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Background: Hemorrhagic fever with renal syndrome (HFRS) is a serious

public health problem in China. The geographic distribution has went

throughout China, among which Zhejiang Province is an important epidemic

area. Since 1963, more than 110,000 cases have been reported.

Methods: We collected the meteorological factors and socioeconomic

indicators of Zhejiang Province, and constructed the HFRS ecological niche

model of Zhejiang Province based on the algorithm of maximum entropy.

Results: Model AUC from 2009 to 2018, is 0.806–0.901. The high incidence of

epidemics in Zhejiang Province is mainly concentrated in the eastern, western

and central regions of Zhejiang Province. The contribution of digital elevation

model ranged from 2009 to 2018 from 4.22 to 26.0%. The contribution of

average temperature ranges from 6.26 to 19.65%, Gross Domestic Product

contribution from 7.53 to 21.25%, and average land surface temperature

contribution with the highest being 16.73% in 2011. In addition, the average

contribution of DMSP/OLS, 20-8 precipitation and 8-20 precipitation were all

in the range of 9%. All-day precipitation increases with the increase of rainfall,

and the effect curve peaks at 1,250 mm, then decreases rapidly, and a small

peak appears again at 1,500 mm. Average temperature response curve shows

an inverted v-shape, where the incidence peaks at 17.8◦C. The response curve

of HFRS for GDP and DMSP/OLS shows a positive correlation.

Conclusion: The incidence of HFRS in Zhejiang Province peaked in areas

where the average temperature was 17.8◦C, which reminds that in the areas

where temperature is suitable, personal protection should be taken when
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going out as to avoid contact with rodents. The impact of GDP and DMSP/OLS

on HFRS is positively correlated. Most cities have goodmedical conditions, but

we should consider whether there are under-diagnosed cases in economically

underdeveloped areas.
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MaxEnt, HFRS, socio-economic factors, ecological data, meteorological data

Introduction

Hemorrhagic fever with renal syndrome (HFRS) is a
rodent viral disease caused by hantaviruses (HVs), which
are distributed in Eurasia and have a case fatality rate
of 5–15%; HVs can also cause hantavirus cardiopulmonary
syndrome (HCPS), which develop mainly in the Americas
and have a case fatality rate of up to 40% for HCPS (1).
Since there are no specific drugs, HFRS and HCPS can
only be treated with symptomatic support. HFRS caused by
Hantaan (HTNV) and Seoul (SEOV), HTNV and SEOV which
belongs to genus in Orthohantavirus family Hantaviridae,
order Bunyavirales (2). Whole virus-inactivated vaccines
against HTNV or SEOV are currently licensed in Korea
and China, but the protective efficacy of these vaccines is
uncertain (1).

HFRS is a serious public health problem in China. The
epidemic reached the peak in 1986, with a total of 115,804 cases
reported. As government launched a series of disease control
and prevention measures, the incidence began to decrease
(3). HFRS was first observed in the Heilongjiang Province of
China in the 1930s. It remained poorly understood until 1978
when Hantaan Virus and its reservoir Apodemus agrarius were
discovered by Lee et al. (4). During 2006–2012, 77,558 human
cases and 866 fatal cases of HFRS were reported, with an
average annual incidence rate of 0.83 per 100,000 and a case
fatality rate of 1.13%. About 84.16% of the total cases were
concentrated in 9 provinces, with the highest incidence in spring
and autumn/winter (5).

Zhejiang Province is an HFRS endemic region, and the
first case was reported in 1963. From 1963 to 2020, the
morbidity and mortality rates decreased significantly, however,
the geographical distribution of endemic areas has been
expanding to all of Zhejiang Province (6).

Studies had shown hantavirus infection dynamics: changes
in climate (7–9), environmental condition affect the risk
of zoonotic transmission via changes in reservoir dynamics
(8); nephropathia epidemica is more likely to occur with
intense vegetation activity, soil with low water content
condition (10). Previous analyses in China suggest rainfall,
mouse density and autumn crop yield are correlated with
the incidence of HFRS (11). A study in Xi’an, China

showed HFRS is correlated to rainfall, rodent density and
lags of temperature (12). Another research observed HTNV
stabilities and results show at 4 degrees wet conditions
particularly, HTNV is detectable after 96 days, and sensitive to
drying (13).

