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Abstract: Biallelic mutations in the CYP7B1 gene lead to spastic paraplegia-5 (SPG5). We report herein
the case of a patient whose clinical symptoms began with progressive lower limb spasticity during
childhood, and who secondly developed amyotrophic lateral sclerosis/frontotemporal dementia
(ALS/FTD) at the age of 67 years. Hereditary spastic paraplegia (HSP) gene analysis identified the
compound heterozygous mutations c.825T>A (pTyr275*) and c.1193C>T (pPro398Leu) in CYP7B1
gene. No other pathogenic variant in frequent ALS/FTD causative genes was found. The CYP7B1
gene seems, therefore, to be the third gene associated with the phenoconversion from HSP to ALS,
after the recently described UBQLN2 and ERLIN2 genes. We therefore expand the phenotype
associated with CYP7B1 biallelic mutations and make an assumption about a link between cholesterol
dyshomeostasis and ALS/FTD.

Keywords: hereditary spastic paraplegia; amyotrophic lateral sclerosis; SPG5; frontotemporal
dementia; ALS/FTD; CYP7B1

1. Introduction

Spastic paraplegia-5 (SPG5) is a rare disease (estimated prevalence of about 1:1,000,000
people [1]) associated with recessive mutations in the CYP7B1 gene, encoding a cy-
tochrome P450 7a-hydroxylase implicated in cholesterol metabolism [2]. Loss of func-
tion of this gene leads to accumulation of the neurotoxic 27-hydroxycholesterol and 25-
hydroxycholesterol [3] and to progressive neurodegeneration of the corticospinal tract,
particularly in the lower limbs. Patients usually present with the classic phenotype of
progressive and slowly progressing spastic paraplegia, starting with lower limb predomi-
nant weakness and upper motor neuron signs during childhood. In SPG5, cognitive and
behavioral functions [2] and the peripheral nervous system are usually spared [4]. Con-
versely, amyotrophic lateral sclerosis (ALS) is a rapidly evolving neurodegenerative disease
involving both upper and lower motor neurons, leading to death after a mean of 3 years,
frequently from respiratory failure [5]. Its prevalence approaches 3:100,000 people [5]. ALS
is also associated with fronto-temporal dementia (ALS/FTD) in 10% of cases, which causes
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progressive cognitive and behavioral impairment [5]. Hereditary spastic paraplegia (HSP)
and ALS can share a common genetic background, as seen, for example, with the KIF5A
gene, although the mutations are not located in the same regions of this gene [6]. Recently,
two genes, UBQLN2 and ERLIN2, have been associated with the phenoconversion from
HSP to ALS, i.e., the sequential occurrence of both diseases in a same individual, raising
questions about a pathophysiological link between these conditions [7–9]. We report herein
for the first time the occurrence of fatal ALS/FTD in a 67-year-old patient suffering from
HSP since childhood, associated with pathogenic compound heterozygous mutations of
the CYP7B1 gene, broadening the genetic landscape of this new neurological syndrome.

2. Case Report
2.1. Proband

The patient developed a progressive lower limb spasticity during childhood associ-
ated with pyramidal signs on the lower limbs; this led to the diagnosis of HSP in early
adulthood. He reported a progressive deterioration of spasticity, leading to the implanta-
tion of intrathecal baclofen pump at the age of 56 years and to the need for a walking aid at
the age of 66 years.

When he was 67 years of age, he was referred to our neurology department because of
6-month history of upper limb weakness, dysphonia, and dysphagia. Clinical examination
found diffuse muscle atrophy, affecting calves, thenar hand muscles (split hand sign),
triceps, and deltoids. Profuse fasciculations were noted on the triceps and interosseous
muscles. Deep tendon reflexes were increased in the four limbs. Bilateral Babinski sign
and a bilateral Hoffman sign were noted. Muscle strength was 4/5 on proximal and distal
upper limbs muscles, according to the Medical Research Council scale, and 3/5 on psoas,
4/5 on tibialis anterior and gastrocnemius muscles. Brain magnetic resonance imaging
(MRI) was normal. Spinal cord MRI showed degenerative disk disease without nervous
conflict. Needle electromyography found chronic and active denervation in proximal
and distal muscles of the four limbs, with fibrillation potentials, positive sharp waves,
and fasciculations. Analysis of the cerebrospinal fluid was normal (no white cell, no
red cell, normal protein level [0.28 g/L], no oligoclonal band, sterile culture). Human
immunodeficiency virus, hepatitis B virus, hepatitis C virus, human T-cell lymphotropic
virus type 1, Lyme disease, and syphilis serologies were negative in the blood. Pulmonary
function tests found a normal forced vital capacity (FCV; 86%). Diagnosis of ALS was made
according to Gold Coast criteria [10]; riluzole 50 mg twice a day was introduced.

He became wheelchair-bound at the age of 69 years. The same year, cognitive disor-
ders including executive functions impairment and behavior disorders such as socially
inappropriate behavior, apathy, and binge eating were noted, associated with diffuse cor-
tical atrophy on MRI, suggesting a probable associated fronto-temporal dementia (FTD)
according to the Rascovsky criteria [11]. At the age of 70 years, his pulmonary function
declined (54% FCV). Non-invasive ventilation was not initiated because of major cognitive
disorders. He finally died from a pulmonary infection the same year.

2.2. Parents

The parents were not consanguineous and asymptomatic; his only daughter was also
asymptomatic.

2.3. Molecular Genetic Analyses

After obtaining written informed consent, ethylenediaminetetraacetic acid (EDTA)
blood samples were obtained from the patient and his daughter. DNA was isolated using
the QIA symphony DSP DNA Midi kit (QIAGEN GmbH, Hilden, Germany).

