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Abstract: Aging has been proven to be one of the major causes of temporomandibular joint (TMJ)
disability and pain in older people. Peripheral circadian rhythms play a crucial role in endochondral
ossification and chondrogenesis. However, the age-related alterations of circadian clock in TMJ
structures are seldom reported. In the current study, TMJ condyles were extracted from young
(4-month-old), middle-aged (10-month-old), and old-aged (20-month-old) adults to detect the mor-
phology and circadian oscillation changes in TMJ condyles with aging. The transcriptome profile
of Bmal1-deleted bone-marrow mesenchymal stem cells (BMSCs) and controls were explored to
reveal the circadian-related differences at the molecular level. Furthermore, the reparative effects
of Bmal1-overexpressed BMSCs-based cytotherapy in aged TMJ condyles were investigated in vitro
and in vivo. Aged TMJ condyles displayed damaged tissue structure and an abolished circadian
rhythm, accompanied by a progressively decreasing chondrogenesis capability and bone turnover
activities. The deletion of Bmal1 significantly down-regulated chondrogenesis-related genes Prg4,
Sox9, and Col7a1. Bmal1-overexpressed BMSCs presented improved migration capability ex vivo
and attenuated age-related TMJ condylar degeneration in vivo. These data demonstrate the crucial
role of circadian timing in the maintenance of osteochondral homeostasis, and indicate the potential
clinical prospects of circadian-modified MSCs therapy in tissue regeneration.

Keywords: temporomandibular joint; mesenchymal stem cell; circadian clock gene; regenerative
medicine; aging

1. Introduction

Age-related diseases affect millions of individuals and cause heavy economic burdens [1].
As the bilateral synovial articulations bear lifelong vocal function and heavy occlusal
loading, the temporomandibular joint (TMJ) condyles undergo progressive degeneration
and are frequently involved in osteoarthritis (OA) with aging [2,3]. Aging has been proven
to be one of the major causes of joint disability and pain in older people, featured with
progressive articular degeneration and loss of normal tissue structures [2]. Age-related
TMJ degeneration causes wild changes in condylar cartilage, subchondral bone, synovial
fluid and other relative structures [2,4]. However, the detailed mechanism is yet to be
unveiled and effective therapeutic approaches are urgently needed.

The mammalian circadian clock dominates the daily (~24 h) rhythms in activities and
physiology [5]. The central timekeeping system is located in the suprachiasmatic nucleus
(SCN), receiving photic signals and orchestrating the tissue-specific peripheral circadian
clock with molecular signals [6]. Peripheral circadian oscillations are cell-autonomous and
are synchronized by the SCN outputted central clock. This subtle regulation system is
derived from the translational negative feedback loops of heterodimers BMAL1/CLOCK
and downstream circadian-controlled genes [7]. Recent studies showed that the circadian
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clock system had a close relationship with age-related pathways, including mTOR signal-
ing [8], insulin/IGF-1 [9], and PI3K/AKT signaling [10]. Circadian-modifying medicine,
time restriction and dietary restriction have been proven to improve the lifespan and
healthspan of the circadian system [10,11]. Therefore, the concepts of circadian modified
chronotherapy are considered to be the promising antiaging interventions. However, the
age-related alterations of circadian clock rhythms and the circadian interventions in treating
age-related TMJ condyle degeneration have not been reported before.

Due to the limited self-repairing capability of articular cartilage, conventional thera-
peutics for TMJ-OA have mainly focused on effective symptom control [3,12]. The mes-
enchymal stem cells (MSCs) are a group of plastic adherent cells with the capability of
self-renewal and multilineage differentiation. Moreover, the feature of immune escape
makes it suitable for xenogeneic cell-based tissue engineering, in which strong inflamma-
tory response is absent [13,14]. Therefore, MSCs-based therapy has had added great value
after being introduced in regenerative medicine and disease therapeutics [15]. However,
the limited migration capability of donor MSCs toward target tissue is still challenging
for current MSCs-based regeneration medicine. Recent studies have reported successful
genetically modified MSCs-based therapies on several diseases [16–18], which improves
the migration, survival, and differentiation of donor MSCs and achieves good reparative
results. This present evidence highlights the continued interests and novelty in this field.

The aim of this study was to investigate the age-related morphology and molecular
and circadian rhythms changes in TMJ condyles and illustrate the potential links and
mechanisms between the circadian clock and age-related TMJ degeneration. Using genetic
modification, we further applied clock-enhanced MSCs therapy, to develop the pilot
concepts of circadian clock-modified tissue regeneration in the treatment of age-related
TMJ degeneration.

