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Abstract: Plants depend on both preformed and inducible defence responses to defend themselves
against biotic stresses stemming from pathogen attacks. In this regard, plants perceive
pathogenic threats from the environment through pattern recognition receptors (PRRs) that
recognise microbe-associated molecular patterns (MAMPs), and so induce plant defence responses
against invading pathogens. Close to thirty PRR proteins have been identified in plants,
however, the molecular mechanisms underlying MAMP perception by these receptors/receptor
complexes are not fully understood. As such, knockout (KO) of genes that code for PRRs and
co-receptors/defence-associated proteins is a valuable tool to study plant immunity. The loss of gene
activity often causes changes in the phenotype of the model plant, allowing in vivo studies of gene
function and associated biological mechanisms. Here, we review the functions of selected PRRs,
brassinosteroid insensitive 1 (BRI1) associated receptor kinase 1 (BAK1) and other associated defence
proteins that have been identified in plants, and also outline KO lines generated by T-DNA insertional
mutagenesis as well as the effect on MAMP perception—and triggered immunity (MTI). In addition,
we further review the role of membrane raft domains in flg22-induced MTI in Arabidopsis, due to the
vital role in the activation of several proteins that are part of the membrane raft domain theory in
this regard.

Keywords: BAK1; innate immunity; KO; MAMPs; membrane raft; MTI; PRRs; T-DNA

1. Introduction

1.1. Plant Innate Immunity: An Overview

Plants are continuously exposed to pathogen attack and this may lead to global losses in
crop yields that, in turn, affect food security worldwide [1]. For instance, fungal-incited diseases
are estimated to be responsible for 15–20% crop losses per annum [2]. Furthermore, oomycetal
Phytophtora infestans, bacterial Pseudomonas syringae pv. tomato (Pst) DC3000 and fungal Magnaporthe
oryzae, have been shown to cause diseases and losses of potato, tomato and rice, respectively [3–5].
Plants use wax layers, cutin and lignified cell walls, as well as preformed and inducible antimicrobial
metabolites, to protect themselves against pathogen attack. Microbes that evade these barriers are
confronted by an innate immune system, since plants lack adaptive immunity [6–8]. The primary
defence response of plants is achieved through the perception of conserved signatures referred to as
microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs), localised in
the plasma membrane, which leads to MAMP-triggered immunity (MTI) [8,9] (Figure 1). These plant
PRRs mostly belong to the receptor-like kinase (RLKs) or receptor-like protein (RLPs) families. In this
regard, RLKs contain an extracellular ligand-binding ectodomain, a transmembrane domain, and an
intracellular serine/threonine (Ser/Thr) kinase domain [8–10]. The RLPs, on the other hand, have a
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similar architecture, but lack the intracellular protein kinase domain [9]. The cytoplasmic receptor-like
kinases (RLCKs) are not able to perceive MAMPs, because they lack an extracellular domain, but can
interact with RLKs and participate in phosphorylation cascades, thereby leading to the activation of
downstream innate immune response [8,9,11].

MTI controls host microbial colonisation through the secretion of antimicrobial defence chemicals
and nutrient deprivation of the attacking pathogen [12]. Several MAMPs such as epitopes from
bacterial flagellin, elongation factor-thermo unstable (EF-Tu) and fungal chitin, have received much
attention [13–15]. Other notable MAMPs under investigation are fungal ergosterol, ethylene-inducing
xylanase (EIX), elicitin proteins, oomycetes β-glucan, bacterial cold shock protein (CSP), peptidoglycan
(PGN), lipopolysaccharides (LPS), and necrosis and ethylene-inducing peptide 1-like proteins (NLPs)
from multiple bacterial, fungal and oomycetal species [7,8,16–25]. The details, however, of the molecular
mechanisms underlying MAMP perception by plant PRRs are elusive and appear to be different in
each case, due to the unique physico-chemical properties of each ligand, specifically with regard to the
binding kinetics and associated responses of the ligand: receptor interactions.

1.2. Cellular Events Associated with Plant Defence

The defence signalling events that occur when a PRR perceives its associated MAMP are illustrated
in Figure 1, and include the induction of defence responses, such as reactive oxygen species (ROS)
production and elevation of cytosolic calcium ([Ca2+] cyt). Here, Ca2+ binds to the first EF-hand
motif in the N-terminal domain of respiratory burst oxidase homolog D (RbohD) and triggers ROS
production [26]. Calcium-dependent protein kinase (CDPK), activated by the influx of calcium into
the cytosol, thus contributes in the RbohD-dependent ROS production and induction of defence
genes [27]. As an example, FLS2, as a well-studied PRR, forms a ligand (flg22)-induced complex
with the co-receptor (BAK1) and recruits a RLCK (botrytis induced kinase 1, BIK1) [28]. BIK1 directly
phosphorylates RbohD and contributes to the production of ROS and other downstream defence
signalling [26]. Subsequent activation of signal transduction events linked to mitogen-activated
protein kinases (MAPKs) leads to increases in the expression of defence-related genes, biosynthesis of
pathogenesis-related (PR)-proteins, cell wall strengthening and callose deposition [24,29–32].

In order to abrogate MTI or the plant’s primary defence responses, true microbes secrete
effectors that interact with host targets, inhibit PRR-mediated signalling and cause infection, termed
effector-triggered susceptibility (ETS). Pathogenic effectors may subdue MTI through different means,
which include binding to PRRs and the disrupting of PRR-MAMP complexes, targeting PRR kinase
domains to inhibit kinase activity, and trans-phosphorylation and autophosphorylation [33–35].
Additionally, effectors may bind PRR signal amplifiers like BAK1, and target transcription factors and
MAPK signalling pathways [33–35]. In response, resistant plants carry polymorphic nucleotide-binding
site leucine-rich repeat (NBS-LRR) resistance (R) proteins that recognise these effector-mediated
perturbations. This triggers a secondary, more intense defence response, termed effector-triggered
immunity (ETI), which is often associated with the hypersensitive response (HR) that protects plants
against such pathogens [29,31,36,37]. Collectively, these processes are described by the zig-zag model
of plant innate immunity, and demonstrate the co-evolutionary relationship between pathogens and
host plants [29].

