manifest
more conspicuously in certain features of an outbreak. We reflect on these findings in light of their
theoretical implications on the evolution and ecology of infectious disease and for their potential utility
in public health interventions.

2. Materials and Methods

2.1. Model Motivation and Application

The mathematical model explored in this study is adapted from a recent one developed to
investigate environmental transmission of SARS-CoV-2 during the early-stage outbreak dynamics of
coronavirus disease 2019 (COVID-19), with parameter values based on fits to actual country outbreak
data [22]. In this study, we utilize this model to examine questions about the evolution of free-living
survival. While the phenomenon we examine is a very relevant one that manifests in the real world,
we want to emphasize that none of the methods or results in this study are intended to be applied to the
current COVID-19 pandemic (as of September, 2020). This study is an attempt at responsible theoretical
biology, with data-informed models and inferences that are germane to the natural world. However,
neither do we support the extrapolation of these findings to any particular aspect of COVID-19 nor
should they inform a policy or intervention. The model applies to a number of scenarios that include
outbreaks in a naïve host population. This describes situations such as the evolution of novel viral
lineages, viral spillover events, or host shifts, where a virus with a preexisting relationship between
virulence and survival emerges in a population of new hosts. Another such scenario where this model
applies is one where a virus has already emerged but evolves in a subpopulation in the novel hosts
before a migration event of some kind introduces the evolved virus population to a fully susceptible
population of hosts.

2.2. Model Description

The model is implemented via a set of ordinary differential equations, defined by Equations (1)–(6).
It implements viral free-living survival via the “Waterborne Abiotic or other Indirect Transmission
(WAIT)” modelling framework, coupling individuals and the pathogen within the environment [23,24].

Within the model, the βw term allows for individuals to become infected via viral pathogen
deposited in the environment and terms σA and σI allow asymptomatic and symptomatic individuals
to deposit pathogens into the environment, respectively. Adapted from the more traditional SEIR
(susceptible-exposed-infected-recovered) model, the SEAIR-W (susceptible-exposed-asymptomatic-
infected-recovered-WAIT) model interrogates the consequences of the two hypotheses outlined above
while representing the dynamics of a very relevant disease system (SARS-CoV-2) that includes
an asymptomatic infectious population. While the importance of asymptomatic transmission was
debated early in the pandemic, many studies have affirmed its role in the spread of disease [25–27].
Though environmental transmission of SARS-CoV-2 remains a controversial topic, it is plausible that
asymptomatic individuals may spread disease through frequent contact with the environment, thus
increasing the proportion of virus that is free-living [28]. We acknowledge that mathematical models
of epidemics can be limited by “identifiability,” which can obfuscate the relative importance of some
routes of transmission. In models that have both indirect and direct routes of transmission, it can be
very difficult to conclude that one route is predominant [29–31].

dS
dt

= µ(N − S) −
(
βAA + βII

N
+ βWW

)
S (1)

dE
dt

=

(
βAA + βII

N
+ βWW

)
S− (ε+ µ)E (2)
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dA
dt

= εE− (ω+ µ)A (3)

dI
dt

= (1− p)ωA− (v + µI)I (4)

dR
dt

= pωA + vI − µR (5)

dW
dt

=
(
σAA + σII

N

)
(1−W) − kW (6)

Figure 1 depicts the compartmental diagram for the model. The direction of the arrows corresponds
to the flow of the individuals and the pathogen through the system. Note that individuals can move
directly from the asymptomatically infected compartment to the recovered compartment (bypassing
the symptomatic compartment) via what we call a “mild track”. The dashed arrows represent WAIT
coupling to the environment. The model is inspired by one developed to interrogate environmental
transmission of SARS-CoV-2 [22].

Figure 1. Compartmental diagram of the SEAIR-W (susceptible-exposed-asymptomatic-infected-
recovered) version of a-WAIT (Waterborne Abiotic or other Indirect Transmission)) model: this is based
on a previously developed mathematical model used to interrogate environmental transmission of
SARS-CoV-2 (see [22]).