2. Results
2.1. Integrity of TMJ Condyle Cartilage and Subchondral Bone Damaged with Aging

To identify the age-related morphological change in TMJ condyles, we focused on three
specific life phases: mature young adult, middle-aged adult, and old-age adult. According
to previous studies that determined the approximately comparable life phases between
human beings and mice [19,20], TMJ condyles were isolated from 4-month-old (young
adult), 10-month-old (middle-aged adult), and 20-month-old (old-age adult) mice. The
microscope photographs of TMJ condyles (Figure 1A,B) showed significant morphology
alterations in the geometric shape and condition of the osteochondral surface. The shape
of TMJ condyles became longer in the sagittal direction and flatter on the condylar surface
with aging, which might result from adaptation remodeling to continuous masticatory
force. In the aged mice, the TMJ condylar surface became uneven with irregular erosion,
which coincides with the age-related degeneration in human being joints [21]. To further
understand the age-related change in the subchondral bone, micro-CTs were performed
on each age group. The coronal-section images of the TMJ condyles showed a progressive
increase in bone volume and enlarged subchondral cysts in TMJ condyles with aging
(Figure 1C). The quantitative analysis of subchondral bone supported the previous finding
(Figure 1D). The bone volume/tissue volume ratio (BV/TV) and bone mineral density
(BMD) were significantly increased in 20-month-old TMJ condyles, while the trabecular
number (Tb.N) and trabecular separation (Tb.Sp) were significantly diminished in aged
TMJ condyles and the trabecular thickness (Tb.Th) was increased with aging. Overall, the
radiographic manifestations of bone degeneration in aged TMJ condyles were consistent
with signs detected in human aged joints.
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Figure 1. Osteochondral interface and subchondral bone of TMJ condyle gradually ossified with aging. (A,B) Microscope
photographs of the mandibles and TMJ condyles in 4-month-old, 10-month-old, and 20-month-old mice. Scale bar: 200 µm
for data A and 1 mm for data B. (C) Representative 3D constructed and coronal-sectional images of TMJ condyles in different
age groups. Scale bar: 200 µm. (D) Quantitative micro-CT analyses on subchondral bone of TMJ condyles in different age
groups. (n = 8) * p < 0.05, ** p < 0.01, *** p < 0.001.

Next, we sought to examine the histological changes in TMJ condyles with aging.
H&E staining showed that the thickness of the proliferative layer zone and hypertrophic
layer zone on TMJ condylar cartilage was significantly decreased in middle-aged and
old-age mice (Figure 2A,B). Furthermore, the integrity and clear layer structure of cartilage
were progressively damaged with aging. Safranin O staining and quantitative analysis
revealed an obvious decline in safranin O positive area with the aging, which indicated a
significant loss of glycosaminoglycan in the cartilage and subchondral bone in age-related
TMJ condyle degeneration. The Osteoarthritis Research Society International (OARSI)
histomorphology score of TMJ condyles was higher as the mice grew old. The osteoclasts in
the subchondral bone were detected by tartrate-resistant acid phosphatase (TRAP) staining.
Quantitative analysis of TRAP staining revealed a significant decline in osteoclasts activities
in subchondral bone with aging.

We further examined the age-related molecular changes in the TMJ condyle. The qRT-
PCR analysis was performed on the TMJ condyles in different age groups, to determine the
expression of chondrogenic, osteogenic and inflammatory markers including Acan, MMP13,
Col I, Sp7, TNF-α, and IL-6. The expression of Acan, the proteoglycan found in articular
cartilage, increased from the young adult to the middle-aged periods and diminished
in old age. On the contrary, the expression of matrix metallopeptidase 13 (MMP13), the
collagenase related to extracellular matrix degeneration, decreased during middle age and
was elevated in old age (Figure 1C). The osteogenic markers Col I and Sp7 were significantly
declined with aging, while the inflammatory markers IL-6 and TNF-α became prominent
in older age. Together with our previous histological finding, a significant decrease in
osteogenesis and osteoclastic activities was observed in the subchondral bone of aged TMJ
condyles, which indicated that the bone turnover activities in the subchondral bone were
flattened with aging.
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Figure 2. Cartilage degeneration and subchondral bone remodeling decreased in aged TMJ condyle.
(A) H&E, Safranin O and TRAP staining sagittal sections of the 4-month-old, 10-month-old, and
20-month-old TMJ condyles. Scale bar: 50 µm. The black dotted lines indicated the osteochondral
interface of TMJ condyles. (B) Quantitative analyses of cartilage thickness, safranin O staining
area, OARSI score in safranin O staining sections, and osteoclast counts in TRAP staining sections.
(n > 6) * p < 0.05, ** p < 0.01, *** p < 0.001. (C) qRT-PCR analyses of the mRNA expression of Acan,
MMP13, Col I, Sp7, TNF-α, and IL-β of TMJ condyles in different age groups. * p < 0.05, ** p < 0.01,
*** p < 0.001.