Impairment or abolishment of MTI may result in enhanced pathogen proliferation and increased
plant susceptibility to pathogens (Figure 1) [33]. As such, gene knockout (KO) by e.g., transfer DNA
(T-DNA) studies, where functional genes are made inoperative, represents a rational approach towards
the investigation of MAMP perception by potential PRRs, as well as the interactions with cognate
receptors and/or probable co-receptors. As such, in this review, we focus mainly on MAMPs from
bacterial, fungal and oomycete pathogens, of which the cognate PRRs have been identified, and
subsequent KO lines by the T-DNA mutagenesis used to study plant immunity.
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Figure 1. Generalised view of MAMP perception via PRRs, illustrating the potential impact of 
knockout (KO) effects that influence MAMP-triggered immunity. Upon MAMP (e.g., flg22) 
perception by a cognate PRR (e.g., in the case of FLS2 [28], the RLCK botrytis induced kinase1 (BIK1) 
dissociates from its complex with FLS2 and co-receptor BAK1. This leads to the activation of defence 
responses, such as ROS production, cytoplasmic Ca2+ influx, activation of downstream signalling 
kinases (MAPK and CDPK) and upregulation of defence genes. KO of the PRR and/or co-receptor 
(demarcated by the dotted line) may impair activation of downstream defence signalling, that could 
possibly lead to increased susceptibility of a plant to a pathogen. P = Phosphorylation, RBOHD = 
Respiratory burst oxidase homolog D, TF = Transcription factor, PRR = Pattern recognition receptor, 
CR = Co-receptor, MAMP = Microbe-associated molecular pattern, ROS = Reactive oxygen species, 
CDPK = Calcium-dependent protein kinase, MAPK = Mitogen-activated protein kinase, RLCK = 
Receptor-like cytoplasmic kinase, MTI = MAMP-triggered immunity. 

2. T-DNA Knockout and Other Mutagenesis Technologies 

Mutant plants generated by disrupting genes that code for PRRs have been widely adopted in 
plant research. Since the main objective in this field is to improve crop production, mutant analysis 
to assay gene disruption effects is a useful tool [38]. T-DNA insertion into an intron/exon (should the 
intron insertion not be affected by splicing mechanisms) will disrupt gene expression, a phenomenon 
commonly referred to as “knockout” or null mutations [39]. The completion of the Arabidopsis 
genome sequence [40] has led to exponential interest in the use of KO methodologies as a reverse 
genetics approach to study plant metabolism [41]. T-DNA insertional mutagenesis has undisputed 
performance in plant research, despite rivalry from other gene KO systems such as RNA interference 
(RNAi) [42], zinc finger nucleases (ZFNs) [43], transcription activator-like effector nucleases 
(TALENs) [44,45] and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-
associated protein 9 (Cas9) technology [46,47]. 

Insertional mutagenesis has the advantage of targeting individual genes within a closely related 
family, such that the function of these can be investigated [41]. Transposon mutagenesis is part of 
insertional mutagenesis where mobile transposons are removed from an original genomic location 
to another genomic position, by the aid of the transposon-encoded transposase enzyme [48]. That 
may disrupt the gene-coding region and concomitant loss-of-function phenotypes of that particular 
gene. A transposon mutagenesis screen has a number of advantages, which include high throughput, 
easy identification and provision of information into an organism’s genetic network [48]. 
Nevertheless, transposon insertion also has a number of draw backs. In this regard, intronic insertion 

Figure 1. Generalised view of MAMP perception via PRRs, illustrating the potential impact of knockout
(KO) effects that influence MAMP-triggered immunity. Upon MAMP (e.g., flg22) perception by a
cognate PRR (e.g., in the case of FLS2 [28], the RLCK botrytis induced kinase1 (BIK1) dissociates from
its complex with FLS2 and co-receptor BAK1. This leads to the activation of defence responses, such as
ROS production, cytoplasmic Ca2+ influx, activation of downstream signalling kinases (MAPK and
CDPK) and upregulation of defence genes. KO of the PRR and/or co-receptor (demarcated by the dotted
line) may impair activation of downstream defence signalling, that could possibly lead to increased
susceptibility of a plant to a pathogen. P = Phosphorylation, RBOHD = Respiratory burst oxidase
homolog D, TF = Transcription factor, PRR = Pattern recognition receptor, CR = Co-receptor, MAMP =

Microbe-associated molecular pattern, ROS = Reactive oxygen species, CDPK = Calcium-dependent
protein kinase, MAPK = Mitogen-activated protein kinase, RLCK = Receptor-like cytoplasmic kinase,
MTI = MAMP-triggered immunity.

2. T-DNA Knockout and Other Mutagenesis Technologies

Mutant plants generated by disrupting genes that code for PRRs have been widely adopted in
plant research. Since the main objective in this field is to improve crop production, mutant analysis to
assay gene disruption effects is a useful tool [38]. T-DNA insertion into an intron/exon (should the
intron insertion not be affected by splicing mechanisms) will disrupt gene expression, a phenomenon
commonly referred to as “knockout” or null mutations [39]. The completion of the Arabidopsis genome
sequence [40] has led to exponential interest in the use of KO methodologies as a reverse genetics
approach to study plant metabolism [41]. T-DNA insertional mutagenesis has undisputed performance
in plant research, despite rivalry from other gene KO systems such as RNA interference (RNAi) [42],
zinc finger nucleases (ZFNs) [43], transcription activator-like effector nucleases (TALENs) [44,45] and
clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)
technology [46,47].

Insertional mutagenesis has the advantage of targeting individual genes within a closely related
family, such that the function of these can be investigated [41]. Transposon mutagenesis is part of
insertional mutagenesis where mobile transposons are removed from an original genomic location to
another genomic position, by the aid of the transposon-encoded transposase enzyme [48]. That may
disrupt the gene-coding region and concomitant loss-of-function phenotypes of that particular gene.
A transposon mutagenesis screen has a number of advantages, which include high throughput, easy
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identification and provision of information into an organism’s genetic network [48]. Nevertheless,
transposon insertion also has a number of draw backs. In this regard, intronic insertion of a transposon
can be spliced out, leading to unsuccessful or unstable insertional mutagenesis. Furthermore, cryptic
splice sites in the transposon’s sequence could lead in the generation of truncated transcripts [48].

T-DNA, on the other hand, is a short segment of DNA that is transferred from a bacterial
tumour inducing (Ti) plasmid to the plant genome, when a plant is infected by Agrobacterium
tumefaciens [41,49,50]. T-DNA insertional mutagenesis helps in the functional identification of genes
that are responsible for an observed plant phenotype. Pertaining hitherto, Tables 1 and 2 show selected
plant PRRs, BAK1 and other associated defence proteins, the T-DNA KO genes and roles in plant MTI.
T-DNA does not only disrupt the genes into which it is inserted, but also serves as a marker in the
identification of the mutant [50]. The subsequent PCR-based screening of genomic DNA is a simple
tool to select homozygous plants for the T-DNA insertional mutagens [38,39]. Here, insertions in the
target genes are detected by the use of a combination of gene-specific and T-DNA-specific primers.
As such, in this review, we focus on T-DNA insertional mutagenesis of well-studied PRRs, co-receptors
and other associated proteins, and discuss the contribution in the study of MTI.

