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Abstract: Copepod nauplii are larval crustaceans with important ecological functions. Due to
their small size, they experience an environment of low Reynolds number within their aquatic
habitat. Here we provide a mathematical model of a swimming copepod nauplius with two legs
moving in a plane. This model allows for both rotation and two-dimensional displacement by the
periodic deformation of the swimmer’s body. The system is studied from the framework of optimal
control theory, with a simple cost function designed to approximate the mechanical energy expended
by the copepod. We find that this model is sufficiently realistic to recreate behavior similar to those
of observed copepod nauplii, yet much of the mathematical analysis is tractable. In particular,
we show that the system is controllable, but there exist singular configurations where the degree
of non-holonomy is non-generic. We also partially characterize the abnormal extremals and provide
explicit examples of families of abnormal curves. Finally, we numerically simulate normal extremals
and observe some interesting and surprising phenomena.

Keywords: microswimmer; planar motion; maximum principle; abnormal extremals; elastica

1. Introduction

Microcrustaceans known as copepods are one of the most abundant animals on Earth.
They are a type of zooplankton that serve as an important link in the marine food web.
As they are prey for many larger aquatic creatures, they must adapt strategies that help them
maximize their survivability. Observations have shown that different copepods have adapted
different types of movement to efficiently forage for food and evade predators [1–4]. Figure 1
shows a nauplius of the copepod species Bestiolina similis.

In the world of microorganisms, water becomes a viscous fluid in which movement
produces negligible inertia. This is known as a low Reynolds number environment,
as the Reynolds number R represents the ratio between the inertial force due to mo-
mentum and the viscous force experienced from the resistance of the liquid. An object
swimming in some fluid experiences the Reynolds numberR = a vρ

η , where a is the charac-
teristic dimension of the object, v is the velocity of the object, ρ is the density of the fluid,
and η is the fluid viscosity. In water, organisms as small as bacteria have a Reynolds
number of approximately 10−6 to 10−4, whereas humans have a Reynolds number of ap-
proximately 106. Nauplii of the paracalanid copepod Bestiolina similis, as shown in Figure 1,
have lengths 70–200 µm and swim at Reynolds numbers of 10−1 − 101 (see [5] and the ref-
erences therein). To put swimming at low Reynolds number in perspective, humans have
a Reynolds number around 102 when swimming in molasses.
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procure data on locomotion in this range, we have used one of
the smaller paddling microswimmers available, the nauplii of
the paracalanid copepod Bestiolina similis (length 70–200 mm)
[16,17]. Nauplii of this size swim at Re of 0.1–10 [18], which is
thus transitional between low and intermediate Re. Simplifica-
tions that have minimal impact on predictions can allow direct
measurement of the morphological and kinematic parameters
needed for modelling, so none are free. A relatively simple
mathematical description is then applied that can be confined
to the measured quantities, without sacrificing predictive capa-
bility. The purpose is to determine how well such a simplified
model succeeds in accounting for observed swimming behav-
iour. As Re increases into the transition zone, deviations are
expected to develop, providing new insights into swimming at
intermediate Re where viscous and inertial forces are important.
The minimal model we have employed is based on slender-
body theory for Stokes flow adapted from one that was recently
developed by one of us [19]. It differs from previous models in
not relying on any net force or inertia for propulsion. By account-
ing individually for the empirically measured dimensions and
kinematics of all six paddling appendages, our model was
used to predict displacements of the body over time and com-
pare these results with direct observations to assess the
neglected effects of inertia. In addition, the vetted model was
used to quantify the contribution to displacement of each appen-
dage pair, feathering of setae and appendage stroke phase in
order to better understand their role in naupliar propulsion.

2. Material and methods
2.1. High-speed videography of naupliar swimming
High-resolution measurements of angular position of individual
appendages and body displacement were made for nauplii of
B. similis. Nauplii were obtained from cultures maintained in the
laboratory for less than 1 year under standard conditions as
described in VanderLugt & Lenz [20]. Briefly, B. similis adults
were isolated from mixed plankton collections from Kaneohe
Bay Island of Oahu, Hawaii, and cultured at ambient temperature
(24–288C), a 12 L : 12 D light regime, and fed ad libitum with live
phytoplankton (Isochrysis galbana). Experimental nauplii were iso-
lated from the cultures and identified to stage using morphological
characteristics and length and width measurements [17].

For videography, nauplii were placed into small Petri dishes
(35 mm diameter) at ambient food levels. Experimental nauplii
ranged in size from 70 to 150 mm corresponding to developmen-
tal stages NI to NV. Spontaneous fast swims were recorded at
5000 fps with a high-speed video system (Olympus Industrial
i-SPEED) filmed through an inverted microscope (Olympus IX70)
with a 10! objective. Frames of the video files were converted into
bitmap image files (‘tiff’ format) and analysed using IMAGEJ
(Wayne Rasband; web page: rsbweb.nih.gov/ij/). Six swim epi-
sodes were analysed for appendage angles and location over
multiple power/return stroke cycles at 0.2 ms intervals. The angle
of each appendagewas measured using the main axis of the nauplius
as a reference, as shown in a scanning electron micrograph of an
early nauplius (NI) in figure 1a. Location was determined by tracking
the x- and y-coordinates of the anterior medial margin of the head in
each successive frame during the swim sequence. Five additional
swim episodes were analysed for location during rapid swims to
determine forward, backward and net displacements. Swims were
usually initiated from rest (figure 1b), which was characterized by
a stereotypical position for each appendage: first antenna (A1) point-
ing anteriorly (6–128), the second antenna (A2) pointing mostly
laterally (60–908) and the mandible (Md) posteriorly (105–1358).