2.2. Clock-Genes Expression and Circadian Molecular Rhythms Were Disrupted in TMJ Condyle
Cartilage with Aging

To investigate the role of circadian genes in age-related TMJ condylar degeneration,
immunostaining was performed on condylar sections in different age groups (Figure 3A–D)
to detect the expression alterations of core circadian genes. As shown in Figure 3A,B, core
clock-gene BMAL1 and CLOCK were widely expressed and gradually decreased in TMJ
cartilage with aging, especially on the hypertrophic layer zone and proliferative layer
zone. This change was in parallel with the morphologic development of TMJ condyle
cartilage with aging, which highlighted the potential crucial role of the circadian clock
in age-related TMJ degeneration. PER2 and CRY1 were the typical circadian-controlled
genes (CCGs), which were regulated by BMAL1/CLOCK heterodimers and mediated the
transcriptional feedback loops system. Immunofluorescent staining showed a significant
decrease in PER2 expression in the TMJ condyles of 20-month-old mice with a younger
age, while the CRY1 expression substantially declined in the 4-, 10- and 20-month-old mice
with aging (Figure 3C,D).

Next, we further examined the circadian rhythmic expression in TMJ condylar car-
tilage in young and old-age adult mice. TMJ condylar cartilage at 4 months old and
20 months old was harvested at 6 h intervals according to zeitgeber time (ZT0, ZT6, ZT12,
ZT18, ZT24), and qRT-PCR was performed to detect the rhythmic expression of core clock
genes. The significantly blunted circadian rhythms of Bmal1, Clock, and Cry1 expression
were observed in the old group compared with the mature adult group (Figure 3E). The
molecular rhythmic expression of Per2 presented obvious postponement.
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Figure 3. Decreased expression of core circadian clock genes and blunted molecular rhythms of
aged TMJ cartilage. (A) Representative images of immunostaining for BMAL1 and CLOCK in TMJ
condyles in different age groups. Scale bar: 75 µm for 20× and 25 µm for 40×. (B) Quantification of
percentage of positive staining in data A (n = 6–8) * p < 0.05, ** p < 0.01, *** p < 0.001. (C) Representative
images of immunostaining (fluorescent) for Per2 and Cry1 in TMJ condyles in different age groups.
Scale bar: 20 µm. (D) Quantification of percentage of positive staining in data C (n = 6–8) * p < 0.05,
** p < 0.01, *** p < 0.001. (E) qRT-PCR analyses of molecular rhythmic expression of circadian clock
genes (Bmal1, Clock, Per2, and Cry1) in 4-month-old and 20-month-old TMJ condylar cartilage. The
black (or white) dotted lines indicated the osteochondral interface of TMJ condyles.

2.3. Bmal1 Contributes to Osteochondral Development and Chondrogenic Differentiation

Bmal1, as the core circadian gene, has been reported to orchestrate the multiple dif-
ferentiation of mesenchymal stem cells. In another work, we generated Bmal1 conditional
knockout mice (Prx1-cre; Bmal1fl/fl) from early limb bud mesenchyme and carried out
RNA sequencing (RNA-seq) to examine the expression profile of BMSCs isolated from
4-month-old Prx1-cre, Bmal1fl/fl and Bmal1fl/fl mice. The volcano map showed the most
obvious differentially expressed genes from Prx1-cre, Bmal1fl/fl BMSCs, and Bmal1fl/fl con-
trols, from which the Prg4 was the most significant down-regulated one by Bmal1 deletion
(Figure 4A). PRG4 is a large proteoglycan which synthesized by cells located at the surface
of articular cartilage and is involved in elastic absorption and energy exchange of synovial
fluid. Moreover, the expression heatmap further confirmed the down-regulation of chon-
drogenic marker genes, such as Col7a1, Col14a1, Matns2 and Matns3 (Figure 4B). We also
performed a gene set enrichment analysis (GSEA) on our sequence data, which showed
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a global down-regulation of chondrogenic differentiation genes (Figure 4C). The protein–
protein interaction network visualization using STRING revealed that the PRG4-related
function might have a strong bearing on chondrogenesis, and the local network cluster
and associated biological process analysis reported close links with extracellular matrix
organization and cartilage development (Figure 4D,E). This result suggested that Prg4 and
chondrogenesis-related genes were the potential downstream targets of Bmal1-mediated
osteochondral development and chondrogenic differentiation.