T-DNA is flanked by 25 bp right border (RB) and left border (LB) sequences, respectively, that
enables the replacement of native DNA with DNA of interest to enhance genetic engineering [51].
Successful transfer of the T-DNA into the host plant’s nuclear genome requires virulence (vir) genes
(virA, virB, virC, virD, virE, virF, and virG) [51,52]. VirD1 and VirD2 endonucleases, which cut the
bottom part of the T-DNA border, release the single stranded DNA (T-strand) and attach to the 5′

end [53]. The T-strand is escorted through the cytoplasm into the nucleus by a complex (T-complex)
that includes VirD2, VirE2 and VirF [51]. The T-DNA is then integrated into the plant genome in various
orientations (full-length, truncated or multiple T-DNAs) and requires plant proteins [53]. Subsequently,
T-DNA insertion alters both the genomic and epigenomic landscape of Arabidopsis T-DNA insertion
lines [54]. The advantage of using T-DNA insertion is that there is no transposition after integration
within the genome, and it is chemically and physically stable through multiple generations [39].
Additionally, mutations that are homozygously lethal can be obtained and maintained in a population
in the form of heterozygous plants [50]. There are, however, also a number of disadvantages associated
with T-DNA insertional mutagenesis. These include multiple T-DNA insertions, different insertion
sizes and chromosomal rearrangements [54,55]. In addition, T-DNA insertion has been reported to
induce the decreased expression of adjacent genes in Arabidopsis [56]. Another major limitation of
T-DNA mutagenesis, like all gene disruption approaches, is the possibility of no phenotypic alteration
due to gene duplication or redundancy, especially in genes required for early embryogenesis or
gametophytic development [49,50]. Notably, over 70% of Arabidopsis genes are present in more than
one copy [40,41]. To overcome these limitations, the generation of double or multiple mutations in a
group of related genes is important in observing phenotypic alteration [49]. In this regard, expression
patterns using specialised vectors with modified insertional elements can be used to identify redundant
genes [50].

3. Membrane Raft Domains in the flg22-Mediated Defence Response

The Sanger and Nicholson fluid-mosaic model [57] describes the plasma membrane (PM) as
comprised of a lipid bilayer, with integral and peripheral proteins randomly distributed within the
membrane. Thereafter, the membrane raft concept, first introduced by Simons and Ikonen [58], defined
specific regions of the plasma membrane with high concentrations of specific lipids (sphingolipids,
sterols) and proteins that are involved in both membrane trafficking and signalling. Membrane
rafts are formed through lipid-lipid interactions, where sphingolipids on the outer leaflet of the
membrane interact with sterols, such as either cholesterol in mammalian cells or phytosterols in plant
cells [58–60]. These microdomains are dynamic and highly organised at the nanoscale (10-200 nm in
diameter) level within various parts of the membrane, and can be stimulated into larger and more
stable raft domains by lipid-lipid—as well as protein-lipid—and protein-protein interactions [59,61,62].
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Membrane rafts contain a high content of saturated fatty acids within the phospholipids, as well as
cholesterol, compared to the non-raft regions of the PM, thereby producing a liquid-ordered (Lo)
phase [63,64]. This tight packing of the lipids into a less fluid Lo phase confers detergent-resistant
properties to membrane rafts [61]. At low temperature (4 ◦C), the Lo phase structures of rafts can be
recovered from membrane fractions as a consequence of the tight packing of the lipids and insolubility
to non-ionic detergent (Triton X100), and are therefore referred to as ‘detergent-insoluble membranes’
(DIMs) [61,65]. Functionally, membrane rafts play regulatory roles in signal transduction, endocytosis
and exocytosis, cell adhesion, actin cytoskeleton organisation and cell trafficking [59,64–66].

Proteins associated with membrane rafts include G-proteins, protein kinases and
glycophosphatidyl inositol (GPI)-anchored proteins that are involved in signal transduction [62,64,67].
As such, membrane rafts are believed to play vital roles as signal transduction platforms during
plant biotic/abiotic stress [65], and are proposed to be the hub for PM-localised receptor proteins
(like PRRs) and co-receptor complexes that are involved in MAMP perception and defence signalling
in plants [65,66]. Consistently, the induction of proteins was observed in DIMs prepared from
Arabidopsis, tobacco and rice, upon treatment with bacterial flg22, oomycetal cryptogein and fungal
chitin, respectively [68–70]. Using quantitative proteomics, Kierszniowska et al. [67] identified proteins
that are involved in signalling, such as receptor kinases, G-proteins and calcium signalling proteins in
Arabidopsis thaliana rafts. Similarly, flg22 induced proteins, such as proton pump ATPases and RLKs
including FLS2 in DIMs of A. thaliana cells [70].

Figure 2 demonstrates a model of the activation of the RbohD enzyme upon flg22 perception by
FLS2 and subsequent signalling in raft domains of A. thaliana [64–66]. In non-treated A. thaliana cells,
FLS2 is located in non-raft domains or detergent-soluble domains (DSMs), whereas inactive RbohD
enzymes, phosphatidylinositol (4,5)-bisphosphate-specific phospholipase C (PIP2-PLC), diacylglycerol
kinase (DGK) and typical raft proteins, such as remorin (REM), are localised inside rafts or DIMs.
In pre-active states, both FLS2 and BAK1 are located in different regulatory protein complexes.
For example, FLS2 is found in complex with the RLCK, BIK1, whereas BAK1 is associated in complex
with BAK1-interacting receptor-like kinases (BIR1, BIR2 or BIR3) [28,71,72]. Immediately upon flg22
treatment of the cells, FLS2 shifts from DSMs to DIMs, forms a complex with BAK1, and recruits
BIK1 that leads to the activation of RbohD enzymes through a series of phosphorylation events and
concomitant downstream defence signalling. Thus, the recruitment of regulators of RbohD, such
as the 14.3.3 protein, the Rac G protein (a small GTPase immunoregulator) and the phospholipid,
phosphatidic acid (PA), to the N-terminus of RbohD, leads to its activation [28,65,66,68–70,73,74].
In addition, other proteins reported to be abundant in DIMs upon flg22 elicitation include channel
proteins, RLKs, and transporters (e.g., ABC transporter and H+-ATPase AHA1) [73]. RLKs, including
BAK1, have also been identified in the DIMs of tobacco suspension cells [75]. Although there has
been much research interest in membrane rafts, many controversies exist regarding their existence and
function [60], and more studies are needed to substantially understand their role in, and contribution
to, plant defence signalling.
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Figure 2. A model for localisation of PRRs in membrane rafts upon flg22 MAMP elicitation in A. 
thaliana. (a) Non-stimulated cells contain FLS2, BAK1 and other RLKs in non-raft domains (dominated 
by phospholipids), with inactive RbohD, PIP2-PLC, DGK typical raft protein markers (like remorin). 
(b) In flg22 treated cells, FLS2 forms a complex with BAK1 in DIMs (dominated by sphingolipids and 
sterols), that follows with recruitment of the RLCK BIK1 to the FLS2-BAK1 complex. 
Transphosphorylation events lead to RbohD activation and downstream defence signalling. Other 
components of DIM include CDPK, Phospholipase D (PLD), Phospholipase C (PLC), small G protein 
(Rac) and channel proteins (adapted from [28,65,66,73]). 