2.2. Model formulation
To determine the extent to which observed locomotion of a nau-
plius could be accounted for based on observed appendage
movements and the assumptions of a low Re regime (see Intro-
duction), we employed a model of swimming with rigid
appendages adapted from one based on slender-body theory for
Stokes flow [19]. The aim of the model is to predict the position
of the body, as the angle of each leg changes over time. The
model provides us a reasonable approximation for long and slen-
der appendages paddling at low Re [21], which omits inertia, as
explained in the Introduction. It makes several additional simplify-
ing assumptions intrinsic to its formulation. The copepod nauplius
has a compact rounded body (figure 1) that is simplified in the
model as a sphere with a diameter that is the mean of the length
and width of its body. Using the more accurate prolate ellipsoid
shape instead made little difference in predicted displacements.
Naupliar appendages are relatively rigid elongate rods, slightly
tapering at both ends, again with rounded cross section. In the
model, they were simplified and represented as uniform cylinders,
with a single diameter. While the appendages are only an order of
magnitude greater in length compared with their thickness, for the
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Figure 1. Bestiolina similis nauplii. (a) Scanning electron micrograph of a first
nauplius (NI) showing angle measurements for first antenna (A1), second
antenna (A2) and mandible (Md). (b) Nauplius stage 3 (NIII) video image
showing position of appendages at rest. Scanning electron micrograph
courtesy of Jenn Kong. Appendage abbreviations, A1, A2 and Md, used in
all figures.
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Figure 1. Scanning electron micrograph of a larval copepod, showing three pairs of appendages:
First antenna (A1), second antenna (A2), and mandible (Md). Image reproduced from [6] under
Creative Commons Attribution 4.0 International License.

Edward Mills Purcell’s talk from 1976, Life at Low Reynolds Number [7], first pop-
ularized the concept of swimming in an environment with a low Reynolds number and
was foundational in the study of microswimmers. He stated the scallop theorem, which
says that complete reciprocal motion cannot produce any displacement when swimming
at a low Reynolds number. Here a reciprocal motion involves two sequences of mo-
tion where the second motion, called the recovery stroke, is the reverse of the first motion,
which is called the power stroke. For humans swimming in water, the time it takes to do
a stroke plays a role in the induced displacement due to the inertia terms in the Navier–
Stokes equations. Thus, humans are able to swim forward by completing the second
recovery stroke faster than the first. However for microswimmers, this inertia is negligible,
so any displacement induced by the first stroke is reversed by the second recovery stroke.
As a consequence, microorganisms must move in other ways, like utilizing a flagella or
moving pairs of legs in an asynchronous manner. For example, for copepods that are
bilaterally symmetrical, the symmetric pairs of legs move simultaneously, but adjacent legs
move out of sync in order to produce a net displacement. These observations are important
as they could potentially be used to design microscopic robots that move in similar ways.
One application involves using bacteria-based nanoswimmers to transport drugs from
a loading point to a destination, such as cancer cells [8].

The main microorganisms of focus in this paper are copepods. Most types of copepods
are only able to move in a motion called swimming-by-jumping [9]. This motion is similar
to the one described in the previous paragraph: It involves moving symmetric pairs of legs
in a way such that adjacent pairs move asynchronously. In other words, the power stroke
and recovery stroke alternate among each of the pairs of legs. One way to model this is
by moving each symmetric pair of legs in a reciprocal motion while introducing a phase
lag between each pair of legs [10]. As in such models, here we restrict the copepod’s
motion to a plane for simplicity, despite the fact that the actual animals live and move
in three dimensions.

Here we model the copepod as a slender body in Stokes flow as in [6,10–14]. Other
models of micro-swimmers capable of rotation appear in [15–17]. It is important to note
that real living copepods do indeed perform rotations to both evade predators [18] and to
capture prey [2]. In [19], the authors analyze such rotational maneuvers (yaw, pitch, and
roll) via high-speed video observations of copepod larvae.

One dimensional translational motion for the copepod model has been well studied.
It is possible to achieve positive displacement along an axis using as few as two pairs
of legs moving in a reciprocal motion [10]. Methods from sub-Riemannian geometry and
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Hamiltonian dynamics have been used to find efficient optimal strokes in the translational
case; efficiency was defined as the ratio between the displacement resulting from a stroke
and the length of the stroke. Numerical methods were used to determine the optimal
strokes maximizing this efficiency [6,11,13]. Here the term stroke refers to a periodic
motion of the legs.

Here we generalize this prior work by analyzing planar motions. To produce orienta-
tion changes we need to break the symmetry of the pair of legs. A first attempt was made
in [14] by looking at three independent legs oscillating sinusoidally; here we generalize
that approach to include all strokes however with the use of two legs. We find that rota-
tion by strokes is indeed possible with only two legs. We also show that the two-legged
system is controllable, although the difficulty in steering locally depends on the initial state;
in other words, the system possesses singularities, which we classify. Taking the mechanical
energy expended as our cost function, we develop the two-legged copepod movement
as an optimal control problem and apply the Pontryagin maximum principle [20] to study
both the normal and abnormal extremals. We partially characterize the abnormal extremals,
and provide some explicit examples. Finally, we utilize the optimal control software Bocop
to simulate normal extremals [21]. Among our simulations we find copepod motions
which produce net rotation without net displacement, we characterize the optimal mo-
tions which produce rotation with no conditions on displacement, and we discover paths
in the xy-plane which appear to be Euler elastica [22].

2. Methods

We consider a simplified copepod microswimmer in a low Reynolds number environ-
ment. The idealized copepod consists of stiff slender legs and a body of negligible radius
in comparison to the length of its legs. In this section, we will develop our mathematical
model, derive the equations of motion, describe the copepod’s motion as an optimal control
problem, and develop the appropriate version of the maximum principle.

2.1. Model

We assume the copepod moves in a plane and possesses 6 independently moving
legs, three on each side of the body. The position of the copepod at time t can be described
by the vector (x(t), y(t), φ(t))T , where x and y represent the usual Cartesian coordinates
on the plane and φ represents the orientation of the copepod with respect to the positive
x-axis. Let θi denote the angle between the copepod’s orientation and the ith leg, and
let αi = θi + φ denote the angle between the ith leg and the positive x-axis. See Figure 2
for an illustration.