2.3. Simulations of Outbreaks

The system was numerically integrated using the “odeint” solver in the Scipy 1.4—Python scientific
computation suite [32]. The simulations track the populations for each of the compartments listed in
Figure 1. Each model run occurred over 250 days, which amounts to over 8 months of the epidemic or 5×
the peak of the outbreak. This length of time is consistent with the antecedent SARS-CoV-2 model [22],
long enough for the dynamics of the system to manifest. Note however that, for this study, we are
especially interested in the early window of an outbreak: the first 30 days. We focus on this window
because this is the time frame that best captures the underlying physics of an epidemic, as 30 days is
often before populations are able to adjust their individual behaviors. The code constructed for the
analysis in this study is publicly available on github: https://github.com/OgPlexus/Pharaohlocks.

2.4. Population Definitions and Parameter Values

Table 1 outlines the definitions of each population and provides the initial population values
used for all simulations conducted in this study. The nominal parameter values used are defined in
Table 2. The initial values are drawn from the aforementioned COVID-19 outbreak study, derived from
empirical findings and country-level outbreak data [22].

https://github.com/OgPlexus/Pharaohlocks
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Table 1. Definitions and initial values for the populations represented by each compartment: the values
here are the averages of the model values across all countries developed in a prior COVID-19 study [22].

Symbols Value Units Definitions

S0 57.05 × 106 people Susceptible individuals
E0 66.50 people Exposed individuals
A0 13.30 people Asymptomatic individuals
I0 13.30 people Symptomatic individuals

Rec0 0 people Recovered individuals
W0 1% unitless % of viral pathogen in environment

Table 2. Definitions for the nominal parameter values used in this study: parameter values were
developed from empirical findings and country-level data, as discussed in another study [22].

Symbols Values Units Definitions

µ 1/(80.3 × 365) 1/day Natural death rate (reciprocal of the upper bound of average human lifespan)
µI 0.00159 1/day Infected death rate (natural death rate + disease-induced death rate)

η = (ω − ε−1) 5.5 days SARS-CoV-2 incubation period
1/ω η − ε−1 days Expected time in the asymptomatic state
ν 0.0305 1/day Recovery rate (average of 3 to 6 weeks)
p 95.6% percent Percent that moves along the “mild” recovery track

k 0.649 1/day Waning virus rate in the environment (using the average of all material
values, wood, steal, cardboard, and plastic)

βa 0.550 1/day Contact rate of people with people × transmission probability of people to
people by A-person

βI 0.491 1/day Contact rate of people with people × transmission probability of people to
people by I-person

βW 0.031 1/day Contact rate of person with environment × transmission probability of
environment to people

σa 3.404 1/day Contact rate of person with environment × probability of shedding by
A-people to environment

σI 13.492 1/day Contact rate of person with environment) × probability of shedding by
I-people to environment

1/ε 2.478 days Average number of days before infectiousness

2.5. Virulence Definition

In this study, we define virulence as the capacity to cause a disease. In order to measure it,
we utilize a set of parameters that uniformly increase the rate or probability of causing symptomatic
disease or the severity of those symptoms (including death). Our definition is more comprehensive
than many other models of parasite virulence (e.g., [4,13]), which tend to focus on a single aspect of the
natural history of disease associated with harm to a host (e.g., the fitness consequences of an infection
on the host population or the case fatality rate). Instead of having to justify a definition built around a
single term (e.g., the term associated with fatality), we took a collective approach to defining virulence
through all terms that foment the viral-induced onset of symptomatic disease and death. This definition
allows for the reality of pleiotropic effects in viral pathogens, where adaptations can have multiple
effects on the natural history of disease [2,33]. Our definition of virulence emphasizes terms that
influence host wellness and/or are symptoms of disease. The iteration of virulence used in this study
also undermines the potential for overly weighting only one or a small number of parameters under a
large umbrella of virulence. Because so many varying definitions exist for virulence, we have also
performed calculations according to a different definition of virulence, one that exclusively considers
terms that have a detrimental direct effect on the host and neither of the terms that reflect symptoms of
severe disease (σa and σI). These calculations can be found in the Supplementary Materials.