4. Pattern Recognition Receptors in MTI 

PRRs play key roles in plant defences against microbes. Figure 3 illustrates the different 
structural configurations of selected PRRs in plants, to demonstrate the different ectodomains that 
are involved in MTI. Several PRRs have been characterised in different plants, including EF-Tu 
receptor (EFR) and flagellin sensitive 2 (FLS2), which are both RLKs [14,76,77]. RLPs, such as the 
chitin elicitor-binding protein (CEBiP) identified in rice, require an additional protein (chitin elicitor 
receptor kinase 1; CERK1), with cytoplasmic kinase activity to trigger chitin defence signalling 
[78,79]. RLKs and RLPs are classified into subfamilies, depending on the motifs or domains of the 
ectodomains [36]. These domains include leucine-rich repeat (LRR), lysin M (LysM) or lectin (Lec), 
used to bind specifically to ligands [9,80]. A number of RLKs and RLPs use LRRs to bind MAMP 
epitopes. For example, FLS2, is a LRR-RLK that binds bacterial flg22 (an epitope in flagellin) and 
triggers immune defence signalling [76,81]. On the other hand, cold shock protein receptor 
(NbCSPR), a LRR-RLP, associates with BAK1 and, upon cold shock protein epitope (csp22) treatment, 
induces defence responses in Nicotiana benthamiana [82]. In tomato, cold shock receptor (CORE), a 
LRR-RLK, recognises bacterial csp22 and triggers defence responses [83]. These indicate the presence 
of two modes of CSP perception in the Solanaceae. Transgenic expression of NbCSPR in A. thaliana 

Figure 2. A model for localisation of PRRs in membrane rafts upon flg22 MAMP elicitation in A. thaliana.
(a) Non-stimulated cells contain FLS2, BAK1 and other RLKs in non-raft domains (dominated by
phospholipids), with inactive RbohD, PIP2-PLC, DGK typical raft protein markers (like remorin). (b) In
flg22 treated cells, FLS2 forms a complex with BAK1 in DIMs (dominated by sphingolipids and sterols),
that follows with recruitment of the RLCK BIK1 to the FLS2-BAK1 complex. Transphosphorylation
events lead to RbohD activation and downstream defence signalling. Other components of DIM include
CDPK, Phospholipase D (PLD), Phospholipase C (PLC), small G protein (Rac) and channel proteins
(adapted from [28,65,66,73]).

4. Pattern Recognition Receptors in MTI

PRRs play key roles in plant defences against microbes. Figure 3 illustrates the different structural
configurations of selected PRRs in plants, to demonstrate the different ectodomains that are involved
in MTI. Several PRRs have been characterised in different plants, including EF-Tu receptor (EFR) and
flagellin sensitive 2 (FLS2), which are both RLKs [14,76,77]. RLPs, such as the chitin elicitor-binding
protein (CEBiP) identified in rice, require an additional protein (chitin elicitor receptor kinase 1; CERK1),
with cytoplasmic kinase activity to trigger chitin defence signalling [78,79]. RLKs and RLPs are classified
into subfamilies, depending on the motifs or domains of the ectodomains [36]. These domains include
leucine-rich repeat (LRR), lysin M (LysM) or lectin (Lec), used to bind specifically to ligands [9,80].
A number of RLKs and RLPs use LRRs to bind MAMP epitopes. For example, FLS2, is a LRR-RLK
that binds bacterial flg22 (an epitope in flagellin) and triggers immune defence signalling [76,81].
On the other hand, cold shock protein receptor (NbCSPR), a LRR-RLP, associates with BAK1 and, upon
cold shock protein epitope (csp22) treatment, induces defence responses in Nicotiana benthamiana [82].
In tomato, cold shock receptor (CORE), a LRR-RLK, recognises bacterial csp22 and triggers defence
responses [83]. These indicate the presence of two modes of CSP perception in the Solanaceae.
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Transgenic expression of NbCSPR in A. thaliana conferred csp22 responsiveness and resistance to Pst
DC3000 bacteria. Other notable LRR-RLKs involved in MTI are rice XA21 and tomato FLS3, that
recognise the bacterial peptides required for the activation of XA21-mediated immunity X (RaxX) and
flgII-28, respectively [84,85]. Other examples of LRR-RLPs include Arabidopsis receptor-like protein
23 (RLP23) and tomato elicitin response (ELR), that recognise nlp20 and oomycetes elicitins [17,86].
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Figure 3. Structural configuration of plant PRRs. PRRs use different conserved external surfaces such
as LRR-, LysM- or lectin domains to recognise MAMPs. Following, the transmembrane domain relays
the perceived signal into the cell for the kinase domain to perform PRR activation, phosphorylation of
downstream defence-related proteins and subsequent MTI induction. LRR = leucine-rich repeat, LysM
= lysine motif, GPI = glycophosphatidyl inositol.

PRRs with LysM ectodomains are also part of both RLK and RLP families. LysM-RLK CERK1
uses such motifs on its extracellular domain to interact with the MAMP chitin in A. thaliana [15], while
LysM-containing RLPs, LYM1/LYM3, perceive PGN in A. thaliana [87]. Notably, LYM1/3 and LYM2
RLPs, which are Arabidopsis homologs of OsCEBiP, possess a unique glycophosphatidyl inositol (GPI)
anchor used to attach the receptors in the plasma membrane bilayer [12,87,88]. Additional examples
of LysM-RLKs include Arabidopsis LYK5 and LYK4, which are involved in fungal chitin perception
and defence signalling [89,90], while members of LysM-RLPs include the rice LYP4 and LYP6, that
recognise fungal chitin and bacterial PGN respectively [91].

The bulb-type (B-type) lectin S-domain (SD)-1 RLK, lipooligosaccharide-specific reduced elicitation
(LORE), which is a lectin (Lec)-RLK, was reported to sense the bacterial Xanthomonas and Pseudomonas
LPS, and to activate MTI in Arabidopsis [92]. However, recently Kutschera et al. [93] reported that
3-hydroxy fatty acids that co-purified with LPS induced a LORE-dependent defence response in
A. thaliana. Thus, LORE is not the receptor for LPS. Relatedly, Sanabria et al. [94] proposed an
LPS-responsive N. tabacum S-domain RLK (Nt-Sd-RLK) gene encoding conserved B-lectin, S- and
PAN domains to be involved in LPS perception. These authors proposed that S-domain RLK MAMP
perception and signal transduction could be via direct ligand recognition and binding of carbohydrate
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epitopes, or by indirect ligand-induced conformational changes, dimerisation or recruitment of a
co-receptor to initiate phosphorylation events that lead to the activation of defence signalling [94–97].