Figure 2. The rotating copepod with 6 legs. Note that angles θi are associated to the body frame
while the angles αi are associated to the inertial frame.
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We denote the state of the copepod at time t by the vector:

q(t) = (x(t), y(t), φ(t), θ1(t), . . . θ6(t))
T , (1)

while the position and orientation coordinates alone will be written as q̂ = (x(t), y(t), φ(t))T .
Thus our configuration space is ostensibly R9, however in order to prevent the legs from
passing each other, we impose the constraint:

0 ≤ θ1 ≤ θ2 ≤ θ3 ≤ π ≤ θ4 ≤ θ5 ≤ θ6 ≤ 2π. (2)

For the rest of this paper we will focus on a simplified copepod with two indepen-
dent legs, one on each side of the body (see Figure 3). This simplification allows us to
conduct a mathematical analysis and is justified by assuming the three legs on each side
of the body are collapsed into one stronger leg. As will be seen in Section 4, even with this
simplification we obtain swimming motions reflecting actual laboratory observations.

Figure 3. The rotating copepod with 2 legs.

In most of Section 3, including all of Section 3.2, we use standard techniques from op-
timal control [20] and sub-Riemannian geometry [23]. In Section 3.3, however, we utilize
the optimal control software Bocop. As stated in [21], this software approximates our optimal
control problem by a finite dimensional optimization problem using the direct transcrip-
tion approach to time discretization. The resulting nonlinear programming problem is solved
using the software package Ipopt, using sparse exact derivatives computed by ADOL-C.

2.2. Equations of Motion

We first develop the equations of motion for n legs, then specify to the case n = 2.
Our equations consist of a system of differential equations of the form M ˙̂q = K. The equa-
tions of motion for a copepod moving in two dimensions are derived in [14], which
focuses on legs moving in an oscillatory motion: θi(t) = a cos(t + ki) + βi. Parameters are
constrained to ensure that adjacent legs never overlap but possess a phase lag. The au-
thor shows that no net rotation is possible with such a motion for two legs, thus most
of the analysis concerns the case of three legs. For numerical simulations, the values
of a, k1, β1, β2, and β3 are fixed and the total change in orientation and displacement is
computed for varying values of k2 and k3. The change in displacement and orientation is
maximized when (k2, k3) = ( 2π

3 , 4π
3 ) and (k2, k3) = ( 4π

3 , 2π
3 ). In addition, the total work

done by the microswimmer is calculated and a notion of turning efficiency is introduced.
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The system is derived from slender-body Stokes flow, using the fact that, at low
Reynolds number, inertial forces are negligible and the Navier–Stokes equations can be
linearized. Here:

K =
n

∑
i=1

θ̇i

 sin αi
− cos αi
− 2

3

 (3)

and M is the resistance matrix given by:

M =

 ∑(1 + sin2 αi) −∑(sin αi cos αi) −∑ sin αi
−∑(sin αi cos αi) ∑(1 + cos2 αi) ∑ cos αi
−∑ sin αi ∑ cos αi 2

. (4)

By computing the mobility matrix M−1 (well defined since M is symmetric and
positive definite) we obtain the equations of motion:

˙̂q = M−1K. (5)

2.3. Optimal Control Framework

We now consider this system from the control theoretic point of view, where the angu-
lar velocities of the leg are taken as controls. That is, we set ui = θ̇i, and assume these are
measurable functions of time. Now let:

Ki =

 sin αi
− cos αi
− 2

3

. (6)

Then our control vector fields are:

Fi =
(

M−1Ki, 0, ..., 0, 1, 0, ..., 0
)T

, (7)

where the 1 appears in the ith entry after the M−1Ki entries. Then the copepod motion is
described by the driftless affine control system:

q̇(t) =
n

∑
i=1

ui(t)Fi(q(t)) (8)

where n refers to the number of legs. In this work we assume no bounds on the control.
In reality, of course, there are limits to how quickly an actual copepod can move its legs.
However some of this issue is mitigated by the fact that we will be minimizing some form
of energy; see Equation (15) below. We will see in the next section that, when n = 2, this is
a controllable system; that is, it is possible to find controls steering the copepod from any
given initial state qinitial to any given terminal state qfinal.

The rest of this paper will concern the special case of the copepod with two legs, so
here we record these equations of motion explicitly. When n = 2, we have:

M =

 2 + sin2 α1 + sin2 α2 − sin α1 cos α1 − sin α2 cos α2 − sin α1 − sin α2
− sin α1 cos α1 − sin α2 cos α2 2 + cos2 α1 + cos2 α2 cos α1 + cos α2

− sin α1 − sin α2 cos α1 + cos α2 2


(9)

and

K = θ̇1

 sin α1
− cos α1
− 2

3

+ θ̇2

 sin α2
− cos α2
− 2

3

 = θ̇1K1 + θ̇2K2. (10)



Micromachines 2021, 12, 706 6 of 19

Our control system then takes the form:

q̇(t) = u1(t)F1(q(t)) + u2(t)F2(q(t). (11)

where q = (x, y, φ, θ1, θ2)
t, our controls are u1 = θ̇1 and u2 = θ̇2, and the control vector

fields are:

F1 =

 M−1K1
1
0

 and F2 =

 M−1K2
0
1

. (12)

Straightforward calculations give:

F1 =


− sin(θ1−2θ2−φ)−sin(2θ1−θ2+φ)+17 sin(θ1+φ)−7 sin(θ2+φ)

24(cos(θ1−θ2)−3)

− cos(θ1−2θ2−φ)+cos(2θ1−θ2+φ)−17 cos(θ1+φ)+7 cos(θ2+φ)
24(cos(θ1−θ2)−3)

1
12 (cos(θ1 − θ2)− 3)

1
0

, (13)

F2 =


− sin(θ1−2θ2−φ)−sin(2θ1−θ2+φ)+17 sin(θ2+φ)−7 sin(θ1+φ)

24(cos(θ1−θ2)−3)

− cos(θ1−2θ2−φ)+cos(2θ1−θ2+φ)−17 cos(θ2+φ)+7 cos(θ1+φ)
24(cos(θ1−θ2)−3)

1
12 (cos(θ1 − θ2)− 3)

0
1

. (14)

In the sequel we let D denote the distribution spanned by F1 and F2. Note that
we can obtain F2 from F1 by switching the roles of θ1 and θ2. Moreover, system (11) is time-
reversible; indeed the transformation t 7→ 2π− t, ui(t) 7→ −ui(2π− t) sends q(t) to q(2π−
t). This is a general consequence of swimming at a low Reynolds number. The system
is also invariant under rigid body transformations. It is obvious for translation as the Fi
does not depend on x or y, but it can also be verified that φ 7→ φ + τ is invariant under
x 7→ x cos τ − y sin τ, y 7→ x sin τ + y cos τ.