The collection of parameters that we use to define virulence are as follows: the infected population
death rate (µI), the incubation period of SARS-CoV-2 (η), the rate of transfer from asymptomatic to
symptomatic (1/ω), the infected population recovery rate (ν), the percent of individuals that move from
the asymptomatic to the recovered compartment without showing symptoms (the “mild” recovery
track, p), the contact rate of people with people × the transmission probability of people to people by
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an asymptomatic individual (βA), the contact rate of people with people × the transmission probability
of people to people by an asymptomatically infected person (βI), the contact rate of people with the
environment × the probability of shedding by an asymptomatic individual to the environmental
(σA), the contact rate of people with the environment × the probability of symptomatically infected
individuals shedding in the environment (σI), and the average number of days before infection (1/ε).

Table 3 outlines the direction in which each of the virulence-associated parameters are modulated
as virulence decreases or increases. An up arrow (↑) indicates the parameter increases (by an equivalent
percent) when the percent virulence is changed. A down arrow (↓) indicates the parameter decreases
(by an equivalent percent) when the percent change in virulence is applied. Changes in virulence are
then defined, in this study, as an equivalent uniform (percent) change in each of the parameters listed
above. For the purposes of our study, we modify virulence by changing all parameters associated with
virulence by 5%. One could also disambiguate virulence into changes in individual subcomponents;
however, that is not the focus of this current study.

Table 3. Virulence parameters: this is a list of uniformly modulated parameters and the direction in
which they change when virulence is increased or decreased. When virulence changes, an up arrow (↑)
indicates the parameter is increased (by an equivalent percent) and a down arrow (↓) indicates the
parameter is decreased (by an equivalent percent).

Symbols Definition Virulence Increased Virulence Decreased

µI
Infected death rate (natural death rate + disease

induced death rate) ↑ ↓

η = (ω − ε−1) SARS-CoV-2 incubation period ↓ ↑

1/ω Expected time in the asymptomatic state ↑ ↓

ν Recovery rate (average of 3 to 6 weeks) ↓ ↑

p Percent that moves along the “mild” recovery track ↓ ↑

βA
Contact rate of people with people × transmission

probability of people to people by A-person ↑ ↓

βI
Contact rate of people with people × transmission

probability of people to people by I-person ↑ ↓

σA
Contact rate of person with environment) ×

(probability of shedding by A-people to environment ↑ ↓

σI
Contact rate of person with environment × probability

of shedding by I-people to environment ↑ ↓

1/ε Average number of days before infectious ↓ ↑

2.6. Survival Definition

Survival is defined as the set of parameters that, when uniformly modulated, increases the
pathogen’s probability of surviving the outside environment and successfully infecting a new host [2].
In our model, this includes both the waning virus rate in the environment (k) and the contact rate
of an individual with the environment × the transmission probability of the environment to people
(βw). Table 4 outlines the direction (increasing or decreasing) in which these parameters are modulated
when survival is decreased or increased. Within both models, a (percent) change in survival is defined
as an equivalent uniform (percent) change in the survival parameters.

Throughout this study, the impact of changes in virulence and survival (and the relationship
between these traits) are assessed with respect to the following four epidemic metrics: the number
of infected individuals (asymptomatic and symptomatic) at the maximum (when the outbreak is at
its most severe), the rate at which the peak infected population is reached (tmax

−1), the total infected
population after 30 days, and the basic reproductive ratio (R0). Importantly, among these signatures,
the basic reproductive ratio is the most frequently used in epidemiology and benefits from familiarity
and mathematical formalism (see Section 2.7). The other signatures are determined through simulations
of an epidemic for a given set of parameter values. Nonetheless, this study’s inclusion of multiple
features of the epidemic allows us to examine how variation in virus life-history traits may influence
different aspects of an epidemic in peculiar ways.
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Table 4. Survival parameters: this is a list of parameters that are uniformly modulated and the direction
in which they change when survival is increased or decreased. An up arrow (↑) indicates the parameter
is increased by some percent when the equivalent (percent) change in survival is applied. A down
arrow (↓) indicates the parameter is decreased by some percent when the equivalent (percent) change
in survival is applied.

