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Background:Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the

central nervous system with a variable natural history of relapse and remission. Previous

studies have found many differentially expressed genes (DEGs) in the peripheral blood of

MS patients and healthy controls, but the value of these genes for predicting the risk of

relapse remains elusive. Here we develop and validate an effective and noninvasive gene

signature for predicting relapse-free survival (RFS) in MS patients.

Methods: Gene expression matrices were downloaded fromGene Expression Omnibus

and ArrayExpress. DEGs in MS patients and healthy controls were screened in an

integrated analysis of seven data sets. Candidate genes from a combination of

protein–protein interaction and weighted correlation network analysis were used to

identify key genes related to RFS. An independent data set (GSE15245) was randomized

into training and test groups. Univariate and least absolute shrinkage and selection

operator–Cox regression analyses were used in the training group to develop a

gene signature. A nomogram incorporating independent risk factors was developed

via multivariate Cox regression analyses. Kaplan–Meier methods, receiver-operating

characteristic (ROC) curves, and Harrell’s concordance index (C-index) were used to

estimate the performance of the gene signature and nomogram. The test group was

used for external validation.

Results: A five-gene signature comprising FTH1, GBP2, MYL6, NCOA4, and SRP9 was

used to calculate risk scores to predict individual RFS. The risk score was an independent

risk factor, and a nomogram incorporating clinical parameters was established. ROC

curves and C-indices demonstrated great performance of these predictive tools in both

the training and test groups.

Conclusions: The five-gene signature may be a reliable tool for assisting physicians

in predicting RFS in clinical practice. We anticipate that these findings could not only

facilitate personalized treatment for MS patients but also provide insight into the complex

molecular mechanism of this disease.

Keywords: multiple sclerosis, relapse-free survival (RFS), gene signature, bioinformatic analysis, translational

medicine
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INTRODUCTION

Multiple sclerosis (MS) is a common chronic inflammatory
and demyelinating disease of the central nervous system
characterized by a highly variable natural course of relapse and
remission (1). This hardly curable disease affects more than 2
million young adults around the world (1). Initial symptoms of
dysfunction in the optic nerves, brainstem, or spinal cord may
be diagnosed as clinically isolated syndrome, which develops
into MS in ∼85% of cases (2). Relapse, an essential feature of
autoimmune diseases, including MS, is defined as a new onset or
exacerbation of neurological dysfunction; it is usually followed
by a period of remission with no disease activity. The underlying
cause of relapse is not fully understood, but it is associated with
a loss of axons and gray matter pathology (3). Current evidence
suggests that the relapse rate is higher in younger patients and
women. In addition, a shorter disease duration, a lower baseline
Expanded Disability Status Scale score (4), radiological lesions,
and pregnancy are risk factors for relapse and a poor outcome
(5, 6). However, controversy surrounds the use of disease-
modifying therapies to protect against relapses and improve
progressive neurologic deterioration because of their long-term
pharmacological effects and individual variants (1, 7, 8).

Many scientific studies have demonstrated differences in
gene expression in peripheral whole blood or peripheral blood
mononuclear cells (PBMCs) between MS patients and healthy
subjects, but the value of these genes for predicting the prognosis
of MS patients is unknown (9–14). Consequently, it is necessary
to develop novel markers for predicting the occurrence of
relapse and estimating the interval between relapses. Such
a measurement could provide important information for

FIGURE 1 | The flow charts of this study in detail. (A) A flow chart showing the process used to select the gene expression matrices. (B) A flow chart showing the

process used to develop the predictive gene signature and nomogram of MS. GEO, Gene Expression Omnibus; MS, multiple sclerosis; FC, fold change; FDR, false

discovery rate; DEG, differentially expressed gene; WGCNA, weighted correlation network analysis; PPI, protein–protein interaction; LASSO, least absolute shrinkage

and selection operator; ROC, receiver-operating characteristic.

physicians deciding on personalized therapeutic strategies for
MS patients. The gene signature is a convenient predictive
instrument based on differentially expressed genes (DEGs)
that can be used to calculate a risk score to evaluate
individual outcomes (15, 16). The purpose of our study was to
develop and validate an effective and noninvasive prognostic
gene signature for predicting the probability of relapse and
remission period in MS patients via an integrated analysis of
blood microarrays.