In this paper we suppose that the copepod seeks to minimize the mechanical energy
expended when moving from one position to another. In [6], the authors consider a two-
legged copepod moving along an axis without rotation. They describe a realistic but
complicated mechanical energy functional, but show that the resulting optimal trajectories
are qualitatively similar to those obtained when using the simplified energy:

E(u1, u2) =
∫ t f

t0

(
u2

1 + u2
2

)
dt. (15)

Here t0 is a fixed initial time, while t f is associated to the control u in the following
manner. Choose some terminal boundary manifold M1 ⊆ R5, which is closed, and define
the target set by M = [t0, ∞)×M1. Then t f is the smallest time such that (t f , q(t f )) ∈ M,
where q(t) is the state trajectory associated to the control u(t).

We therefore choose our cost function to be the energy E given in (15) corresponding
to the orthonormal inner product for the two control vector fields, yielding the following
optimal control formulation. Provided certain boundary conditions made explicit below,
we seek solutions to the dynamical system (11) which minimize the cost (15). Note that this
is a sub-Riemannian problem associated to the flat metric [24].
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2.4. Maximum Principle

The Pontryagin maximum principle provides necessary conditions for a solution to be
optimal. The general statement can be found in the literature [20,24–26], and we here only
state it for our application.

Consider the optimal control problem stated in the previous section, defined by the dy-
namics (11) and cost (15). Let j, k ≤ 5 and consider the initial and terminal boundary
manifolds:

M0 = {q ∈ R5 : g1(q) = g2(q) = · · · = gj(q) = 0} (16)

M1 = {q ∈ R5 : h1(q) = h2(q) = · · · = hk(q) = 0}. (17)

Define the Hamiltonian by:

H(q, u, p, p0) = 〈p, u1F1 + u2F2〉+ p0(u2
1 + u2

2). (18)

Theorem 1 (Maximum Principle). Let u∗ : [t0, t f ] → R2 be an optimal control and let
q∗ : [t0, t f ] → R5 be the corresponding optimal state trajectory. Then there exists a func-
tion p∗ : [t0, t f ] → R5 and a constant p∗0 ≤ 0 such that (p∗0 , p∗(t)) 6= (0, 0) for all t ∈ [t0, t f ]
and having the following properties:

1. q∗ and p∗ satisfy Hamilton’s equations for the Hamiltonian (18) with boundary conditions
q∗(t0) ∈ M0 and q∗(t f ) ∈ M1;

2. H(q∗(t), u∗(t), p∗(t), p∗0) ≥ H(q∗(t), u, p∗(t), p∗0) for all t ∈ [t0, t f ] and u ∈ R2;
3. H(q∗(t), u∗(t), p∗(t), p∗0) = 0 for all t ∈ [t0, t f ];
4. The vector p∗(0) is orthogonal to the tangent space Tq∗(t0)

M0 and the vector p∗(t f ) is or-
thogonal to the tangent space Tq∗(t f )

M1.

Note that this version of the maximum principle closely follows Section Section 4.1.2
of [25], with the addition of the initial boundary conditions M0 and the associated transver-
sality conditions. It is important, however, to recognize that Theorem 1 pertains to the free-
time problem. In our simulations in Section 3.2 we fix the time [t0, t f ] = [0, 2π], which
requires a minor modification of the maximum principle. As described in Section 4.3.1
of [25], one simply introduces an extra state variable to represent time, q6 = t, and includes
the fixed terminal time in the terminal manifold M1. Then the free-time Theorem 1 applies
with only the following modification: H|∗ = −p∗6 , which is constant. In the sequel we will
refer to a trajectory satisfying the conclusions of the maximum principle as an extremal.

3. Results

Most of the results in this section concern the two-legged copepod. Unless explic-
itly stated otherwise, we assume n = 2. The motivation for this choice is contained in
the next theorem, which says that one leg is insufficient for producing rotation via periodic
strokes, but two legs are sufficient. As in [12], we define a stroke to be a periodic deforma-
tion of the swimmer’s body. That is, a stroke of period T is any path in configuration space
satisfying θi(0) = θi(T) for all i = 1, . . . n. For simulations and examples we also impose
the following realistic constraint forcing each leg to stay on one side of the copepod’s body:

0 ≤ θ1 ≤ π ≤ θ2 ≤ 2π. (19)

However, most of the mathematical analysis in this section is valid for the configu-
ration space R2 × (S1)3. Note that [14] proves that a two-legged copepod is incapable
of producing net rotation via the specific oscillating strokes considered in their work.