Figure 4. Bmal1-deficent BMSCs damaged chondrocyte differentiation and extracellular matrix
metabolism. (A) Volcano map of differential expressed mRNAs in Bmal1fl/fl and Prx1-cre; Bmal1fl/fl,
Prg4 was the most significantly down-regulated gene. (B) Heatmap of representative chondrogenesis-
associated genes (expressed as fold-change). (C) GSEA showed decreased enrichment on chondrocyte
differentiation involved in endochondral bone morphogenesis in Bmal1-deficient BMSCs. (D) The
protein–protein interaction network of PRG4 using STRING. (E) PRG4-associated local network
cluster (STRING) and biological process (Gene Ontology); red box indicates the most relevant
functional process.

2.4. Reparative Effects of Local Transplantation of Circadian Clock Enhanced MSCs on Aged
TMJ Region

Since age-related TMJ condyle degeneration was strongly linked to Bmal1 depletion
on articular cartilage, we next examined the reparative effects of circadian-enhanced MSCs
transplantation on the aged TMJ region. Primary BMSCs were flushed out from the femur
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and tibia of 2-month-old mice and cultured as previously described [22]. Flow cytometry
analysis showed that the isolated cells were positive for BMSCs surface markers CD29
and Sca-1, and a lack of hematopoietic stem cells surface markers CD45 and CD34. The
spindle- and triangular-shaped BMSCs at passage 2 were observed under phase contrast
microscopy and multiple differentiation capability was proved by Alizarin Red staining,
Oil Red staining and Alcain Blue staining after conditional medium induction (Figure 5A,B).
BMSCs overexpressing Bmal1 (Bmal1-OE) and GFP control (GFP-NC) were constructed by
lentivirus transfection. The transfection efficiencies were visualized under fluorescence
microscopy and determined by qRT-PCR and Western blot, as shown in Figure 5C,D.
The original Western blot acquisitions for cropped images were shown in Figure S2. The
migration capability of donor cells into the target tissue is an essential condition in MSCs-
based therapies. Therefore, transwell assays were performed to investigate the effects of
Bmal1 overexpression on MSCs migration. As shown in Figure 5E, the number of migrated
BMSCs was significantly increased in Bmal1-OE in the control group. This result revealed
that BMSCs overexpressing Bmal1 presented greater migration capability than GFP-NC.

Figure 5. Effect of Bmal1 overexpression in primary BMSCs. (A) Identification of primary BMSCs by flow cytometric
analysis. Cells were labeled with CD29 and Sca-1 as positive markers; CD34 and CD45 as negative markers. (B) Morphology
of cultured BMSCs and Alizarin Red, Oil Red, and Alcain Blue staining of BMSCs under conditional culture medium.
(C) Fluorescence microscopy of Bmal1-OE and GFP-NC BMSCs after lentivirus transfection. Scale bar: 200 µm. (D) qRT-PCR
and Western blot analysis of Bmal1 expression of Bmal1-OE and GFP-NC BMSCs. *** p < 0.001. (E) Cell migration of
Bmal1-OE and GFP-NC BMSCs was determined by transwell assay. *** p < 0.001.

The workflow diagram of the MSCs therapy is shown in Figure 6A. To verify the
successful transplantation of donor cells, the immunostaining analysis revealed that the
implanted GFP-positive BMSCs in aged TMJ cartilage were differentiated into chondrocyte-
like cells in vivo (Figure 6B). The microscope photographs of the treated TMJ condyles
showed that both Bmal1-OE and GFP-NC MSCs-treated TMJ condyles presented a smoother
osteochondral surface than the sham group, indicating the restoration of degenerated carti-
lages after cytotherapy (Figure 7C). The representative micro-CT images further showed
an obvious decline in osteophytes around the margin of the osteochondral surface and
lessening of subchondral cysts below the articular surface. The micro-CT analysis of the
MSCs-treated subchondral bone showed slight but not significant increase in BV/TV and
BMD with the sham group, accompanied with an obvious rise in Tb. N and decrease in Tb.
Sp and Tb. Th (Figure 6D,E).
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Figure 6. Delivery of Bmal1-OE and GFP-NC BMSCs into aged mandibular TMJ region. (A) Workflow
chart diagram of the Bmal1-OE and GFP-NC BMSCs transplantation process. (B) GFP immunohisto-
chemistry staining showing GFP-positive cells implanted in the TMJ condylar cartilage. The black
dotted lines indicated the osteochondral interface of TMJ condyles. (C) Microscope photographs
showing the reparative effect of Bmal1-OE BMSCs delivery on the mandible and TMJ condyles. The
black arrows indicate the uneven surface of the articular surface. The black arrows indicated pits
on TMJ condylar surface. (D) Representative 3D constructed and coronal-sectional images of TMJ
condyles in different groups. Scale bar: 200 µm. (E) Quantitative micro-CT analyses of subchondral
bone of TMJ condyles in different groups. (n = 5–6) * p < 0.05.