MATERIALS AND METHODS

Data Downloading and Processing
The data sets were searched and downloaded according to
Figure 1A. We searched for gene expression matrices and
clinical information using the keywords “multiple sclerosis,”
“clinically isolated syndrome,” “MS,” and “CIS” in Gene
Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) and
ArrayExpress (https://www.ebi.ac.uk/arrayexpress/). These
microarray data sets satisfied the following criteria: organism
with “Homo sapiens” and study type with “Expression profiling
by array,” MS patients and healthy controls with whole-blood
samples or samples of PBMCs, and >20 samples. Data sets
representing different types of studies, the relationship between
MS patients and other subjects, and/or the therapeutic responses
of patients who had received immunosuppressive agents
were excluded after the initial evaluation based on the “title,”
“overall design,” and “summary.” Those with microarray data
from organisms other than Homo sapiens, micro RNA or
circular RNA data, or data derived from studies that lacked
healthy controls were also excluded after reviewing the “sample
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TABLE 1 | Summary of seven microarray data sets that met the inclusive criteria

in this study.

Accession Released

date

Platform Source Samples

Healthy

control

Multiple

sclerosis

E-MTAB-69 Dec 2, 2009 A-AFFY-44 PBMC 18 26

E-MTAB-4890 Sep 30,

2017

A-MEXP-931 PBMC 40 142 (49

RRMS, 21

SPMS, 23

PPMS, 49 CIS)

E-MTAB-5151 Sep 30,

2017

A-MEXP-931 PBMC 27 49 (21 RRMS,

13 SPMS, 23

PPMS)

GSE17048 Jul 10, 2009 GPL6947 Blood 45 99 (36 RRMS,

20 SPMS, 43

PPMS)

GSE21942 May 20,

2010

GPL570 PBMC 15 14

GSE41890 Oct 28, 2012 GPL6244 PBMC 24 44

GSE59085 Jul 3, 2014 GPL570 PBMC 7 15 (15 CIS)

characteristics” and “data set details.” After applying the above
criteria, the gene expression microarray data sets GSE17048,
GSE21942, GSE41890, GSE59085, E-MTAB-69, E-MTAB-4890,
and E-MTAB-5151 were downloaded for differential expression
analysis and are presented in Table 1 (10–14). Moreover, an
independent data set (GSE15245) was downloaded with complete
follow-up information for further analysis (9). An integrated
data set was obtained with batch normalization. It was randomly
classified into a training group for model development (2/3, n =

63) and a test group for external validation (1/3, n= 31).
We downloaded the annotation files to convert the

identification probes to gene symbols. The median ranking
value was used to compute gene expression if several probes
matched one gene. The robust multi-array average was used
to log2-transform the gene expression values with the affy and
affyPLM packages. The k-nearest neighbors algorithm was used
to find and replenish missing values via the impute package
if necessary.

Batch Normalization and DEG
Identification
Batch normalization is a widely used technique for working
with large batches of uncorrelated statistical data in deep neural
networks (17). It was used to correct backgrounds, normalize
gene expression values, and merge the data sets to reduce error
and increase the sample size. The result was a single gene
expression matrix. DEGs in MS patients and healthy controls
were identified with the limma package. The cutoffs were set at
log2 |fold change| > 0.5 and false discovery rate < 0.05 in the
differential expression analysis.

Gene Functional Analyses
The Gene Ontology (GO) knowledgebase is an open
bioinformatics resource that provides functional annotation
of gene products in terms of biological process, cellular
components, and molecular function (18). The Kyoto
Encyclopedia of Genes and Genomes (KEGG) is a public
resource for manually integrating data on molecular interaction,
reaction, and relation networks of genes and proteins (19). GO
and KEGG analyses of these DEGs were performed with the
org.Hs.eg.db, clusterProfiler, and GOplot packages. GO terms
and KEGG pathways were considered significant enrichments
with a false discovery rate < 0.05. The Search Tool for the
Retrieval of Interacting Genes (STRING) database can be used
to predict physical and functional associations among different
proteins for a wide range of applications (20). Protein–protein
interaction (PPI) networks provide reasonable and reliable data
on molecular function to help researchers better understand
biological mechanisms. We uploaded the DEGs to the STRING
database to construct a PPI network and screen hub nodes with
high confidence (>0.7).