Materials and methods

Data collection and case definition

The data from 2009 to 2018 on HFRS cases were
obtained from the Chinese Notifiable Disease Reporting System.
Information of HFRS cases includes age, gender, residential
address and date of illness onset. According to the health
industry standard of the People’s Republic of China for
diagnostic criteria of HFRS, HFRS cases were classified as
suspected cases, clinically diagnosed cases and confirmed cases
(6). Zhejiang Province is located on the southeast coast of China,
with 11 cities and 90 county (Supplementary Figure 1).

Meteorological data (DEM01-11) were obtained from
China Meteorological Data Sharing Service System.1

It included sunshine hours, average relative humidity,
average land surface temperature, 20–8 precipitation, 8–
20 precipitation, 20–20 precipitation, average air pressure,
average air temperature, daily maximum temperature,
average wind speed and maximum wind speed. Layers
for yearly average meteorological data from 2009 to 2018
were generated using the kriging interpolation method
with ArcGIS 10.2.

The socio-economic factors and ecological data used in this
study were obtained from the Resource and Environmental
Science Data Center of the Chinese Academy of Sciences.2

They included normalized difference vegetation index
(NDVI), enhanced vegetation index (EVI), Annual NDVI
(aNDVI); clay, sand, silt; gross domestic product (Zjgdp),
and digital elevation model. Digital elevation model (DEM)
can be regarded as an image, a typical raster data obtained

1 http://data.cma.cn/

2 http://www.resdc.cn
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by sampling the image plane coordinates and height.
Defense Meteorological cSatellite Program Nighttime
Lighting Index (DMSP/OLS), DMSP/OLS imageries were
acquired by the Defense Meteorological Satellite, mainly
used for urban expansion research. We used ArcGIS 10.2
to set the grid for layers of different variables to the same
geographic boundaries and cell sizes to extract data for
Zhejiang Province.

Statistical methods

The maximum entropy principle is to predict the
unknown information of a target area by incomplete
known information. Using known species distribution and
ecological environment data, the non-random relationship
between environmental characteristics and species distribution
in the known species distribution area is studied to find
the probability distribution with maximum entropy as the
optimal distribution to predict the suitable habitat for a
species (14).

The maximum entropy model (MaxEnt) is a valuable
software for ecological niche models (ENM) study to estimate
the habitat suitability of a species through occurrence data and
a set of environmental variables (15). It is well documented
that MaxEnt has great advantages in epidemiological studies
of natural epidemics, detecting the main meteorological factors
influencing the high incidence of infectious diseases (16–18)
and predicting the impact of future climate change on local
species (19, 20). MaxEnt is a machine learning algorithms
based on the maximum information entropy to construct the
model. The prediction structure is accurate, and its response
curve depends on the data characteristics. It can obtain
more accurate results with only a small number of sample
data (21).

To select the best model, we consulted with epidemiologists
on which factors might be associated with the occurrence
of HFRS and performed cross-correlation analysis to
effectively identify multicollinearity. We selected a
validity variable from the variables of multicollinearity.
Different regularization multipliers (RM) were adjusted
in MaxEnt, then we selected the features that contributed
most to the model, thus reducing model overfitting
(20, 22).

In this study, ecological niche models of HFRS were
constructed using Maxent 3.4.1. Spatial distribution of HFRS
cases from 2009 to 2018 was dependent variable; meteorological
factors, socio-economic factors and ecological data were
independent variables. In our modeling, 75% of the data are
randomly selected as the training set and the remaining 25% as
the test set. The stability of the model is verified by the (cross-
validation) method, and the result of the average of 10 modeling
repetitions is used as the model result (21). In the parameter

setting, Regularization multiplier was set as 1, Replicate type
was set as bootstrap, Replicates was set as 10, Max number of
background points was set as 10,000, Max iterations was set as
500. In general, AUC values < 0.7 are considered low accuracy,
0.7–0.9 are considered useful for applications, and >0.9 are
considered high accuracy (23, 24).

Results

From 2009 to 2018, the cumulative number of HFRS
reported cases in Zhejiang Province was 4240, The annual
numbers of HFRS cases in each year during 2009–2018
were 438, 458, 541, 501, 526, 385, 362, 349, 353, and
327. Cases were reported in 80% of counties in Zhejiang
province, and the number of counties reporting cases each
year from 2009 to 2018 were 62, 56, 59, 61, 65, 63,
61, 62, 71, and 63.