Figure 7. Transplantation of Bmal1-OE BMSCs reversed age-related TMJ condylar cartilage degen-
eration and subchondral bone loss. (A) H&E, Safranin O, and TRAP staining of sagittal sections
of the Bmal1-OE, GFP-NC, and Sham group TMJ condyles. Scale bar: 50 µm. (B) Quantitative
analyses of cartilage thickness, safranin O staining area, OARSI score in safranin O staining sec-
tions and osteoclasts counts in TRAP staining sections; quantitative analyses of immunostaining for
ACAN and COL II in TMJ condyles in different groups. (n = 5–6) * p < 0.05, ** p < 0.01, *** p < 0.001.
(C) Representative images of immunostaining for Acan and Col II in TMJ condyles in different groups.
Scale bar: 75 µm for 20× and 25 µm for 40×. The black dotted lines indicated the osteochondral
interface of TMJ condyles.
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Histological staining and quantitative analysis of the condylar sections further re-
vealed that Bmal1-enhanced MSCs-treated TMJ condyles were increased in cartilage thick-
ness and decreased in numbers of excessive subchondral cysts. Safranin O-positive areas
and OARSI scores revealed a significant recovery of proteoglycan loss in the condylar sur-
face after Bmal1-enhanced MSCs treatment. The TRAP staining and quantitative analysis of
osteoclast numbers showed a decrease in osteoclast activities in Bmal1-overexpressed MSCs-
treated TMJ condyle, indicating the regenerative effects of circadian-enhanced therapy in
the subchondral bone. The immunostaining and quantitative analysis of the expression
levels of chondrogenesis-related markers ACAN and COL II further revealed that more
active chondrogenesis was shown in the cartilage layer in the Bmal1-OE group than in the
control groups. These results imply that transplantation of Bmal1-overexpressed BMSCs in
aged TMJ cavity could effectively ameliorate age-related cartilage degeneration.

3. Discussion

Aging has been proven to be one of the major causes of joint disability and pain in
older people. Age-related manifestations in the articular cartilage of knees and hips have
been demonstrated in previous studies [23,24]. The temporomandibular joint (TMJ), as a
lifelong weight-bearing joint which is frequently involved in osteoarthritis, is seldom re-
ported with age-related morphological and molecular changes. To evaluate the age-related
degeneration of TMJ condyles and how this imitates the aging process in human beings,
we extracted mice TMJ condyles from 4-month-old, 10-month-old, and 20-month-old mice,
which parallels young, middle-aged, and old-age individuals according to humans’ life
span. In this study, we observed morphological and molecular changes in the TMJ car-
tilage and subchondral bone with aging. The following manifestations were recognized
as signs of human articular bone degeneration on a quantified scale [21,25]: (a) erosion,
(b) generalized sclerosis, (c) osteophytes, and (d) subchondral cysts, which matched our
morphologic findings in mice. Furthermore, the 3D reconstructed images and histological
analysis of the osteochondral surfaces on TMJ condyles demonstrated the dynamic process
of cartilage breakdown with aging. The condylar cartilage was loosened and poriferous in
young adults, and became gradually ossified and smooth in middle age, and finally lost its
normal structure in old age. In this aging process, the chondrogenesis activities of condylar
cartilage increased from young adult to middle age and gradually declined with aging.
In parallel, the subchondral bone turnover activities progressively declined with aging,
which performed as the decreased activities of osteogenesis and osteoclasts. These findings
revealed that the tendency of chondrogenesis and subchondral bone turnover activities on
TMJ condylar were different in the aging process.