Although this review is focused on mutant lines where specific PRRs have been knocked-out, it is
important to note that most RLKs and RLPs do not function in isolation, but mostly act together with
associated proteins that participate in defence signal transduction upon MAMP perception. In this
regard, the RLK co-receptor BAK1 has been shown to be recruited upon MAMP perception to modulate
defence signalling [96,98,99]. In addition to BAK1, other proteins might be recruited to the PRRs to form
a functional recognition complex and regulate immune signalling [74,100]. For example, SOBIR1, an
adaptor for LRR-RLPs, regulates cell death and innate immunity in Arabidopsis and tomato [101–103],
while FERONIA (FER) and IMPAIRED OOMYCETE SUSCEPTIBILITY1 (IOS1), both malectin-like
RLKs, form ligand-induced complexes with PRRs and regulate MTI in Arabidopsis [104,105].

Additional protein-protein interactions and motifs deserve some mention, particularly to highlight
the need to regulate PRR activities, as well as turnover, in order to keep immune signalling in check.
In this regard, an elicitor-responsive Armadillo repeat protein (GhARM) from cotton (Gossypium
hirsutum) regulates cell wall-derived Verticillium dahliae elicitor responsiveness and contains three
consecutive ARM repeats that, in association with certain RLKs or co-receptors, activate plant defence
signalling [106]. Upon flg22 treatment, the Arabidopsis U-box E3 ubiquitin ligase, PUB13, uses a
C-terminal ARM repeat domain to interact and ubiquitinate FLS2 in a BAK1-dependent manner [107].
Additionally, flg22-mediated FLS2 internalisation and endocytosis depends on cytoskeleton, receptor
activation, and proteasome functions. Mutation at the threonine 867 of FLS2, proposed to bind flg22,
showed impairment in flg22 signalling, as well as FLS2 endocytosis [108]. The Arabidopsis PUB13,
a close ortholog of rice SPOTTED LEAF 11 (SPL11), is furthermore known to regulate cell death,
defence and flowering time in a SA-dependent manner [109,110], as well as ubiquitinates LYSIN
MOTIF RECEPTOR KINASE5 (LYK5) in vitro to regulate the turnover thereof [111]. The tomato
(Solanum lycopersicum) homolog of PUB13, SIPUB13, on the other hand, works with group III members
of ubiquitin-conjugating enzyme (E2s) to ubiquitinate FLS2 in vitro [112]. Negative regulation of MTI
upon induction by several MAMPs has also been reported for the Arabidopsis E3 ubiquitin ligase
triplets, PUB22, PUB23, and PUB24 respectively. Upon induction by MAMPs, including flg22 and
chitin, pub22/pub23/pub24 triple mutants displayed an increased ROS burst and strong upregulation of
OXI1 and WRKY29 defence genes [113].

Conclusively, as an outcome of recent fundamental studies, results have shown that immune
receptors can potentially be transferred or engineered to enhance MAMP and/or pathogen recognition,
and quantitative responsiveness, to control plant diseases in crop [33,100,114,115].

5. Well-Studied MAMP Perception System(s)

5.1. Bacterial MAMPs

5.1.1. Flagellin Perception

Flagellin is the main protein component of bacterial flagella, that acts as a MAMP in both plants
and animals. Plants have a notably sensitive perception system for the highly conserved domain in
the N-terminus of eubacterial flagellin [13]. The perception thereof, and particularly the N-terminus
flagellin peptides, flg22 and flg15 from Pseudomonas syringae pv. tabaci, lead to the alkalinisation of the
culture medium in suspension-cultured cells of Lycopersicon peruvianum (a wild relative of tomato), A.
thaliana, potato and tobacco respectively [13]. Flagellin from the rice-incompatible strain, N1141 of
P. avenae, was also shown to induce the hypersensitive cell death and accumulation of EL2 mRNA
(elicitor-responsive gene) in cultured rice cells [116]. As mentioned, FLS2 is a LRR-RLK involved in
the perception of the bacterial flagellin and immune responses in A. thaliana [76,96]. Furthermore,
the recognition of bacterial flg22 by Arabidopsis FLS2 induces a FLS2-BAK1 complex formation
and triggers defence signalling [96,98]. By using chemical cross-linking and immunoprecipitation
techniques, Chinchilla et al. [117] showed that the specificity of flagellin perception and immune
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responses is mediated by the binding of FLS2 to flg22 in A. thaliana. The fls2 mutants carrying T-DNA
insertion in the flagellin receptor gene FLS2 were more susceptible to Pst DC3000 compared to the
wildtype (WT) [118]. Upon flg22 treatment, FLS2 mutants (fls2-101), generated by the insertion of
T-DNA at the third FLS2 exon, showed impaired binding of the flg22 and reduced seedling growth
inhibition [81].

As stated, flg22 induces a FLS2-BAK1 complex in a ligand-dependent manner, and leads to defence
responses in A. thaliana [96]. This study showed that although BAK1 mutants (bak1-3 and bak1-4 with
T-DNA inserted in 5th intron and 9th exon, respectively) were defective in an oxidative burst generation,
they did not affect the binding of flg22 to FLS2. Furthermore, flg22 induces recruitment of the U-box
E3 ubiquitin ligases (PUB12 and PUB13), previously mentioned, to the FLS2-BAK1 complex and this
causes FLS2 degradation and the concomitant attenuation of immune signalling in Arabidopsis [107].
Here, there was a decrease in FLS2 ubiquitination and Pst DC3000 infection in mutant plants (pub12-2,
pub13 and pub12/13 double knockout), compared to WT controls. A recent study has furthermore
shown that flagellin-sensing 3 (FLS3) directly and specifically binds flgII-28 (a second flagellin epitope
distinct from flg22), which enhances immune responses in tomato [85]. Finally, it is also important to
note that BAK1 is involved in the defence signalling activities of both FLS2 and FLS3 [85,96].

5.1.2. EF-Tu Perception

Elongation factor-thermo unstable (EF-Tu), a prokaryotic elongation factor involved in the
synthesis of proteins, is a bacterial MAMP that is recognised by the LRR-RLK, EFR, in Arabidopsis [14].
N. benthamiana normally lacks EF-Tu responsiveness, but achieved the ability to recognise the MAMP
when EFR was transiently expressed in the plant [14]. Kunze et al. [119] showed that EFR binds
directly to the acetylated N-terminus epitope of elf18 (the first amino acids of EF-Tu) and elicits innate
immunity in Arabidopsis and other Brassicaceae species. The first acetylated 12 N-terminal amino
acids (elf12) were, however, not able to elicit an immune response, but rather acted as a specific
antagonist of elf18 [119]. Interestingly, even though EF-Tu induces MTI in rice, the elf18 peptide
failed to trigger an immune response. However, another epitope, EFa50 (50-amino acid from central
region of EF-Tu comprising Lys176 to Gly222) induced MTI responses, although the related PRR is still
unknown [120]. Rice leaves treated with EFa50 induced early defence responses such as increased H2O2

and callose deposition, and triggered resistance to coinfection with pathogenic bacteria. In this regard,
Arabidopsis EFR T-DNA insertion mutants (efr-1 and efr-2), with both T-DNAs inserted in 1st exon, were
insensitive to EF-Tu and susceptible to the bacterium Agrobacterium tumefaciens [14] (Table 1). In fact, efr
mutants did not show typical growth inhibition as for the WT, increased oxidative burst and ethylene
biosynthesis or induced resistance to Pst DC3000 upon EF-Tu treatment. Jeworutzki et al. [121] reported
involvement of EFR and FLS2 in the Ca2+-associated opening of plasma membrane anion channels
during early bacterial flagellin and EF-Tu defence signalling in Arabidopsis mesophyll cells. Using
electrophysiological approaches, they showed that the efr-1 was defective in the membrane potential
depolarisation, which is indispensable for cytosolic calcium influx in response to elf18 treatment.