Theorem 2. A one-legged copepod moving in strokes can neither produce a net rotation nor net
displacement. A two-legged copepod moving in strokes can produce net rotation.
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Proof. For a copepod with one leg, we compute:

M =

 1 + sin2 α − sin α cos α − sin α
− sin α cos α 1 + cos2 α cos α
− sin α cos α 2

 and K = θ̇

 sin α
− cos α

− 2
3

. (20)

Then the equation ˙̂q = M−1K simplifies to: ẋ
ẏ
φ̇

 = θ̇

 4
9 sin α

− 4
9 cos α

− 1
9

. (21)

Suppose the copepod moves in strokes of period T, so θ(0) = θ(T). Without loss
of generality assume φ(0) = 0. Then φ(t) = − 1

9 θ(t) + 1
9 θ(0). Since θ(t) is periodic, φ(t) is

also periodic and thus no net rotation is produced after one period.
Now we also have that α(t) = θ(t) + φ(t) = 8

9 θ(t) + 1
9 θ(0). To calculate the total x

displacement over the period we compute the integral:∫ T

0
ẋ(t) dt =

∫ T

0

4
9

sin
(

8
9

θ(t) +
1
9

θ(0)
)

θ̇(t) dt. (22)

Computing this integral gives us:

x(T)− x(0) = −1
2

(
cos
(

8
9

θ(t) +
1
9

θ(0)
))∣∣∣∣T

0
, (23)

which equals zero again since θ is periodic. Thus the displacement in the x direction is 0;
a similar argument gives the result for y.
The proof of the second statement in the theorem is contained in the following example.

The next example demonstrates that two legs moving in strokes can produce a net
change in displacement and orientation.

Example 1. Consider the two-legged copepod with initial configuration:

q(0) = (x(0), y(0), φ(0), θ1(0), θ2(0))T = (0, 0, 0, 0, π)T . (24)

We consider the following motion. Both legs rotate π radians counter-clockwise in π time;
then one at a time, each leg moves π radians clockwise in π

2 time. See Figure 4. Explicitly, we have:

θ1(t) =


t 0 ≤ t < π

−2t + 3π π ≤ t < 3π
2

0 3π
2 ≤ t < 2π

, θ2(t) =


t + π 0 ≤ t < π

2π π ≤ t < 3π
2

−2t + 5π 3π
2 ≤ t < 2π.

(25)

We can explicitly solve the equations of motion for the orientation over time,

φ(t) =

{
− 2

3 t 0 ≤ t < π
1

12 sin(2t) + 1
2 t− 7π

6 π ≤ t ≤ 2π,
(26)

which implies a net rotation of φ(2π)− φ(0) = −π
6 6= 0. The orientation over time, along with

the displacements over time obtained by numerical integration, are shown in Figure 5. The net
change in position, equal to the final position, is given by:

q̂(2π) = (x(2π), y(2π), φ(2π))T = (0.0071, 0.0019,−π/6)T . (27)
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Figure 4. The motion described in Example 1 traces out the pink triangle in the θ1θ2-plane, counter-
clockwise from the bottom left vertex. The black box represents the constraint (19).

(a) (b)

Figure 5. Motion in Example 1; the three colors correspond to the three legs of the triangle in Figure 4.
(a) Orientation φ(t). (b) Displacements x(t) and y(t).

Note that the energy (15) for the motion in Example 1 is equal to 6π. While this
motion is dynamically valid, it is likely not minimizing the cost. See Section 3.3 for further
discussion.

3.1. Controllability

In this subsection we show that the two-legged copepod is indeed a controllable sys-
tem. That is, given any initial and final configuration, controls exist which steer the copepod
from the initial to the final configuration. The main tool here is the Chow–Rashevskii theo-
rem; a formal statement, along with definitions of all the terminology in this subsection,
can be found in [23]. The proofs here are essentially just calculations, which we performed
using MATLAB and Mathematica.

Our two control vector fields F1 and F2 are given by (13) and (14). Denote their iterated
Lie brackets (which are too complicated to display) by:

F3 = [F1, F2], F4 = [F1, F3], F5 = [F2, F3]. (28)
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Note that F1 and F2, and consequently their iterated brackets, only depend on θ1, θ2,
and φ. A computation shows that the five vector fields F1, F2, F3, F4, and F5 are linearly
dependent if and only if:

sin4
(

ψ

2

)
(25 cos(2ψ) + 120 cos(ψ) + 79) = 0 (29)

where ψ = θ1 − θ2. Note that this is only a condition on two of our five variables. Solv-
ing (29) yields two sets of solutions: ψ = 2πn and ψ = 2πn ± 2 arctan(2) for n ∈ Z.
We therefore have two sets of configurations, which are singular for our distribution D:

S1 = {q | θ1 − θ2 = 2πn± 2 arctan(2) for some n ∈ Z} (30)

S2 = {q | θ1 − θ2 = 2πn for some n ∈ Z}. (31)

These are illustrated in the θ1θ2-plane in Figure 6.

Figure 6. The singular sets for D. The green lines are given by ψ = 2πn, the red lines by ψ =

2πn− 2 arctan(2), and the blue lines by 2πn + 2 arctan(2), where n ∈ Z and ψ = θ1 − θ2. The black
box again shows the constraint (19).

Theorem 3. If q ∈ S1 then the small growth vector at q is (2, 3, 4, 5). If q ∈ S2 then the small
growth vector at q is (2, 2, 3, 4, 5). All other points are regular with a small growth vector (2, 3, 5).

Proof. The fact that the small growth vector is (2, 3, 5) at generic points is immediate from
the fact that F1, F2, F3, F4, and F5 are linearly independent there. These points are regular since
the singular sets are closed. Points in the singular sets are analyzed by computations. Let:

F6 = [F1, F4], F7 = [F1, F5], F8 = [F2, F4], F9 = [F2, F5], F10 = [F1, F6].

For points in S1, we find that F4 = −F5, but F1, F2, F3, F4, and F6 are linearly indepen-
dent. For points in S2, we find that F3 = F7 = F8 = 0 and F4 = −F5 and F6 = −F9, but
F1, F2, F4, F6, and F10 are linearly independent.

Corollary 1. The two-legged copepod system is controllable at all points. At generic points
the degree of non-holonomy is 3. At points in S1 the degree of non-holonomy is 4. At points in S2
the degree of non-holonomy is 5.

Proof. Controllability follows from the Chow–Rashevskii theorem, as the vector fields F1
and F2 Lie generate the tangent bundle at every point. The degree of non-holonomy is
simply the length of the small growth vector.