Construction of a Co-Expression Network,
Identification of Significant Modules, and
Selection of Candidate Genes
Weighted correlation network analysis (WGCNA) was used to
build a co-expression network of DEGs (21). Pairwise genes
were screened with Pearson’s correlation matrices. The power
function axy=|cxy|β (c = Pearson’s correlation, a = adjacency)
was used for the weighted adjacency matrix. We obtained
the topological overlap matrix by choosing the appropriate
parameter β (22). Gene modules were formed through average
linkage hierarchical clustering in terms of a topological overlap
matrix-based dissimilarity measure with a minimum size of
5. Module eigengenes and module significance were used to
identify modules of interest related to clinical traits (23). Then the
module connectivity and significance of the clinical traits were
used to identify the hub genes. In this study, candidate genes
were considered common hub genes between the WGCNA and
PPI networks.

Development and Validation of a
Relapse-Free Survival (RFS) Signature
Prognostic genes associated with RFS were selected from the
candidate genes with univariate Cox regression analyses in the
training group. The optimal predictors from these genes were
selected via least absolute shrinkage and selection operator
(LASSO)–penalized Cox regression analysis with the glmnet and
survival packages (24). These genes related to RFS were chosen
to calculate the risk score for developing the predictive gene
signature by nonzero coefficients in the LASSO regressionmodel:
risk score =

∑
Coefi × Xi (Coef = coefficient, X = serum

gene expression). Then the median risk score was used as a
cutoff for classifying MS patients into high- and low-risk groups
according to their individual scores (25). The Kaplan–Meier
method was performed to assess the overall RFS between groups.
The area under the receiver-operating characteristic (ROC) curve
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FIGURE 2 | Identification of DEGs and functional analyses. (A) The density plot of the seven data sets before normalization. (B) The density plot of the seven data

sets after batch normalization. (C) The heat map of 278 DEGs identified by integrated analysis of the seven data sets. (D) Enriched GO terms and KEGG pathways of

the DEGs. (E) The PPI network of the DEGs. DEG, differentially expressed gene; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI,

protein–protein interaction.

was used to estimate the 1-, 2-, and 3-year performance of this
gene signature.

For external validation, the same gene signature was used
to calculate individual risk scores in the test group. Similarly,
MS patients were classified into high- and low-risk groups, and
the performance of this gene signature for predicting RFS was
validated with Kaplan–Meier analysis and ROC curves.

Identification of Independent Prognostic
Parameters and Development of a
Nomogram
Clinical features and the gene signature were used to identify
independent prognostic parameters through univariate and
multivariate Cox regression analyses, including age, gender,
disease type, and risk score. A nomogram incorporating these
independent prognostic parameters and relevant clinical features
was constructed with Cox regression modeling to predict the
probability of 1-, 2-, and 3-year RFS in MS patients. We
evaluated the discrimination of this predictive model with
Harrell’s concordance index using a bootstrap method with 1,000
resamples (26). In addition, the performance of this nomogram
was validated in the test group.

Gene Set Enrichment Analysis (GSEA)
GSEA is useful for explaining molecular mechanisms and
analyzing biological data (27). The predictive gene signature
and related genes in both the WGCNA and PPI networks in

the training set were chosen for GSEA to better understand
the pathogenesis of MS. This analysis was performed on
GSEA software (version 4.0.3) based on the REACTOME
pathway database (28). The c2.cp.reactome.v7.0.symbols.gmt
collection was searched to screen the enrichment pathways
associated with poor RFS in both the high- and low-risk
groups. Significant cutoffs were set at a false discovery
rate < 0.05.

Statistics
R (version 3.6.1) was used for statistical analyses. Statistical
significance was set at p < 0.05.