5.1.3. LPS Perception

LPS is an amphipathic molecule found on the outer membrane of Gram-negative bacteria and
protects the organism against antimicrobial compounds found in the environment [23,122]. This MAMP
is involved in the bacterial adhesion and induction of defence-related responses in both mammals
and plants [123]. In the former, LPS recognition is orchestrated by lipopolysaccharide binding
protein (LBP), before recruitment into a complex comprising soluble myeloid differentiation protein
2 (MD-2), membrane attached cluster of differentiation 14 (CD14), and the transmembrane Toll-like
receptor 4 (TLR4), thereby leading to mammalian defence activation against LPS [6,124]. LBP and
bactericidal/permeability-increasing protein (BPI) thus play a vital role in regulation of immune
responses against LPS in mammals [124,125]. As such, the mechanism by which LPS is recognised
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has been well-studied in animals, however, in plants, the mechanism of perception and recognised
moiety/epitope(s) of LPS is still debateable.

In this regard, LPS, as well as its lipid A moiety from Burkholderia cepacia, Xanthomonas campestris
and P. syringae, trigger the upregulation of genes involved in immunity and defence [126–128],
with lipid A speculated to be the major elicitor in A. thaliana [129]. LPS has furthermore been
shown to trigger defence responses, such as the generation of nitrogen oxide (NO), ROS, elevation of
cytoplasmic Ca2+ concentration, stomatal closure and the expression of pathogenesis-related (PR) genes
in Arabidopsis, tobacco and rice suspension cells [92,130–133]. Ranf et al. [92] earlier reported that LPS
from Xanthomonas and Pseudomonas are sensed by the bulb-type (B-type) lectin S-domain (SD)-1 RLK
lipooligosaccharide-specific reduced elicitation (LORE) and that LORE mutants showed defects in the
LPS-induced elevation of cytosolic calcium, ROS and defence gene (AtFRK1) expression. Additionally,
Shang-Guan et al. [129] reported the existence of two ROS production phases, characterised by a weak
initial and second stronger ROS generation in A. thaliana. T-DNA insertion LORE mutants, however,
showed little or no difference in second phase ROS production compared with WT, suggesting another
LPS receptor(s). In contradiction to the original LORE study, a recent report implicated bacterial
3-hydroxy fatty acids in LORE-dependent induction of immune response in Arabidopsis [93]. Here,
LORE could not sense LPS that was repurified to remove free 3-hydroxy fatty acids, indicating that
LORE is not the receptor for LPS.

Using B. cepacia LPS-affinity capture strategies, Vilakazi et al. [134] and Baloyi et al. [135]
identified BAK1 and other defence response proteins associated with the plasma membrane fraction in
LPS-treated A. thaliana. Additionally, Arabidopsis LBP/BPI related-1 (AtLBR-1) and LBP/BPI related-2
(AtLBR-2) were shown to bind to both rough and smooth LPS, and regulate the expression of the
pathogenesis-related 1 (PR1) gene [128]. AtLBR T-DNA single mutants (Atlbr-1, Atlbr-2-1, Atlbr2-2) and
(Atlbr-DKO) double-knockouts, generated by crossing Atlbr-1 and Atlbr-2-1 plants, were defective
in ROS generation and in upregulation of LPS-induced PR1 expression. A transcriptome analysis
revealed that AtLBR-2 plays an indispensable role in the upregulation of 65 genes associated with
defence responses upon Pseudomonas LPS treatment [136]. Furthermore, there was a defect in the
upregulation of defence-related genes and salicylic acid (SA)-mediated signalling in the Atlbr-2-1
mutants, compared to the WT after Pseudomonas LPS treatment.

Lastly, a recent study has reported OsCERK1, the chitin co-receptor, as an LPS receptor/co-receptor
in rice, but not in A. thaliana [137]. This indicates a significant difference between LPS perception in
rice and Arabidopsis.

5.1.4. Peptidoglycan Perception

Rice chitin elicitor-binding protein (CEBiP) homologs in Arabidopsis, LYM1 and LYM3 RLPs, bind
in a ligand-specific manner to PGNs, heteropolymers that are part of the building blocks of the cell walls
of Gram-negative and Gram-positive bacteria [87]. There was a significant expression of the immune
marker gene, flagellin-induced receptor kinase FRK1, upon treatment of Arabidopsis with PGNs
from Gram-negative Pst DC3000 [87]. Homozygous T-DNA insertional mutants of LYM1 and LYM3
showed a strongly reduced PGN-inducible marker gene expression and were more susceptible to Pst
DC3000 bacterial infection than the WT (Table 1). The same authors further reported the involvement
of AtCERK1 in the LYM1/LYM3 perception of PGN and subsequent immune response in A. thaliana.
Thus, AtCERK1 is the additional protein that provides the cytoplasmic kinase domain that is lacking in
the LYM1/LYM3 RLPs needed for the downstream transphosphorylation of PGN signalling. The study
suggests that Arabidopsis senses PGNs in a LYM1/LYM3 and AtCERK1-dependent manner, similar to
the chitin perception system in rice that uses OsCEBiP and OsCERK1 [79]. Furthermore, the direct
interaction of PGN with AtLYM1 and AtLYM3 has been reported, but not with AtCERK1 [87]. In rice,
OsCERK1 associates with LysM motif-containing proteins (LYP4 and LYP6) in PGN-induced defence
responses [80,91,138]. Importantly, the putative ability of CERK1 to participate in the recognition and
signalling of more than one MAMP supports the hypothesis of the capability of one PRR/co-receptor
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to recognise more than one MAMP, which favours the generation of transgenic crop plants with
enhanced/altered recognition capabilities [8].