Symbols Definition Survival Increased Survival Decreased

k Waning virus rate in environment (using the average of
all material values, wood, steal, cardboard, and plastic) ↓ ↑

βW
Contact rate of person with environment × transmission

probability of environment to people ↑ ↓

2.7. Basic Reproductive Ratio

Equations (7)–(9) give the analytic expression of the basic reproductive ratio (R0) for the model
used in this study. This expression for R0 can be deconstructed into two components. Equation (8)
only contains parameters associated with person to person transmission (Rp), while Equation (9) solely
contains parameters associated with transmission from the environment (Re). In the Supplementary
Materials, we provide additional information on these terms and their derivations. Applying the
parameters values in Table 2, the numerical value of the basic reproductive ratio is given as R0 ~ 2.82.

R0 =
Rp

√
R2

p + 4R2
e

2
(7)

Rp =
ε(βA(µI + v) + βI(1− p)ω)
(µ+ ε)(µ+ω)(µI + v)

(8)

R2
e =

εβW(σA(µI + v) + σI(1− p)ω)
k(µ+ ε)(µ+ω)(µI + v)

(9)

3. Results

3.1. Model Sensitivity Analysis

Figure 2 depicts a tornado plot that communicates the sensitivity of the model to permutations
in parameters. Across features, the model is most sensitive to parameters that are considered
virulence-associated (Table 3) and is relatively less sensitive to survival-associated parameters (Table 4).
Similar to other features, R0 (Figure 2D) of the model is most sensitive to the parameters ω, βA, and ν.
The sensitivity of R0 to changes inω reflects the importance of the rate of conversion to the symptomatic
state on model dynamics. In addition, βA has a very important influence on the model, consistent with
other findings for COVID-19 that have emphasized the importance of asymptomatic transmission in
disease spread [25–27].

3.2. Illustrative Dynamics of Model System

Based on the parameter values in Table 2, Figure 3A demonstrates the base dynamics of the model
playing out over the first 100 days while Figure 3B shows the dynamics within the environment over
the course of 250 days. In these dynamics, the population begins to be fixed for susceptible hosts.
The disease dynamics manifest in the shapes of the curves corresponding to exposed, asymptomatic,
and symptomatic individuals. Note the long tail of the curve corresponding to contamination by the
environment. The environment remains infectious even after the infected populations have declined
in number. The length and shape of this tail are influenced by the free-living survival of the virus.
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Figure 2. Tornado plot showing the sensitivity of epidemic properties to individual parameter
changes: (A) the number of infected individuals (asymptomatic and symptomatic) at the epidemic
peak; (B) the rate at which the epidemic peak is reached, tmax

−1; (C) the total infected population after
30 days; and (D) the basic reproductive ratio (R0). Filled bars indicate the value of the epidemic feature
when the associated parameter is increased by 5.0% from its nominal value. White bars indicate the
value of a feature when the associated parameter is decreased by 5.0%. Blue coloring with checkered
patterning indicates a parameter associated with survival, and orange coloring with lined patterning
indicates a parameter associated with virulence.

Figure 3. Sample dynamics for the model system: (A) the dynamics for all host compartments within
the model and (B) the fraction of environmental reservoirs in a setting that are contaminated with
infectious virus.



Viruses 2020, 12, 1055 9 of 16

3.3. The Epidemic Consequences of Varying Virulence and Survival

In the next analysis, we examine the epidemic consequences of varying traits associated with
survival and virulence. One can consider this as a scenario where we compare the endpoints of
evolution of different virus populations (corresponding to combinations of values of survival and
virulence) and calculating how these evolved populations manifest in epidemic terms.

In Figure 4, we observe how dynamics of the outbreak are influenced across a space of combinations
of traits altering virulence (see Table 3 for a list of virulence-associated parameters) and survival
(see Table 4 for a list of survival-associated parameters), changed by ±5% (10% overall). In Figure 4D,
we demonstrate how changes in virulence and free-living survival traits influence R0, with variation in
virulence-related traits having the largest effect on R0. Of note is how the range in R0 values varies
widely across virulence–survival values, from nearly 2.0 to 3.7 (Figure 4D).