RESULTS

Identification of DEGs
The study process is shown in Figure 1B. Details of
data sets are available in Gene Expression Omnibus and
ArrayExpress. A single gene data set consisting of blood
samples from 389MS patients and 176 healthy controls
was obtained through batch normalization for background
correction (Figures 2A,B, Supplementary Table 1). A total
of 278 DEGs were screened between groups via robust
rank aggregation (Supplementary Table 2). The heat
map of these DEGs among different data sets is shown
in Figure 2C.
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FIGURE 3 | Identification of modules of interest associated with relapse and selected candidate genes. (A) The topological overlap matrix after choosing parameter β

= 14. (B) The dendrogram of all DEGs clustered based on a dissimilarity measure. (C) The heat map of the correlations between module eigengenes and clinical

features. (D) The candidate genes between the PPI and WGCNA networks. DEG, differentially expressed gene; PPI, protein–protein interaction; WGCNA, weighted

correlation network analysis.

Functional Analyses of DEGs
The results of GO enrichment and KEGG pathway analyses
of biological functions are presented in Figure 2D (see also
Supplementary Tables 3, 4). Significant biological processes
were associated with immune modulation, cell response,
metabolism, and cellular hemostasis. The cellular compartments
of the DEGs were related to mitochondria, lysosomes, vesicle
synthesis, and transportation. The enrichment analysis of
molecular functions was relevant to protein modification and
cytokine bindings. The KEGG pathway analysis revealed that
these DEGs were mainly involved in inflammatory reactions
and cellular response, including the antigen processing and
presentation pathway, chemokine signaling pathway, phagosome
pathway, ribosome pathway, oxidative phosphorylation pathway,
and so on. These findings are consistent with previous views that
dysfunctions in autoimmune response, cellular metabolism, and
autophagy play an indispensable role inMS. The PPI network was

built from the STRING database (Figure 2E). A total of 230 genes
connected with ≥2 nodes were taken as hub genes for further
analysis (Supplementary Table 5).

Construction of the WGCNA Network,
Identification of Modules of Interest, and
Screening of Candidate Genes
The DEGs were entered into the WGCNA network through
average linkage clustering, and two modules were selected
based on β = 14 (Figures 3A,B). Both module eigengenes and
module significance were used to determine correlations between
modules and clinical features. Both gray and turquoise modules
were chosen as modules of interest because of their significant
correlations with relapse (Figure 3C). A total of 234 genes from
the modules were identified from the WGCNA network as hub
genes (Supplementary Table 6). Furthermore, 202 common hub

Frontiers in Neurology | www.frontiersin.org 5 December 2020 | Volume 11 | Article 579683

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ye et al. Gene Signature for Multiple Sclerosis

TABLE 2 | The clinical features of MS patients in the training group and test group.

Feature Training (n = 63) Test (n = 31) p

Age (years)

18–50 53 (84.1%) 28 (90.3%) 0.413

>50 10 (15.9%) 3 (9.7%)

Female 41 (65.1%) 19 (61.3%) 0.719

Type

CIS 19 (30.2%) 13 (41.9%) 0.257

MS 44 (69.8%) 18 (58.1%)

DMT 16 (25.4%) 13 (41.9%) 0.103

Follow-up (years) 2.0 ± 1.3 1.9 ± 1.3 0.182

Relapse 43 (68.3%) 21 (67.7%) 0.960

MS, multiple sclerosis; CIS, clinically isolated syndrome; DMT, disease-modifying therapy.

genes were identified as candidate genes between WGCNA and
PPI networks (Figure 3D).