Micromachines 2021, 12, 706 11 of 19

3.2. Abnormal Extremals

Abnormal extremals are intrinsic to the dynamics; they do not depend on the cost. It is
well known that they play a very important role for the optimal synthesis [24]. They cor-
respond to imposing p0 = 0 in the Hamiltonian (18). It follows that, for our application,
the abnormal Hamiltonian is:

Ha(q, p, u) = u1〈p, F1(q)〉+ u2〈p, F2(q)〉. (32)

According to the Pontryagin maximum principle, abnormal extremals are curves
(q(t), p(t)) satisfying Hamilton’s equations for Ha as well as:

〈p, F1(q)〉 = 0 (33)

〈p, F2(q)〉 = 0. (34)

Differentiating these equations leads to the additional requirements:

〈p, F3(q)〉 = 0 (35)

u1〈p, F4(q)〉+ u2〈p, F5(q)〉 = 0. (36)

The following results partially characterize the abnormal curves.

Proposition 1. The horizontal lifts of the singular curves in Figure 6 are projections of abnormal
curves for the two-legged copepod. They are the integral curves for the vector field F1 + F2 restricted
to the singular set S = S1 ∪ S2 for the distribution D, and they project to uniform circular
motion in the xy-plane. More precisely, let q0 = qi(0), and take any n ∈ Z and any c1, c2 ∈ R not
both zero. Then the curves (q1(t), p1(t)) and (q2(t), p2(t)) are abnormal, where:

q1(t) =


−
√

5
6 cos( 2

5 t± arctan 2 + φ0) + cx

−
√

5
6 sin( 2

5 t± arctan 2 + φ0) + cy
− 3

5 t + φ0
t

t± 2 arctan 2− 2πn

,

p1(t) =


c1
c2

1
6 [(−2c1 + c2) cos( 2

5 t + φ0)− (c1 + 2c2) sin( 2
5 t + φ0)]

1
36 [(−2c1 + 11c2) cos( 2

5 t + φ0)− (11c1 + 2c2) sin( 2
5 t + φ0)]

1
36 [(−10c1 − 5c2) cos( 2

5 t + φ0) + (5c1 − 102c2) sin( 2
5 t + φ0)]

,

q2(t) =


− 1

2 cos( 2
3 t + φ0) + x0 +

1
2 cos(φ0)

− 1
2 sin( 2

3 t + φ0) + y0 +
1
2 sin(φ0)

− t
3 + φ0

t
t− 2πn

, p2(t) =


0
0
6
1
1

,

and

cx = x0 +

√
5

6
cos(± arctan 2 + φ0) and cy = y0 +

√
5

6
sin(± arctan 2 + φ0). (37)

Proof. Note that qi(t) is just the horizontal lift of the naive parametrization of the lines
which constitute the connected components of Si projected to the θ1θ2-plane; these are
the colored lines in Figure 6. Thus for any time t we have qi(t) ∈ Si. The curves qi are
integral curves for F1 + F2 and are therefore horizontal. In fact, span{F1 + F2} is the intersec-
tion of D and the set of Cauchy characteristics for D + [D, D]. It is also the intersection of D
with tangent bundle TS.
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It is straightforward to check that the pairs (q1(t), p1(t)) and (q2(t), p2(t)) satisfy
Hamilton’s equations. Observe that pi is constant in the first two components since our
control vector fields do not depend on x or y. We also have by construction that:

q̇i = F1 + F2|qi =
∂Ha

∂p

∣∣∣∣
(qi ,pi)

. (38)

Interestingly, the abnormal Hamiltonian also satisfies:

∂Ha

∂q

∣∣∣∣
(q2,p2)

= 0. (39)

Note that p1 is actually a 2-parameter family of curves, and p2 is constant and therefore
an integral of motion.

It is similarly straightforward to check that (qi(t), pi(t)) satisfy the abnormal
Equations (33)–(36). Recall that F3|S2 = 0 so Equation (35) is satisfied for any p on S2. Simi-
larly, on any continuous curve within S we have F4 = −F5 and u1 = u2,
so Equation (36) is satisfied for any p.

Corollary 2. Abnormal strokes contained in the singular set for D can produce neither
rotation nor displacement.

Proof. The only possible abnormal stroke lying in S would require the legs tracing a seg-
ment of one of the colored lines in Figure 6 first forward and then backward. The symmetry
of such a stroke prevents any net rotation or displacement.

Proposition 2. Neither control can be zero along an abnormal extremal.

Proof. Without loss of generality, assume u2 = 0 along an abnormal extremal (q(t), p(t)),
so θ2 is constant. Assume u1 6= 0; otherwise the system is at a stationary point.
Equation (36) then implies that 〈p, F4(q)〉 = 0. Differentiating this equation yields:

u1〈p, F6(q)〉+ u2〈p, F7(q)〉 = 0, (40)

which reduces to 〈p, F6(q)〉 since u2 = 0. A straightforward calculation shows that the vec-
tor fields F1, F3, F4, F6 are linearly independent along such a curve. Moreover, they all
are identically zero in the fifth component, so the only p mutually orthogonal to these four
vector fields is of the form (0, 0, 0, 0, p5). Then using (14) and 〈p, F2〉 = 0 we also have
p5 = 0. Thus p = 0, which contradicts the maximum principle.

Corollary 3. The motion in Example 1 is not abnormal. The boundary box (19) is not abnormal.

Proposition 3. The abnormal curves not lying in S are solutions to the Hamiltonian system:

q̇ =
∂H̃a

∂p
, ṗ = −∂H̃a

∂q
(41)

for the Hamiltonian:
H̃a(q, p) = 〈p, F1〉〈p, F5〉 − 〈p, F2〉〈p, F4〉. (42)

Proof. Note that Proposition 1 considers the abnormal curves within S. Assume (q(t), p(t))
is an abnormal curve not lying within S for any time interval. By Equations (33)–(35),
we have that p is orthogonal to F1(q), F2(q), F3(q). However, on the complement of S,
we have that F1, F2, F3, F4, F5 are linearly independent, so p cannot also be orthogonal
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to both F4 and F5. Without loss of generality, assume p is not orthogonal to F4. Then
we can solve Equation (36) for:

u1 = −u2
〈p, F5〉
〈p, F4〉

(43)

obtaining:

Ha = −u2
〈p, F5〉
〈p, F4〉

〈p, F1〉+ u2〈p, F2〉. (44)

Thus we scale Ha to obtain a new Hamiltonian in which the controls do not appear
at all:

H̃a(q, p) = 〈p, F1〉〈p, F5〉 − 〈p, F2〉〈p, F4〉. (45)

As the abnormal equations have been satisfied by construction, any solution to Hamil-
ton’s equations for this Hamiltonian will indeed be an abnormal curve.