ALS/FTD and HSP genetic analysis was performed at the Pitié-Salpêtrière university
hospital (Paris, France) by targeted next-generation sequencing, using SeqCap EZ library
technology (Roche-NimbleGen, Madison, WI, USA), and Illumina sequencing (Illumina
Inc., San Diego, CA, USA) on a Miseq platform. The ALS/FTD panel included exons and
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flanking regions of ALS2. ANG. CHMP2B. CSF1R. DCTN1. FIG4. FUS. GRN. HNRNPA2B1.
MAPT. OPTN. SETX. SOD1. SPART/SPG20. SQSTM1. TARDBP. TBK1. TREM2. UBQLN2.
VAPB. and VCP. The patient was screened for abnormal repeat expansion in the C9ORF72
gene by copy number dosage of hexanucleotides by fluorescent polymerase chain reaction
(PCR) and repeat-primed PCR. The HSP panel included exons and flanking regions of
ABCD1. ALDH18A1. ALS2. AMPD2. AP4B1. AP4E1. AP4M1. AP4S1. AP5Z1. ARL6IP1.
ARSI. ATL1. ATP13A2. B4GALNT1. BICD2. BSCL2. C12orf65. C19orf12. CAPN1. CCT5.
CPT1C. CYP2U1. CYP7B1. DDHD1. DDHD2. ENTPD1. ERLIN1. ERLIN2. FA2H. FBXO7.
FLRT1. GAD1. GBA2. GJA1. GJC2. HSPD1. KIF1A. KIF1C. KIF5A. L1CAM. LYST. MAG.
MARS. NIPA1. NT5C2. PGAP1. PLP1. PNPLA6. PSEN1. RAB3GAP2. REEP1. REEP2.
RTN2. SACS. SAMHD1. SETX. SLC16A2. SLC33A1. SPART. SPAST. SPG11. SPG21. SPG7.
TECPR2. TFG. USP8. VCP. VPS37A. WASHC5. WDR48. ZFR. and ZFYVE26.

No mutation in the 21 ALS/FTD-related genes was identified. HSP panel analysis iden-
tified the following CYP7B1 compound heterozygous gene variants: c.825T>A (pTyr275*)
and c.1193C>T (pPro398Leu). Both variants have been reported in SPG5 patients with
altered plasma oxysterols levels [12]. Furthermore, a segregation study confirmed that
these variants were situated in trans, due to the absence of the c.825T>A variant, and the
heterozygosity for the c.1193C>T variant in the daughter (Figure 1). The c.825T>A and
the c.1193C>T variants were considered as pathogenic (class 5) and probably pathogenic
(class 4), respectively, according to the American College of Medical Genetics and Genomics
criteria [13].
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Figure 1. Pedigree of the patient carrying the c.825T>A and c.1193C>T mutations. Index case is in-
dicated by an arrow. When available, age of death (in years, y) is indicated in brackets. The geno-
types are indicated for the cases with available DNA. Black fill: phenoconverter from spastic para-
plegia to amyotrophic lateral sclerosis with fronto-temporal dementia. 

Figure 1. Pedigree of the patient carrying the c.825T>A and c.1193C>T mutations. Index case is
indicated by an arrow. When available, age of death (in years, y) is indicated in brackets. The
genotypes are indicated for the cases with available DNA. Black fill: phenoconverter from spastic
paraplegia to amyotrophic lateral sclerosis with fronto-temporal dementia.

3. Discussion

Recently, two genes have been identified to be associated with a phenotype charac-
terized by the development of HSP during childhood or early adulthood, followed by the
development of rapidly progressive ALS in adulthood. The first is the dominant X-linked
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UBQLN2 ALS-related gene, described in a patient who presented with lower limb upper
motor neuron signs that led to the diagnosis of HSP at the age of 35 years, and who sec-
ondly developed an ALS at the age of 45 years characterized by the diffusion of upper
motor neuron signs to bulbar and cervical regions resulting in tetraplegia within 12 months,
associated with dysarthria and dysphagia; transmission was X-linked [7]. The second is
the ERLIN2 gene, a pathogenic variant of which was identified in eight patients belonging
to two different families (6 patients), and two sporadic cases; transmission was dominant
in one family and recessive in the other [8].

To our knowledge, the patient presented herein is the first case of SPG5 who secondly
developed ALS/FTD. The causal link between CYP7B1 variants and such a phenotype is
supported by the previous descriptions of the same syndrome with the two other HSP-
causing genes, UBQLN2 and ERLIN2, and the absence of other mutation in any other
known ALS genes. Furthermore, given the respective prevalence of SPG5 and ALS/FTD
in the general population, a chance association seems unlikely. Although speculative, we
can note that ERLIN2 is involved in the regulation of cholesterol homeostasis too [14],
which can underline a plausible common pathophysiology, and is in line with the current
literature on the possible link between oxysterols and the pathophysiology of ALS [15,16].
These considerations are of utmost importance given the potential treatable nature of SPG5
with cholesterol lowering drugs [2]. More generally, the present report further substantiates
the recently recognized syndrome of phenoconversion from HSP to ALS or ALS/FTD.

4. Conclusions

Although definitive conclusions cannot be drawn from a single case, this report
suggests that pathogenic mutations in CYP7B1 gene may be responsible of the pheno-
conversion from HSP to ALS/FTD. Comprehensive genetic studies of additional cases
worldwide are needed to unveil the pathophysiology of this syndrome.
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