Figure 1 is the receiver operating characteristic (ROC)
curve for the again averaged over 10 replicate, and AUC for
different years were given in ENMs. The AUCs for 12 models,
2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,
2009–2010 average of 2009–2018 were 0.901, 0.879, 0.867,
0.857, 0.848, 0.882, 0.869, 0.872, 0.869, 0.869, 0.808, and 0.759.
(Part of 2009–2018∗: We selected all variables that contributed
more than 5% in the above 11 models to be included in this
model).

Figure 2 shows the predicted potential risk map of HFRS
from 2009 to 2018 in Zhejiang Province.

The legend on the right side of the picture shows the
different risk levels in red, orange, green and blue in descending
order, with red representing the highest risk and, and blue
representing the lowest risk. It can be concluded from the
above risk map that the high incidence of epidemics in Zhejiang
Province is mainly concentrated in the eastern and western
regions, as well as in the central region.

Table 1 shows the contribution of each variable to the
final training MaxEnt model in different years used in this
study, showing the mean and average of the 10 replicate runs.
According to Table 1, it can be seen that zjdem, average
temperature and GDP contribute the most to the MaxEnt model
constructed in Zhejiang Province.

DEM that made the greatest contribution varied
significantly by years, ranging from 4.22 to 26.0% from
2009 to 2018. Average temperature had the second highest
contribution, ranging from 6.26 to 19.65% during 2009–2018.
The third highest contribution is gross domestic product,
contribution during 2009–2018 ranging from 7.53 to 21.25%.
The contribution of average land surface temperature ranked
fourth, and it fluctuates greatly from year to year, with the
highest being 16.73% in 2011, but the lowest being only 1.67%
in 2018. In addition, the average contribution of DMSP/OLS,
20-8 precipitation and 8-20 precipitation were all in the range
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FIGURE 1

The receiver operating characteristic (ROC) curve for HFRS from 2009 to 2018.

of 9%, even though the contribution of DMSP/OLS was as high
as 17.8% in 2010.

The following picture shows the results of the jackknife test
of variable importance. In Figure 3, the dark blue bar is the
separate contribution of the variable and the light blue bar is the
contribution that does not include that variable.

Figure 4 shows the response curves for the 4 variables that
contributed the most to this study after excluding the variables
that contributed less than 5%.

Figure 4A shows the effect curve of All-day Precipitation,
and it can be seen that the incidence of HFRS increases with
the increase of rainfall, and the effect curve peaks at 1,250 mm,
then decreases rapidly, and a small peak appears again at 1,500
mm; through Figure 4B, we can see that average temperature
response curve shows an inverted v-shape, the incidence of
HFRS increases with the increase of average temperature, and
the incidence peaks at 17.8◦C, followed by a rapid decrease;
through Figure 4C, we can see the response curve of HFRS and
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FIGURE 2

The predicted potential risk map of HFRS from 2009 to 2018 in Zhejiang Province.

GDP showing a positive correlation—the incidence increases
with the increase of GDP; through Figure 4D, we can see
the response curve of DMSP/OLS Nighttime Light Data
(DMSP/OLS), also show positive correlation—the incidence rate
increases with the increase of DMSP/OLS.

Discussion

The advantage of the maximum entropy model is that
it is based on the prediction of positive points, avoiding
the problem of missing negative data, and it predicts the

probability magnitude of risk, which is more widely used in
the field of infectious diseases. The prevention and control of
any infectious disease cannot be separated from three major
elements: infectious source, transmission route and susceptible
population. HFRS is a natural epidemic disease, and the
influence of meteorological factors on natural epidemic disease
needs to be considered from various aspects.

Yuan et al. constructed a maximum entropy model with 16
environmental factors, and then they considered NDVI, rainfall
variance and elevation as the main environmental factors
affecting landslide hazard (25). Sun et al. constructed ENM of
severe fever with thrombocytopenia syndrome (SFTS) using

Frontiers in Medicine 05 frontiersin.org

https://doi.org/10.3389/fmed.2022.967554
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-967554 September 30, 2022 Time: 7:23 # 6

Zhang et al. 10.3389/fmed.2022.967554

TABLE 1 The contribution of each variable to the final training MaxEnt model.