5.2. Fungal MAMPs

Chitin Perception

Chitin is a β(1→4)-linked polymer of N-acetylglucosamine, a major structural component in the
exoskeleton of arthropods and cell walls of fungi [21]. Chitin and its fragments (chitooligosaccharides)
are MAMPs recognised by plants PRRs, which elicit defence responses such as the oxidative
burst, protein phosphorylation, transcriptional activation of defence-related genes and phytoalexin
biosynthesis [21,78,139]. Kaku et al. [78] isolated and characterised a chitin elicitor binding protein
(OsCEBiP), an RLP involved in the perception of chitin oligosaccharides in cultured rice cells. It was
observed that OsCEBiP has two LysM motifs and a C-terminal transmembrane domain, however
no intracellular kinase domain, suggesting that it requires additional protein-partner(s) to perform a
signal transduction role. In rice, the LysM receptor, OsCEBiP, binds to the chitin oligosaccharide and
forms a complex with OsCERK1 to trigger defence response [79]. Conversely, in A. thaliana, the LysM
receptor, AtCERK1, directly binds to chitin, dimerises and triggers immune responses [140]. In the
extracellular domain, OsCERK1 has one LysM motif, whereas AtCERK1 has three LysM motifs [15,79]
that mediate the binding of chitin [141,142]. There are five genes encoding LysM receptor-like kinases
(LYKs), which are comprised of LYK1 (CERK1) and LYK2 - LYK5, and three genes encoding LysM
receptor-like proteins (LYPs) in the A. thaliana genome [143]. In this regard, LysM receptor-like kinase 1
(LysM RLK1) is involved in chitin signalling and fungal resistance in Arabidopsis [144]. A T-DNA
insertion knockout mutant of LysM RLK1 blocked the induction of chitooligosaccharide-responsive
genes (CRGs) by chitooligosaccharides and increased susceptibility to fungal pathogens, but not
bacterial pathogens. This was reversed when the mutant was complemented with the WT LysM RLK1
gene using the cauliflower mosaic virus (CaMV) 35S promoter [15,144]. CERK1 KO mutants were
unable to respond to chitin oligosaccharide elicitors when compared to the WT that exhibited rapid
generation of ROS in Arabidopsis [15].

LYK4 is another LysM-RLK involved in chitin signalling and plant immunity in A. thaliana, and
possibly in the chitin recognition receptor complex [89]. LYK4 mutants were defective in the activation
of chitin-responsive genes and were also susceptible to bacterial and fungal pathogen infection.
Cao et al. [90] showed that AtLYK5 binds chitin with higher affinity and forms a chitin-induced
complex with AtCERK1, thereby triggering immunity in A. thaliana. The higher affinity of AtLYK5
for chitin, compared to AtCERK1, also suggests the former to be the major chitin binding protein in
Arabidopsis. These authors [90] further reported involvement of AtLYK5 in chitin-induced AtCERK1
phosphorylation and homodimerisation [90]. While Atlyk5-2 was significantly impaired in chitin signal
responses, Atlyk4/Atlyk5-2 double mutant resulted in a complete loss of chitin response, indicating an
overlap of signal function between AtLYK5 and AtLYK4.

The LysM domain-containing glycosylphosphatidylinositol-anchored protein 2 (LYM2), one
of the three CEBiP homologs in Arabidopsis, binds chitin and mediates a reduction in molecular
flux via the plasmodesmata [88]. AtCERK1 is not involved in the chitin-mediated regulation of
plasmodesmata flux, thereby suggesting the presence of an alternative novel disease resistance
mechanism in Arabidopsis [88,145]. Shinya et al. [146] showed that the Arabidopsis LYM2 can
recognise chitin oligosaccharides in a similar way as the rice OsCEBiP, but does not participate in
chitin signalling. The KO mutant of LYM2 (lym2-1) was shown to be incapable of chitin-induced
plasmodesmata flux, and susceptible to fungal pathogens (Botrytis cenerea and Alternaria brassicicola), but
exhibited chitin-induced MAPK activation and an oxidative burst when compared to the WT [88,146].
LysM RLK1-interacting kinase 1 (LIK1) interacts with CERK1 and regulates chitin-induced MTI in
Arabidopsis [147]. LIK1 mutants (lik1-1, lik1-2, lik1-3 and lik1-4), with T-DNA insertions located in
intron 2, 13, and exon 18, respectively, showed an enhanced response to both chitin and flagellin
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elicitors. Furthermore, the mutants were defective in the expression of genes involved in jasmonic
acid (JA) and ethylene (ET) signalling pathways, that have been shown to mediate resistance to
necrotrophic pathogens [148]. In A. thaliana a powdery mildew-resistant kinase 1 (PMRK1), a RLK that
is localised in the plasma membrane, is responsible for early chitin-induced defence signals against
fungal pathogens [149]. PMRK1 KO mutant (pmrk1) was more susceptible to both Golovinomyces
cichoracearum and Plectosphaerella cucumerina (Table 1). In fact, these numerous identified PPRs linked
to chitin perception suggest the complexity of plant chitin defence signalling.

Table 1. Defence-related PRRs and associated protein KOs in A. thaliana.

Receptors/Associated
Proteins

Ectodomain
Motif * Family KO Line(s) Function References

Bacterial MAMPs
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6. BAK1 and Other Associated Proteins in MAMP Signalling

Following MAMP perception, PRRs trigger downstream events involving protein
association/dissociation. BAK1 was initially identified as a co-receptor in BRI1-mediated brassinosteroid
(BR) signalling, which modulates plant growth and development [150,151]. Studies have shown
that BAK1 and related somatic embryogenesis receptor kinases (SERK) proteins associate with other
LRR-RLKs or LRR-RLPs, and regulate plant growth and immunity [98,152,153].

Table 2 outlines different BAK1 and other associated proteins, and the implication of their KOs in
plant MTI. In A. thaliana, both FLS2 and EFR form a complex with the co-receptor BAK1 to elicit immune
responses immediately upon flg22 or elf18 perception, respectively [96,98,99,154]. Plants carrying
BAK1 mutants (bak1-3 and bak1-4), generated by T-DNA insertion, displayed abnormal early and late
flagellin-triggered responses [96,98]. In this regard, there was a significant reduction in the oxidative
burst triggered by elf26 in BAK1 mutants, indicating that EF-Tu is also affected by the mutation in
BAK1 [96]. Interestingly, BAK1 mutants were not completely impaired to flg22 or elf18 perception,
indicating that BAK1 was not the only rate-limiting component and therefore suggests additional
regulatory protein(s), such as BKK1, that are part of the FLS2 and EFR receptor complexes [96,98,152].
BAK1-disrupted N. benthamiana plants displayed decreased induction of MTI responses by the csp22
peptide (part of bacterial cold-shock protein) and INF1 (an oomycete elicitor) [98]. Furthermore,
Arabidopsis BAK1 KO mutants exhibited increased susceptibility to necrotrophic fungal pathogens,
such as Botrytis cinerea and Alternaria brassicicola [155]. These results suggest a central role for BAK1
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in modulating other PRRs besides FLS2 and EFR in plant defence signalling. The exact mechanism
by which BAK1 mediates defence signalling is, however, not resolved. A recent study also showed
BAK1 involvement in the tomato FLS3 recognition of flgII-28 (another flagellin epitope) and resulting
immune response signalling [85].