The peripheral circadian clock has been proven to coordinate various biological pro-
cesses and has gained increasing interest in the latest decade [26–28]. Bmal1, as the core
circadian clock gene, has been proven to be involved in the limb endochondral ossification
during postnatal skeletogenesis [29,30]. Dudek et al. first identified the high expression
of BMAL1 in human OA cartilage and demonstrated that the loss of BMAL1 harmed
cartilage homeostasis by reducing the expression levels of phosphorylated SMAD2/3
and NFATC2 [31]. Yu et al. reported that Bmal1 targeted hedgehog signaling and down-
stream cascades to regulate chondrogenesis and endochondral ossification on mandibular
condyles [30]. In addition, the direct links of aging and circadian rhythms in a tissue-specific
manner have been well established in previous studies [32–34], that have highlighted a
potential role of the peripheral circadian clock system in the maintenance of osteochondral
homeostasis on the aging of TMJ condyles. Previous studies proved that high-amplitude
circadian rhythms could prolong the lifespan and relive symptoms of age-related diseases
in several animal models [35,36]. This evidence shows a promising future for enhanced
clock chronotherapy on bone and cartilage diseases. In this study, we first investigated
the age-related molecular alterations in TMJ condyles and revealed the blunted circadian
rhythms and decreased expression of clock genes in TMJ condyles with aging. These
findings matched the age-related molecular circadian rhythms alterations in BMSCs in our
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previous findings [37], and became the fundamental basis of the circadian clock enhanced
cytotherapy.

In the past few years, several MSCs-based preclinical applications and pilot clinical
trials have been conducted in hip and knee joints [12]. MSCs have been successfully
isolated from a variety of tissues such as adipose tissue, umbilical cord, and dental pulp [38].
However, the safety, efficacy and feasibility of these MSCs in cartilage regeneration have
been rigorously examined. Dang et al. recently demonstrated that an advanced therapeutic
application combining adipose tissue-derived mesenchymal stem cells and dermal-derived
collagen could promote cartilage regeneration [39]. Recent studies reported that repetitive
injections of exogenous BMSCs could relieve cartilage degeneration in temporomandibular
joint osteoarthritis (TMJ-OA) in rodent models [16,40]. However, the effective migration
of donor cells toward the target tissue and chondrogenic differentiation still hinder the
application of MSCs-based therapy on the TMJ region [18,40]. Lu et al. reported that
multiple-time injections of GFP-BMSCs into the TMJ region rescued cartilage degeneration
in mice TMJ-OA [18]. In this study, we constructed circadian clock enhanced MSCs
by overexpressing the core circadian clock gene Bmal1(Bmal1-OE). The elevated Bmal1
expression level and migration capability of Bmal1-OE MSCs were confirmed ex vivo. Due
to the narrow space of the TMJ cavity in mice, great difficulty has been issued on the direct
puncture of the TMJ cavity [41]. Here, we utilized the zygomatic process approached
anterosuperior puncture technique (ASPT), which has been reported to have high success
rates in previous studies [41–43]. The successful transplantation of GFP-labeled BMSCs
into the TMJ region were confirmed by immunostaining. The in vivo transplantation
was applied with a three-time injection in two-week intervals. Significant reparative
effects between the BMSCs-treated TMJ condyles and the sham group were observed by
radiographic and histological analysis, from which the circadian-enhanced BMSCs-injected
TMJ condyles presented greater cartilage regeneration and matrix deposits.

Recent studies have shown that the peripheral circadian clock system might play an
important role in the proliferation and differentiation of MSCs [44]. Our previous work has
demonstrated that Bmal1 promoted BMSCs osteogenesis via activation of Wnt signaling [45,46].
Aside from the negative feedback regulation mechanism, Zhuo et al. reported that Bmal1
and Per2 have a synergistic effect on osteoblastic differentiation of BMSCs [47]. In this
study, we performed the RNA-seq on Prx1-cre; Bmal1fl/fl and control BMSCs. A significantly
decreased expression level of chondrogenesis genes was observed in Bmal1-deleted BMSCs.
These results might partly explain the mechanism behind the reparative effect of circadian
clock-enhanced MSCs therapy as the donor BMSCs differentiated into chondrocyte-like
cells and contributed to the reconstruction of TMJ cartilage. What is worth noting is that
the proteoglycan4 (Prg4) was one of the most significantly decreased genes in the BMSCs
of Bmal1 deletion. Prg4 is a proteoglycan formed by cells located in superficial zone of
articular cartilage, where Bmal1 is also highly expressed. This lubricin functioned as the
boundary lubricant of articular cartilages and contributed to the energy metabolism in
synovial fluid [48]. Therefore, the reparative effects of Bmal1-OE BMSCs transplantation
might also rely on PRG4-mediated substance exchange in the synovial fluid and the
replenishment of the extracellular matrix. Other mechanisms might be involved in the
circadian clock-enhanced MSCs therapy that need further investigation.