Figure 4. Heatmap describing the impact of varying virus virulence and survival trait values assessed
across four key epidemic metrics: these heatmaps express the change in (A) the number of infected
individuals (asymptomatic and symptomatic) at the epidemic peak; (B) the rate at which the epidemic
peak is reached, tmax

−1; (C) the total infected population after 30 days; and (D) the basic reproductive
ratio (R0) when virulence and survival are modulated by ±5% within the model. Contour lines are
available for clarity.

3.4. Implications of Virulence–Survival Relationships at Their Relative Extremes

Having observed how outbreak dynamics are influenced by variation in traits that alter
virulence–survival phenotypes, we then examined how each outbreak metric is influenced by the
extreme (±5%) values of the trait combinations considered. Specifically, we assess how a change in



Viruses 2020, 12, 1055 10 of 16

pathogen survival affects outbreak dynamics, based on two expected relationships between survival
and virulence traits.

3.5. Positive Correlation Between Survival and Virulence

In a positive correlation scenario, high values for survival would be associated with high values
for virulence [4,13]. Because the correlations we observe are often not exactly linear, we utilize
quadrants to express a trend, allowing for some variance around the expected “line”. In Figure 5,
the positive correlation scenario can be represented by combinations of virulence and survival residing
in quadrants I and III.

Figure 5. The expected effect of increasing survival on virulence for the two correlation models
considered: here, we present a schematic of how the different hypotheses for the relationship between
virulence and survival manifest on a map with a structure similar to the heat maps shown in Figure 4.
The directions of the arrows depict how increasing survival would affect virulence under the two
hypotheses: the blue arrow indicates the flow of an increasing positive correlation dynamic, while the
direction of the orange arrow indicates an increasing negative correlation dynamic.

If host–pathogen evolution proceeds according to a positive correlation scenario, all outbreak
metrics would show an increase in severity as both survival and virulence increase. Across the range of
variation in virulence and survival traits considered (5% above and below the nominal value), the peak
number of infected individuals increases by approximately 35%, the rate at which the peak is reached
increases by approximately 16%, the total number of infected individuals after 30 days increases by
approximately 98%, and R0 increases by approximately 94% (Figure 6 and Table 5).

Table 5. Positive correlation scenario: comparing epidemic metrics under low survival/low virulence
versus high survival/high virulence scenarios (as in the positive correlation scenario). For each metric
analyzed, these are the heatmap values for the bottom left (at “coordinates” (Vir, Sur)→ (−5%, −5%))
and top right (at “coordinates” (Vir, Sur)→ (+5%, +5%)) corners.

Epidemic Metric min Virulence,
min Survival

max Virulence,
max Survival

% Difference between
min Survival and max Survival

Peak total infected (people) 5.68 × 106 7.64 × 106 +34.51%
tmax

−1 (days−1) 1.99 × 10−2 2.23 × 10−2 +12.06%
Total after 30 days (people) 8.18 × 107 1.62 × 108 +98.04%

Basic reproductive ratio (R0) 1.95 3.78 +93.84%
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Figure 6. The percent change in SEAIR-W outbreak metrics as survival increases from −5% to +5%
for different virulence–survival relationships (positive correlation and negative correlation). For each
metric analyzed, we present the percent difference between the minimum and maximum survival values
given the two hypotheses tested: (i) positive correlation between survival and virulence (comparing low
virulence/low survival to high virulence/high survival) and (ii) negative correlation (high virulence/low
survival to high survival/low virulence). The bars here correspond to the values (percent) in the third
columns of Tables 5 and 6, which denote the differences between the minimum and maximum values.

Table 6. Negative correlation scenario: comparing epidemic metrics under low survival/low virulence
versus high survival/high virulence scenarios (as in the negative correlation scenario). For each metric
analyzed, these are the global heatmap values for the top left (at “coordinates” (Vir, Sur)→ (+5%, −5%))
and bottom right corners (at “coordinates” (Vir, Sur)→ (−5%, +5%)).