BAK1 and BAK1-LIKE1 (BKK1) have dual physiological roles by positively regulating a
BR-dependent plant growth pathway, and negatively regulating a BR-independent cell-death [156].
Here, cell death-control mediated by BAK1 and BKK1 is SA-dependent [157]. Upon flagellin perception,
BIK1 as a RLCK, associates with the FLS2-BAK1 receptor complex to initiate plant innate immunity
and cell death [28]. There was a significant loss of flg22-induced resistance to Pst DC3000 infection in
BIK1 mutant seedlings, however, the mutation did not affect flg22-induced FLS2 and BAK1 association.
On the other hand, BIK1 mutants were susceptible to necrotrophic pathogens but were resistant to
a virulent bacterial pathogen Pst DC3000 [158]. Chen et al. [159] demonstrated that the bik1 mutant
displayed a strong SA-dependent resistance to Plasmodiophora brassicae, an obligate biotroph protist
that induces gall formation in cruciferous plants. Bak1-4 bik1 double mutants exhibited increased
expression of plant defence genes and cell death phenotypes compared to BIK1 single mutant [72],
highlighting the cooperativity of BIK1 and BAK1 influence in plant immunity.

Table 2. Defence-related BAK1 and other associated protein KOs in A. thaliana.

Co-Receptor(s)/Proteins Ectodomain
Motifs * Family KO Line(s) Function References

BAK1
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Following MAMP perception, PRRs trigger downstream events involving protein 
association/dissociation. BAK1 was initially identified as a co-receptor in BRI1-mediated 
brassinosteroid (BR) signalling, which modulates plant growth and development [150,151]. Studies 
have shown that BAK1 and related somatic embryogenesis receptor kinases (SERK) proteins 
associate with other LRR-RLKs or LRR-RLPs, and regulate plant growth and immunity [98,152,153]. 

Table 2 outlines different BAK1 and other associated proteins, and the implication of their KOs 
in plant MTI. In A. thaliana, both FLS2 and EFR form a complex with the co-receptor BAK1 to elicit 
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RLK bkk1 Regulator of cell death [156]

FER Malectin-like RLK fer-4 Scaffold for PRR [105]

* Coloured symbols represent Leucine-rich repeats.

BIR2, a novel LRR-RLK, interacts with BAK1 in a kinase-dependent manner, and negatively
regulates BAK1-dependent MAMP-triggered immune signalling [71]. Upon ligand binding to
FLS2, BAK1 is released from BIR2 and recruited to the FLS2 complex. Therefore, BIR2 inhibits
autoimmune cell-death responses by keeping BAK1 under control. Gao et al. [102] showed that BIR1,
a BAK1-interacting RLK, negatively regulates multiple plant resistance signalling responses, and
suppresses cell death in Arabidopsis. BIR1 KO mutants (bir1-1) showed activation of constitutive
defence responses and extensive cell death. However, the LRR-RLK SUPPRESSOR OF BIR1-1 (SOBIR1)
and BAK1 function as co-receptors for LRR-RLPs, BAK1, and not SOBIR1, acts a co-receptor for
LRR-RLKs [154]. SOBIR1, a co-receptor/adaptor for LRR-RLPs recruits BAK1 to SOBIR1-RLP23
and SOBIR1-RLP30 complex upon nlp20 and Sclerotinia culture filtrate elicitor1 (SCFE1) perception,
respectively, in Arabidopsis [17,160]. Here, SOBIR1 mutant (sobir1-12) was more susceptible to fungal
Sclerotinia sclerotiorum and B. cineria [160]. The dissociation of BIR1 upon MAMP recognition by PRRs
allows BAK1 to form an active complex with SOBIR1, which triggers downstream cell death and
defence signalling [103].

The Arabidopsis malectin-like LRR-RLK, IMPAIRED OOMYCETE SUSCEPTIBILITY1 (IOS1)
associated with PRRs FLS2, EFR and CERK1 in BAK1-dependent and -independent MTI responses [104].
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Arabidopsis IOS1 mutant (ios1-2) showed perturbations in the latter, including defective chitin responses
and delayed upregulation of the PTI marker gene FLG22-INDUCED RECEPTOR-LIKE KINASE1 (FRK1),
as well as reduced downy mildew infection [103]. The malectin-like RLK FERONIA (FER), facilitates
the ligand-induced complex formation of PRRs in Arabidopsis [105,161]. As such, the EFR/FLS2-BAK1
complex formation has been shown to be promoted by FER and inhibited by Rapid Alkalinization
Factor 23 (RALF23) [105]. Furthermore, a FER mutant (fer-4) showed diminished ligand-induced
EFR/FLS2 complex formation, with the co-receptor BAK1. In addition, AtFER is involved in the
negative regulation of jasmonic acid (JA) and coronatine (COR) signalling [162]. In support, BAK1 and
other defence-responsive proteins were identified in A. thaliana plasma membranes after B. cepacia and
E. coli LPS treatments [134,135]. Here, proteins identified were similar to some previously implicated
proteins upon flg22 elicitation, suggesting that LPS perception and signalling could likely resemble
that of flg22.

7. Conclusions and Future Perspectives

MAMPs reveal the presence of pathogenic microbes, leading to the activation and upregulation of
basal defence responses in plants. PRRs play a central role in MAMP recognition and the activation
of downstream defence signalling. Several PRRs have been identified and classified, although the
molecular mechanism(s) underlying perception of MAMPs in plants remains elusive in most cases. We
have outlined several PRRs with their cognate MAMPs, and further presented the subsequent response
perturbations in KO mutants, as well as those of BAK1 and other associated proteins. In addition, we
reviewed the role that membrane raft domains play, in which PRRs have been suggested to be localised
during the perception response, using flg22-mediated PRR-dependent ROS production in MTI as an
example to set the stage for subsequent KO studies. From this review, it is clear that there is a need for
more KO studies targeting the genes encoding other PRR, as well as co-receptor/associated proteins, to
clearly unravel their roles in plant defence signalling. By comparing the phenotypes of wildtype (WT)
and KO mutant lines, valuable information of a functional nature can be gained to support engineering
of enhanced or new perception capabilities that would lead to an increase in quantitative immune
responsiveness, ultimately in order to contribute towards amelioration of crop plant losses due to
pathogen attack. As such, the review supports the notion that investigation of the PRR-co-receptor
complex, as well as that involving other defence-associated proteins by KO studies, can enhance the
understanding of MTI and the possible generation of pathogen-resistant crops.

Abbreviation

BAK1 Brassinosteroid insensitive 1 (BRI1) associated receptor kinase 1
EFR Elongation factor-thermo unstable receptor
ETI Effector-triggered immunity
FLS2 Flagellin-sensitive 2
KO Knockout
LPS Lipopolysaccarides
LRR Leucine-rich repeat
MAMP Microbe-associated molecular pattern
MTI MAMP-triggered immunity
PRR Pattern recognition receptor
RLCK Receptor-like cytoplasmic kinase
RLK Receptor-like kinase
RLP Receptor-like protein
T-DNA Transfer DNA
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