3.3. Normal Extremals

Taking p0 = − 1
2 , our normal Hamiltonian is:

Hn(q, p, u) = u1〈p, F1(q)〉+ u2〈p, F2(q)〉 −
1
2
(u2

1 + u2
2). (46)

We analyze the normal extremals indirectly, using the optimal control software Bocop
(see Section 2 and [21]). Our investigations have led to two interesting observations
regarding the behavior of normal extremals.

First, certain trajectories seem to show the copepod moving along a curve in the xy-
plane which is a type of Euler elastica. See Figure 7 for one example. In particular,
we observe this behavior when fixing the start and end positions in the plane, demanding
that the net change in orientation is zero, and demanding that the copepod completes
a stroke, with no other imposed boundary conditions. It can be observed that the legs
follow a periodic motion, and in turn the orientation of the copepod is periodic as well.
The motion in the angular phase plane (θ1, θ2) is a perfect ellipsoid within the constraint
space, reflecting the symmetry of the motion of the two legs.

(a) (b)

Figure 7. Cont.
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(c) (d)

Figure 7. A simulated optimal normal trajectory showing elastica-like motion in the plane.
Here we set the following boundary conditions: (x, y)(0) = (0, 0), (x, y)(2π) = (0.1, 0.5), and
(φ, θ1, θ2)(0) = (φ, θ1, θ2)(2π). The energy here is approximately 54.311. (a) The elastica-like path
of the microswimmer in the xy−plane. (b) Orientation φ(t). (c) The trajectory in the θ1θ2−plane,
within the constraint square (19). (d) Angles of the legs θ1(t) and θ2(t).

A possible route to proving that this phenomena holds is suggested by [22]. Our opti-
mal control problem can be translated into a geodesic problem in sub-Riemannian geome-
try. Our control vector fields F1 and F2 have dual momenta P1 = 〈p, F1〉 and P2 = 〈p, F2〉,
and the sub-Riemannian Hamiltonian HsR = 1

2 (P2
1 + P2

2 ) generates normal geodesics cor-
responding to our normal optimal copepod trajectories. These geodesics parametrized
by arc length correspond to solutions of Hamilton’s equations for HsR (geodesic equations)
with energy H = 1/2. These equations could potentially allow us to show that the cur-
vature κ of the projection (x(t), y(t)) satisfies one of the defining differential equations
for Euler elastica. The obstacles here are that the computations are unwieldy, and it is not
clear how to impose the boundary conditions which seem to lead to elastica-like behavior
in the copepod.

Our second interesting observation concerns the triangle T , appearing in the lower
right corner of the constraint square (19), consisting of the boundary of the set {(θ1, θ2) :
0 ≤ θ1 ≤ θ2 − π ≤ π}. Our simulations show that following this triangle is optimal
for a copepod desiring to rotate a prescribed amount. More precisely, suppose we spec-
ify the net rotation ∆ φ but impose no other boundary conditions: We do not specify
the start or end points in the plane, or require the motion be a stroke. Then the optimal
motion of the legs traces out the triangle T from the top right corner counterclockwise;
it may go around T more than once, not necessarily an integer number of times. In fact,
it will never go around an integer number of times (which would constitute a stroke).
Our observations suggest the following characterization of the motion:

∆ φ ∈


[0, 2π

3 ] just follow hypotenuse: 0 to .5 times around T
( 2π

3 , 5π
6 ] once around T , then hypotenuse: 1 to 1.5 times around T

( 5π
6 , π] twice around T , then hypotenuse: 2 to 2.5 times around T .

In any of these cases, the hypotenuse need not be traced out completely. For example,
to rotate π/3 radians one would simply traverse half the hypotenuse then stop. See Figure 8
for an example of the third case with ∆ φ = π. Note the symmetry of the legs in Figure 8d,
which is implicit in the triangle T itself. Of course, to rotate more than π radians one simply
reverses this process (starting at the bottom left and following T clockwise).
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(a) (b)

(c) (d)

Figure 8. A simulated normal trajectory showing that following the triangle T is optimal for creating
rotation. Our only boundary conditions concern the orientation angle: φ(0) = 0 and φ(2π) = π.
The energy here is approximately 107.735. (a) The path of the animal in the xy−plane. (b) Orienta-
tion φ(t). (c) The trajectory in the θ1θ2−plane, within the constraint square (19). The path traces out
the triangle T exactly 2.5 times counterclockwise starting from the upper right vertex. (d) Angles
of the legs θ1(t) and θ2(t).

Note that travelling along the hypotenuse induces no displacement and traversing
the complete triangle induces a very small net displacement (see Example 1). Thus these
motions represent optimal swimming for a copepod attempting to rotate any amount
without much net displacement. Any rotation amounting to less than or equal to 2π/3
can be achieved optimally with no displacement at all. Intuitively, this demonstrates
the fact that traveling along the hypotenuse gives the strongest possible power stroke
for inducing rotation–the legs of the triangle are simply necessary to move the copepod
legs back into position for another power stroke in a way that minimizes backwards
rotation. A motion which includes the legs of the triangle, as in Figure 8, does require
the copepod to move around in the plane, but it returns to nearly its original position.