In summary, our study has summarized the age-related morphologic, histologic,
molecular, and circadian rhythms changes in TMJ condyles. Shown by RNA-seq data, the
chondrogenesis-related genes and signaling were in regulation of the core circadian clock
gene Bmal1. Overexpression of Bmal1 in BMSCs promoted cell migration ex vivo, and
transplantation of clock-enhanced BMSCs in the TMJ cavity showed good regenerative
effects on articular cartilage and reduced the subchondral bone cysts. This pilot application
established the concept of clock-modified therapy for TMJ regeneration and showed good
future prospects.
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4. Materials and Methods
4.1. Animal

Male C57BL/6 mice (4-month-old, 10-month-old and 18~20-month-old) were pur-
chased from Chengdu Dossy Biological Technology Co. Ltd. and housed in West China
Hospital Animal Center under standard animal housing conditions with a 12 h light and
12 h night cycle. For the analysis of age-related changes in temporomandibular joints,
animals were randomly selected and sacrificed in each age group (n = 8–14 per group). All
procedures and management of the animals were approved by the animal ethics committee
of West China School of Stomatology, Sichuan University and the State Key Laboratory of
Oral Disease (WCHSIRB-D-2017-046).

4.2. Micro-CT Analyses

The temporomandibular condyles were harvested and immediately fixed in 4%
paraformaldehyde at 4 ◦C for 72 h. Collected samples were scanned using a micro-CT scan-
ner (µCT50;SCANO, Switzerland) at a voltage of 70 kVp, a current of 200 µA, and resolution
of 4.0 µm/pixel. For the analysis of subchondral bone, a semi-arched region of interest
(ROI) was defined at 100µm below the osteochondral interface of the temporomandibular
condyle head. The diagram of the selected ROI is shown in Supplementary Figure S1. The
bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb. Th)
and trabecular separation (Tb.Sp) were calculated.

4.3. Histological and Immunostaining Analysis

Following micro-CT scanning, the samples were decalcified in PBS-buffered 10%
EDTA (pH 7.4) for 14 days. The decalcified samples were processed, embedded in paraf-
fin, and dissected into 5 µm-thick sections at the sagittal plane. Hematoxylin and eosin
(H&E), safranin O staining, and tartrate-resistant acid phosphatase (TRAP) staining were
performed according to the manufacturer’s instructions as in the previous study. The Os-
teoarthritis Research Society International (OARSI) scores were used to grade the cartilage
degeneration of temporomandibular joint condyle [49].

Immunostaining was performed as previously described. For IHC staining, the anti-
rabbit/mouse immunohistochemical secondary antibody kit (Absin Bioscience) was used
following the manufacturer’s instruction. The following antibodies were used: Bmal1
(1:250, #NB100-2288, Novusbio), Clock (1:100, #ab3517, Abcam), GFP (1:100, #NB600-597,
Novusbio), Acan (1:200, #13880-1-AP, Proteintech), Collagen II (1:100, #ab34712, Abcam).
For IF staining, the following primary antibodies were used: Per2 (1:200, #180655, Abcam),
Cry1 (1:200, #ab104736, Abcam). The sections were stained with DAPI to detect the nuclei.
After mounting, the sections were photographed with a Leica DM2500 microscope (Leica,
Germany). The immunoreactivity of each group was quantified in five different samples
and three random areas using ImageJ software.

4.4. RNA Extraction and RT-qPCR

To determinate the rhythmic expression of circadian clock genes in 4-month-old
and 20-month-old temporomandibular condylar, the total RNA of the temporomandibular
condylar cartilage was extracted using TRIzol (Invitrogen) at Zeitgeber Time in 6 h intervals
(ZT0, ZT6, ZT12, ZT18, ZT24) according to the manufacturer’s instruction. The RNA
concentration was measured with the NanoDrop 2000 (Thermo Fisher Scientific) and
reverse transcribed into cDNA using the PrimeScript RT Reagent Kit with gDNA Eraser
(Takara). RT-qPCR was performed using SYBR Premix Ex Taq II (Takara) on an Applied
Biosystems Quant Studio 7 (Thermo). Relative genes expression was performed by Gadph
for mRNA expression using the 2−∆∆Ct method. The primers of target genes are listed in
Supplementary Table S1.
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4.5. Bioinformation and Data Analysis

The total RNA samples were extracted using Trizol reagent. A sequencing library
was constructed using NEBNext Ultra RNA Library Prep Kit for Illumina (NEB, USA)
following the manufacturer’s recommendations, and was then performed on the Illumina
HiSeq 2500. The FastQC and FASTX toolkits were used to control the sequencing quality.
Sequencing data were mapped to Mus musculus reference genomes by HISATS, and differ-
ential expression analysis was performed by Ballgown software. Genes were considered
significantly differentially expressed if fold change ≥2.0 and p value < 0.05.