Epidemic Metric max Virulence,
min Survival

min Virulence,
max Survival

% Difference between
min Survival and max Survival

Peak total infected (people) 7.39 × 106 5.99 × 106 −23.47%
tmax

−1 (days−1) 2.10 × 10−2 2.23 × 10−2 −0.15%
Total infected after 30 days (people) 1.16 × 108 1.13 × 108 −2.68%

Basic reproductive ratio (R0) 3.67 1.99 −84.39%

3.6. Negative Correlation Between Survival and Virulence

In a negative correlation scenario, high values for survival would be associated with low values for
virulence [2,9,15] and a low peak in total infected population. Pathogens with a life history that exhibits
negative virulence–survival associations would likely appear in quadrants II and IV in Figure 5.

Under negative correlation, outbreak severity decreases as survival increases. Across the measured
range of variation in virulence–survival traits, the peak number of infected individuals decreases
by approximately 23%, the rate at which the epidemic peak is reached decreases by 0.15%, the total
number of infected individuals decreases by 3%, and R0 decreases by approximately 84% (Figure 6 and
Table 6). Across all metrics considered, the effects of increased viral survival on outbreak dynamics is
more extreme under the positive correlation than the negative correlation scenarios (Figure 6).

3.7. Dynamics of Epidemics at Extreme Values for Virus Free-Living Survival

In Figure 7, we observe the disease dynamics at extreme values for survival and the dynamics
corresponding to the fraction of the environment that is contaminated with infectious virus. Consistent
with the data represented in Figure 6, we observe that minimum and maximum simulations differ more
substantially for extreme survival scenarios in the positive correlation scenario than for the negative
correlation scenario.
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Figure 7. Virus outbreak dynamics for the extreme values of virulence and free-living survival
considered for the two different relationships (positive or negative) between virulence and survival
traits: these plots are similar to the illustrative dynamics in Figure 1. Here, we observe the dynamics of
disease corresponding to the extreme values presented in Tables 5 and 6. Subfigures (A,C,E,G) depict
disease dynamics, and (B,D,F,H) depict the dynamics of contaminated environments. (A–D) correspond
to the parameter values considered for the positive correlation scenario, while (E–H) correspond to the
negative correlation scenario.
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The feature of different outbreaks that varies most ostensibly between the correlation scenarios is
the time needed to reach the peak number of infected individuals. In positive correlation simulations,
one can observe that the low virulence, low survival scenario (Figure 7A,B) takes longer to reach
the peak number of infected individuals. Most notably, however, the low virulence, low survival
setting has a far smaller peak of environmental contamination and shorter tail relative to its high
virulence, high survival counterpart (Figure 7D). Similarly, intriguing findings exist in the comparison
between the simulation sets corresponding to extremes in the negative correlation setting (Figure 7E–H).
Especially notable is the difference in the length of the tail of the environmental contamination for the
high virulence, low survival combination (Figure 7F) vs. the low virulence, low survival combination
variant (Figure 7H). The explanation is that, in this model, higher virulence influences (among many
other things) the rate at which the virus is shed into the environment from either the asymptomatic
(σA) or symptomatic (σI) host. We observe how the high virulence, low survival simulation (Figure 7E)
features a symptomatic peak that is larger in size and is prolonged relative to the lower virulence
counterpart (Figure 7G). This relatively large symptomatic population sheds infectious virus into the
environment for a longer period of time, contributing to the long tail of contaminated environments
observed in Figure 5F.

4. Discussion

The virulence–survival relationship drives the consequences of virus evolution on the trajectory
of an outbreak. In this study, we examined how different virulence–survival relationships may dictate
different features of outbreaks at the endpoints of evolution (according to the positive or negative
correlation scenarios). When the parameter space for virulence and survival is mapped, we find
that certain outbreak metrics are more sensitive to change in free-living survival and virulence than
others and that the nature of this sensitivity differs depending on whether survival and virulence are
positively or negatively correlated.

For the positive correlation scenario, when free-living survival varies between 5% below and
above the nominal value, we observed a dramatic change in the total number of infected individuals in
the first 30 days (98% increase from minimum survival to maximum survival; Table 5), and R0 nearly
doubles (94% increase; Table 5). These two traits are, of course, connected: the theoretical construction
of the R0 metric specifically applies to settings where a pathogen spreads in a population of susceptible
hosts [34,35], an early window that is captured in the first 30 days.