Variables 2009 (%) 2010 (%) 2011 (%) 2012 (%) 2013 (%) 2014 (%) 2015 (%) 2016 (%) 2017 (%) 2018 (%) 2009–2018 (%)

zjdem 15.75 6.38 7.56 4.22 18.43 13.06 11.00 10.19 12.16 26.00 20.98

demo8 19.65 16.25 6.53 8.20 7.11 10.26 12.30 9.67 6.26 9.20 14.63

gdp 9.79 7.53 12.94 20.09 16.79 13.32 11.09 19.11 21.25 8.55 11.81

demo3 8.57 11.01 16.73 3.42 14.89 10.98 11.19 3.29 9.69 1.67 10.79

zjdmsp 6.02 17.80 13.96 13.05 8.61 11.51 14.31 11.26 2.92 13.61 9.05

demo4 0.90 1.16 3.11 19.22 11.08 0.88 2.93 1.35 4.51 0.76 9.00

demo5 6.22 11.12 0.69 6.90 0.79 13.83 2.80 2.30 5.90 3.04 5.95

demo7 1.75 1.73 1.42 2.33 3.80 1.49 3.03 4.53 2.04 2.58 3.20

ndvi 4.76 2.46 3.82 3.59 2.39 2.25 4.40 4.05 13.05 3.44 2.76

demo2 3.40 6.21 8.05 5.62 2.67 10.82 4.79 10.02 3.33 3.57 2.75

andvi 2.51 5.04 4.57 4.41 2.55 3.07 3.33 6.08 7.21 4.52 2.12

demo9 1.16 2.41 1.38 0.71 1.72 1.82 1.33 0.99 1.60 1.46 1.75

evi 1.82 1.33 2.32 1.57 2.79 2.32 6.55 2.01 2.42 1.97 1.59

demo1 3.09 3.64 2.08 1.19 2.49 0.89 0.69 1.81 1.49 13.58 1.43

demo6 9.23 1.06 12.09 2.07 0.92 0.98 4.39 4.84 1.38 0.99 0.37

demo10 1.34 1.82 0.64 0.64 0.47 0.94 1.99 0.96 0.58 0.54 0.56

demo11 0.94 1.66 0.54 0.57 0.47 0.39 1.85 5.57 1.71 2.48 0.55

sand 1.71 0.35 0.42 0.36 0.49 0.52 0.53 1.14 1.00 0.45 0.09

silt 0.60 0.80 0.32 1.22 1.12 0.48 1.16 0.41 0.84 0.70 0.40

clay 0.82 0.24 0.82 0.61 0.40 0.18 0.37 0.47 0.67 0.88 0.23

MaxEnt, and they found yearly average temperature, altitude,
yearly average relative humidity and yearly accumulated
precipitation accounted for 94.1% contribution for ENM
(17). Fang et al. found that HFRS incidence in Shandong
Province is mainly associated with the seasonal environmental
variables: temperature, precipitation and humidity (26). Our
study confirmed the contribution of mean temperature to the
incidence of HFRS in Zhejiang Province ranged from 6.26 to
19.65% in 2009–2018.

Firstly, temperature have impact on people’s willingness of
travel, and the probability of HFRS infection will increase when
people go out in favorable temperature and sunny weather (27);
secondly, temperature will affect the reproduction and activities
of host animals and vector organisms, and only when the density
of host animals and vector organisms reaches a certain level,
human can be infected when they go out (27).

We likewise found some fluctuations in the effect of all-
day precipitation on the onset of HFRS, with the effect curve
peaking at 1,250 mm and then declining rapidly, with another
small peak at 1,500 mm. This is consistent with many studies
in which there is a certain lag in the onset of HFRS by rainfall.
Studies have confirmed that there is a lag effect of meteorological
factors on the onset of HFRS, and the conclusions obtained from
different study areas vary from several weeks to several months
(27–29). Cao et al. found that the effect of temperature on HFRS
varies widely among regions with different temperature zones,
ranging from a lag of 1 month in temperate regions to 3 months
in subtropical regions (29).

Our findings concern seasonal patterns of HFRS in Zhejiang
Province of China that there are two peak incidences of HFRS,
one from May to June and the other from November to January
(6). The host of SEOV- Rattus norvegicus is more common in
urban while the host of HTNV—Apodemus agrarius is more
likely to inhabit rural areas (30). Zhejiang Province has shifted
from a single peak incidence in winter in the early stage to two
peak incidences in winter and spring at this stage, based on the
reasons described below, which is also a renewal of previous
concepts. The first reason is that the main host animal of the
spring peak is the Rattus norvegicus (26), and the main host
animal in the urban residential area is the Rattus norvegicus,
which lives very closely with humans, resulting in an increase in
the incidence of urban areas. Secondly, the medical conditions of
urban residents are significantly better than those in rural areas,
and their medical security and transportation conditions have
played a key role (31).