The GSEA was performed with GSEA software (http://www.broad.mit.edu/GSEA
accessed on 23April 2021) using a sequencing-derived gene list. The protein–protein inter-
action (ppi) network analysis was performed with STRING (https://www.string-db.org
accessed on 16 July 2021).

4.6. Cell Culture and BMSCs Characterization

Primary BMSCs were isolated by flushing the bone marrow from the femurs and
tibiae of 2-month-old mice as previously described [22,50]. Cells were cultured in α-MEM
medium (Hyclone) supplemented with 10% fetal bovine serum (Gibco) and 1% penicillin
and streptomycin (HyClone) at 37 ◦C and in a 5% CO2 atmosphere. Cells at passage
2 were used to characterize BMSCs surface biomarkers. The flow cytometric analysis
was performed as previously described. The following antibodies were used for FACS
analysis: APC-Cyanine7 anti-mouse CD29 (#102225, Biolegend), PE anti-mouse CD34
(#119307, Biolegend), FITC anti-mouse CD45 (#10307, Biolegend), and FITC anti-mouse
Sca-1 (#108105, Biolegend).

4.7. Lentivirus Transfection

The lentivirus vectors Lv-GFP-Bmal1 and Lv-GFP-mock were purchased from Hanbio
Co. Ltd., Shanghai, China. Prior to lentivirus transfection, primary BMSCs at passage 2
were seeded in 6-well plates. Cells were transfected with lentivirus vectors when cells
confluence reached 40–50%, and experiments were performed 48 h after infection. The
transfected cells were named Bmal1-OE and GFP-NC.

4.8. Western Blot Analyses

Cells were lysed in RIPA buffer (Sabbiotech). The protein concentrations were evalu-
ated using a BCA protein assay kit (Beyotime). Equal amounts of proteins in each sample
were separated by SDS-PAGE (Bio-Rad Laboratories), transferred to PVDF membranes
(Millipore), and blocked in 5% milk. Following incubation with rabbit anti-BMAL1 (1:1000,
#14020, Abcam), anti-beta-actin (1:1000, #8457S, CST) at 4 ◦C overnight, and horseradish
peroxidase-conjugated secondary antibody (1:5000, #L3012-2, Sabbiotech), the target pro-
tein was exposed using a chemiluminescence kit (Bio-Rad Laboratories).

4.9. Migration Assay

Cell migration assays using a transwell system (Corning, 3422) were performed as
previously described [51]. Briefly, the lentivirus transfected BMSCs were seeded in the
upper chamber at a density of 2 × 105 cells/100 uL/well in a serum-free medium. The
lower chamber was filled with a complete medium containing 10% FBS. Following the 36 h
of incubation, the migrated cells on the lower chamber were fixed in 4% paraformaldehyde
and stained with crystal violet. The number of migrated cells was counted under camera.

4.10. Transplantation of Circadian Enhanced BMSCs

We investigated the treatment effect of circadian enhanced BMSCs on age-related TMJ
degeneration. The 5000 Bmal1-OE and GFP-NC BMSCs were suspended in 20 µL phosphate-
buffered saline (PBS) 48 h after lentivirus transfection and injected into the TMJ region
of 18-month-old mice (n = 5–6) [18]. The aged mice were anesthetized by intraperitoneal
injection of Ketamine and Xylazine (100 mg/mL, 2:1, 1 mL/kg body weight). The delivery

http://www.broad.mit.edu/GSEA
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of cells into the bilateral TMJ regions were performed as previously described [18,39].
Briefly, the mice were laid sidelong after deep anesthesia. We used 30-gauge needles in the
most prominent bulge of the zygomatic arch, and along the superomedial of the zygomatic
arch toward the TMJ region. Transfected BMSCs were injected into the bilateral TMJ region,
respectively, at 0, 2, and 4 weeks successively. In the sham group, 20 µL PBS was injected
into the TMJ region.

4.11. Statistical Analysis

All data were presented as mean ± SD. Statistical differences of multiple comparisons
were determined by one-way ANOVA followed by Tukey’s post hoc test with GraphPad
Prism 7 software. The p value < 0.05 was considered to be statistically significant.

5. Conclusions

In the present study, we have shown that the aged TMJ condyles performed degener-
ated cartilage, uncoupled bone remodeling, and abolished circadian rhythm. Deletion of
the core circadian clock-gene Bmal1 significantly attenuated the chondrogenic capability in
BMSCs. Furthermore, Bmal1-overexpressed BMSCs exhibited increased migration capabil-
ity and improved reparative effects in TMJ condylar cartilage regeneration. These findings
highlight the potential important role of circadian timing in maintenance of cartilage in-
tegrity, and develop a pilot concept of chronotherapy in cartilage-related regeneration
medicine.
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