In Figure 9 we provide a catalog of the type of topological curves in the xy−plane
obtained when varying the boundary conditions. The boundary conditions themselves
appear in Table 1.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 9. Cont.
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(m) (n) (o)

Figure 9. Gallery of simulated normal extremals showing copepod paths in the xy−plane. In all cases the copepod begins
at the origin (0, 0) and t ∈ [0, 2π]. Additionally, we specify boundary conditions for x(2π), y(2π), φ(0), and φ(2π); these
are given in Table 1. No other boundary conditions are imposed. (a) Fixed positions, free orientations. (b) Fixed positions,
Fixed final orientation. (c) Fixed positions, Fixed final orientation. (d) Fixed positions, Fixed final orientation, not a stroke.
(e) Fixed positions and orientations, not a stroke.(f) Fixed positions and orientations. (g) Fixed positions, free orientations.
(h) Fixed positions, Fixed final orientation. (i) Fixed positions, Fixed final orientation, not a stroke. (j) Fixed positions,
free orientations, not a stroke.(k) Fixed positions and orientations. (l) Fixed positions, Fixed final orientation. (m) Fixed
positions, Fixed initial orientation.(n) Fixed positions, Fixed initial orientation. (o) Fixed positions, Fixed final orientation.

Table 1. The boundary conditions corresponding to the paths in Figure 9. In all cases the initial
position is (0, 0). In some simulations, certain conditions were unspecified, labeled “Free” here.
For some simulations we impose the stroke condition that θi(0) = θi(2π). The total energy of each
path is not imposed, but listed here for comparison.

Subfigure Final
Position

Initial
Orientation

Final
Orientation Stroke Energy

(a) (0.1, 0.1) Free Free Yes 3.868
(b) (0.1, 0.1) Free φ(0) Yes 4.670
(c) (0.8, 0.8) Free φ(0) Yes 215.560
(d) (0.8, 0.8) Free φ(0) No 1.895
(e) (0.8, 0.8) 0 0 No 19.968
(f) (0.5, 0) 0 0 Yes 122.723
(g) (0.5, 0) Free Free Yes 27.745
(h) (0, 0.5) Free φ(0) Yes 43.683
(i) (0, 0.5) Free φ(0) No 0.319
(j) (0, 0.5) Free Free No 0.319
(k) (0.9, 0.3) 0 0 Yes 197.796
(l) (0.9, 0.1) Free φ(0) Yes 146.854

(m) (0.1, 0.5) 0 Free Yes 30.321
(n) (0.7, 0.1) 0 Free Yes 80.652
(o) (0.1, 0.9) Free 0 Yes 91.949

4. Discussion and Conclusions

Here we have provided a mathematical model of a swimming copepod nauplius with
two legs moving in a plane. This model allows for both rotation and two-dimensional
displacement by periodic deformation of the swimmer’s body. The system was studied
from the framework of optimal control theory, with a simple cost function designed to ap-
proximate the mechanical energy expended by the copepod. We have found that this
model is sufficiently realistic to recreate behavior similar to those of observed copepod
nauplii, yet much of the mathematical analysis is tractable. In particular, we have shown
that the system is controllable, but there exist singular configurations where the degree
of non-holonomy is non-generic. We have also partially characterized the abnormal ex-
tremals and provided explicit examples of families of abnormal curves. Finally, we have
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numerically simulated normal extremals and observed some interesting and surprising
phenomena.

This work suggests a plethora of interesting open problems and directions for future
research. First, there are a number of potential generalizations and modifications to our
model which may lead to even more realistic behaviors. For example, one can study
the model with four or six legs coupled with the appropriate constraints. Real copepods
have six legs. Furthermore, this model has the potential to improve the design and
control of soft small-scale synthetic robots [6,27,28]. Alternatively, or perhaps additionally,
one could work in a three-dimensional environment, which is obviously more realistic.
Moreover, there are other reasonable cost functions to consider, including more complicated
versions of mechanical energy. Instead, it may be that copepods seek to minimize the time
needed to perform a given motion, or the total distance traveled, either to evade predators
or capture prey more effectively.

Without generalization, our current model already offers ideas for future research.
In particular, it would be quite interesting to find a mathematical, physical, or biologi-
cal explanation for the observed elastica-like paths, such as the one shown in Figure 7.
Even numerical verification that these paths are indeed forms of elastica would be worth
pursuing. A potential approach is described in Section 3.3, which in turn leads to other
questions of a differential geometric flavor. Our optimal control problem can indeed be
cast as the geodesic problem for a particular sub-Riemannian geometry, which appears ge-
ometrically interesting. The vast sub-Riemannian literature may yield geometric or metric
tools providing deeper insight into the copepod system.

While the experimental approach in Section 3.3 led to some interesting observations,
the normal extremals are still largely not understood. It would be particularly interesting
to explore path-planning for the copepod system. It is also important to recognize that
Bocop, like any mathematical software, has limitations, some of which we encountered.
In particular, it is local optimization software, and we are not working on a convex opti-
mization problem with one global extremum. Thus, despite the symmetries of the problem,
the numerical results were sensitive to transversality conditions (for example, specifying
that copepod start at the origin).

Finally, we consider how well our results approximate actual observations of cope-
pods in motion. In [1], the authors discuss copepod swimming and escape behavior, based
on observations of their swimming patterns and activity. In particular, Figure 4 in that pa-
per shows a helical pattern projecting onto the xy-plane like an ellipse. This correlates with
our motion presented in Figure 8. Figure 8 in [1] depicts escape trajectories for nauplii
and copepodids which follow helical patterns that project on the xy-plane as Euler elastica.
In [2], the authors observe the positions of the appendages during prey capture and prey
handling; in Figure 5 we see the leg motions are oscillatory and mostly periodic, as in
our simulations, during the prey handling phase. The most striking comparison comes
with the observed behavior provided in [3]. Indeed, the projection of the 3D swimming
motion of the nauplii and early copepodid in their observations provide a similar com-
plexity to our simulated trajectories. Through a comparison of our Figure 9 to Figure 1
through 9 in their paper, it is remarkable to note that despite the simplified assumptions
made on the number of legs and the cost, our results still capture the essence of swimming
behavior for copepods.
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