Our results found that the incidence of HFRS shows a
positive correlation with GDP and DMSP/OLS response curves,
which is consistent with our earlier findings and could further
explain why Ningbo city has the province’s most number of
cases, compared with other cities. GDP (32) and DMSP/OLS
are socioeconomic indicators, and many scholars have used
DMSP/OLS to study urban development and agreed that
DMSP/OLS has strong potential for urbanization research
(33, 34).

DMSP/OLS images can be used as a characterization of
human activities and become a good data source for human
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FIGURE 3

The results of the jackknife test of variable importance.
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FIGURE 4

The response curves contributed to the MaxEnt model of HFRS.

activity monitoring studies. One of the main advantages of this
data is that it does not depend on high spatial resolution, which
is usually around 1 km, so it is easier to process DMSP/OLS data;
another important feature is that it covers information closely
related to the distribution of factors such as population and city
layout, like traffic roads and residential places (33).

Zhejiang Province is mainly concentrated in the eastern
and western regions, which is consistent with the results of
our earlier study (6). The city with the highest incidence rate
in Zhejiang Province is Ningbo, which is inseparable from
the ability of local medical institutions to detect and diagnose
diseases (35). Ningbo is a sub-provincial city with developed
economy, convenient transportation and high level of medical
services. Due to the rapid development of Ningbo, a large
number of rural areas have been merged into the city, and the
living environment of the urban-rural integration area is not
perfect, which is also one of the reasons for the high incidence
of local diseases.

The peak incidence in summer mainly is related to indoor
infection caused by the breeding of domestic rodent, and the
peak incidence in winter is related to exposure to wild rodent
in the field (36). The HFRS monitoring in Zhejiang Province

found that Apodemus agrarius accounted for 59.71% of the
total number of wild rodent captured, and Rattus norvegicus
accounted for 10.77% of the total number of domestic rodent
captured (37). The clinical symptoms and outcomes of HTNV-
caused HFRS are usually more serious than those of SEOV-
caused (38).

Our study found that the incidence of HFRS varies greatly
among regions in Zhejiang Province, but Zhoushan city always
has the lowest incidence in the province. Another study
found that the incidence of SFTS in Zhoushan city ranks
among the top in the province, and we speculate that local
rainfall and humidity have a certain relationship with this
incidence (39). The MaxEnt model has great advantages in
predicting the survival of endangered species. Scholars have
used the optimized MaxEnt model to predict the distribution
of Quasipaa boulengeri in different provinces in China is
important environment variables (40).

The advantage of this study is that two environmental
variables and two economic indicators associated with the
incidence of HFRS in Zhejiang Province were found by
incorporating meteorological factors and socioeconomic
indicators. The ecological locus model with maximum
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entropy explored the incidence risk areas and provided a
reference basis for the rational allocation of medical resources
in the province.

This study has the following disadvantage: the
international algorithms of ecological niche models
are complex and diverse, and we only used the most
widely used and stable maximum entropy algorithm
to analyze the HFRS epidemic in Zhejiang Province,
thus we are unable to achieve an in-depth and
comprehensive analysis. Since only some counties in Zhejiang
Province are under surveillance, the lack of molecular
epidemiological analysis of the impact is also a major
shortcoming of the study.

Conclusion

Although many models have been used for the study of risk
factors of infectious diseases, the present study confirmed that
the maximum entropy model for the study of risk factors of
HFRS in Zhejiang Province was in good agreement with the
results of previous studies. In summary, the incidence of HFRS
peaks in areas where the average temperature is 17.8 degrees
Celsius, which reminded us that in areas where temperature is
suitable, personal protection should be taken when going out to
avoid contact with rodents. The incidence of HFRS by rainfall
is more complicated and fluctuates to a certain extent, which
is also consistent with the conclusions of most studies, and
there is a certain lag in the impact on the disease. The impact
of GDP and DMSP/OLS on HFRS is positively correlated.
Most cities have good medical conditions, but it also reminds
us whether there are under-diagnosed cases in economically
underdeveloped areas.
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