When survival and virulence are negatively correlated, different outbreak dynamics emerge:
while the R0 difference between minimum and maximum survival is significant (approximately 84%
decrease), the total number of infected individuals only changes by roughly 3% (Table 6). This large
difference between R0 at higher and lower survival values also does not translate to a difference in the
total number of infected individuals in the first 30 days of an infection (the early outbreak window).
In a scenario where survival and virulence are negatively correlated, a highly virulent and less virulent
virus population can have similar signatures on a population with respect to the number of infected
individuals in the first month. Thus, simply measuring the number of infected individuals in the first
month of an outbreak is unlikely to reveal whether a pathogen population has undergone adaptive
evolution or has evolved in a manner that meaningfully influences the natural history of disease.

Notably, for scenarios where survival and virulence are both positively and negatively correlated,
the time that it takes for an epidemic to reach its maximum number of infected individuals changes
little across extreme values of survival (12% in the positive correlation scenario; 0.15% in the negative
correlation scenario; see Tables 5 and 6). That is, the time that it takes for an epidemic to reach its peak
(however high) is not especially sensitive to evolution in virulence or survival.

Practical Implications for the Understanding of Outbreaks Caused by Emerging Viruses

That different features of an outbreak are differentially influenced by the endpoints of viral
life-history evolution highlights how epidemiology should continue to consider principles in the
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evolution and ecology of infectious disease in its analyses and predictions. As not all features of an
epidemic are going to be equally reliable signatures of virus evolution, we should carefully consider
the data on how the dynamics of an epidemic change when making inferences about whether a
pathogen population is essentially different from prior iterations (e.g., prior outbreaks of the same
virus type). The results of this study suggest that carefully constructed, mechanistically sound models
of epidemics are important, both for capturing the dynamics of an outbreak and for abetting our efforts
to understand how evolution of survival and virulence influences disease dynamics.

For example, the potential for adaptive evolution of SARS-CoV-2 has emerged as a possible
explanation for different COVID-19 dynamics in different countries. We suggest that such interpretations
should be considered with caution and that they require very specific types of evidence to support
them. As of 1 July 2020, any conclusion that widespread SARS-CoV-2 evolution is an explanation for
variation in disease patterns across settings (space and/or time) is premature.

The practical process of interpreting the evolutionary consequences of signals of virus evolution
should encompass several discrete steps. Firstly, we should determine whether molecular signatures
exist for adaptive evolution. Adaptive evolution would manifest in observable differences in genotype
and phenotype and, perhaps, in the natural history of disease. Secondly, we should aim to attain
knowledge of the underlying mechanistic relationship between survival and virulence. This knowledge
is not necessarily easy to attain (it requires extensive laboratory studies) but would allow added
biological insight: we may be able to extrapolate how changes in some traits (e.g., those that compose
survival) influence others (e.g., those that influence virulence).

More generally, our findings suggest that the ability to detect the consequences of virus evolution
would depend on which feature of an outbreak an epidemiologist measures: from our analysis,
R0 is most impacted by changes in virulence and survival. In addition, the total number of infected
individuals in the early window and the size of the infected “peak” would each be impacted most
readily by changes in virulence–survival traits. The rate at which the epidemic peak was reached, on
the other hand, showed relatively little change as survival increased or between the two correlation
scenarios. Consequently, it would not serve as a useful proxy for virus evolution.

While the stochastic, sometimes entropic nature of epidemics renders them very challenging to
predict [36], we suggest that canons such as life-history theory and the evolution of virulence provide
useful lenses that can aid in our ability to interpret how life-history changes in virus populations
will manifest at the epidemiological scale. We propose that, in an age of accumulating genomic and
phenotypic data in many pathogen–host systems, we continue to responsibly apply or modify existing
theory in order to collate said data into an organized picture for how different components of the
host–parasite interaction influence the shape of viral outbreaks of various kinds.
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