Identification of Key Genes Related to RFS
and Construction of a Predictive Gene
Signature
The GSE15245 data set, with an average follow-up of more than
3 years, was randomized into a training group for developing
the gene signature (2/3, n = 63) and a test group for external
validation (1/3, n = 31). The clinical features of the patients
are shown in Table 2 (Supplementary Table 7). A total of 202
candidate genes were used to screen the prognostic genes
significantly related to overall RFS in the training group via
univariate Cox regression analyses, and 13 prognostic genes
were identified for further analysis (Figure 4A). Subsequently,
a predictive gene signature comprising five genes—ferritin
heavy chain (FTH1), guanylate-binding protein 2 (GBP2),
myosin light polypeptide 6 (MYL6), nuclear receptor coactivator
4 (NCOA4), and signal recognition particle 9 kDa protein
(SRP9)—was developed with LASSO-penalized Cox analysis
(Figures 4B–D). Individual risk scores were calculated based
on the gene expression and risk coefficient of each gene
(Supplementary Table 8). These scores were used to predict the
probability of relapse in MS patients and to separate patients into
high- and low-risk groups based on the median risk score [1.12,
interquartile range (IQR)= 1.11]. Differences in gene expression
between groups are shown in Figures 5A–C. Kaplan–Meier plots
suggested that the low-risk group benefited significantly in terms
of overall RFS compared to the high-risk group (Figure 6A).
The number of relapsing patients increased, and the remission
period decreased, as the risk score increased (Figure 5D). ROC
curves were used to determine the performance of the five-gene
signature; the 1-, 2-, and 3-year areas under the curve were 0.785,
0.860, and 0.897, respectively (Figures 6C–E). In short, this gene
signature was good at predicting overall RFS in MS patients.

External Validation of the Gene Signature
The test group was used to validate the prediction performance
of the gene signature. We computed a risk score for each

patient using the gene signature, and then classified patients
into high- and low-risk groups just as we had with the
training group (Supplementary Table 9). Kaplan–Meier curves
revealed a significant difference in overall RFS between the
high- and low-risk groups: The high-risk group showed
markedly poorer outcomes (Figure 6B). Predictive ability was
assessed with ROC curves (Figures 6F–H). The 1-, 2-, and
3-year areas under the curve for the five-gene signature in
predicting RFS were 0.518, 0.655, and 0.729, respectively.
Patients in low-risk group had a significantly lower risk of
relapse and longer remission than those in high-risk group
(Figure 5E). In general, the external validation demonstrated
that this predictive gene signature was good at predicting RFS
in MS.

Evaluation of Risk Factors in MS
A total of 63 patients in the training group with complete
clinical data were included for univariate and multivariate
Cox regression analyses. The risk score was significantly
correlated with overall RFS in the univariate Cox
regression analyses (Figure 7A). The multivariate Cox
regression analyses also found that the risk score was
an independent risk factor associated with overall RFS
(Figure 7B).

Development and Validation of the
Predictive Nomogram
The training group was used to develop a novel model
consisting of age, gender, disease type, and risk score
to predict the probability of 1-, 2-, and 3-year overall
RFS based on Cox regression modeling (Figure 7C). The
concordance index of this predictive nomogram was 0.67
in the training group. It was 0.59 in the test group in the
external validation.

GSEA
GSEA found that these prognostic genes and related genes were
significantly enriched in several molecular pathways (Figure 8A).
In the high-risk group, they were significantly related to
the immune system, the adaptive immune system, cytokine
signaling in the immune system, hemostasis, and SRP-dependent
co-translational protein targeting to membrane (Figure 8B).
In the low-risk group, they were significantly associated
with 3-UTR-mediated translational regulation, formation of
the ternary complex and subsequently the 43S complex,
metabolism of mRNA, metabolism of RNA, and metabolism of
proteins (Figure 8C).

DISCUSSION

We investigated whether changes in gene expression in
peripheral blood or PBMCs have value for predicting relapses
of MS. To do this, we used an integrated analysis and advanced
statistics to detect 278 DEGs from seven microarrays with
batch normalization. These genes were enriched in immune
modulation, cell response, metabolism, and cellular hemostasis
according to GO and KEGG pathway analyses. A total of
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FIGURE 4 | Identification of prognostic genes related to relapse-free survival and development of a predictive gene signature. (A) Univariate Cox proportional hazard

regression analyses in the training group. (B–D) Least absolute shrinkage and selection operator–penalized Cox regression analyses in the training group.

202 candidate genes were screened through a combination of
WGCNA and PPI networks. Then an independent data set
(GSE15245) was randomized into a training group (2/3, n = 63)
and a test group (1/3, n = 31). Survival analyses found 13 genes
associated with overall RFS in the training group. FTH1, GBP2,
MYL6, NCOA4, and SRP9 were downregulated and selected
as common prognostic genes between the groups. A five-gene
signature was constructed with LASSO-Cox regression to predict
RFS in MS patients. Cox regression analyses were also used to
develop a novel nomogram that included the gene signature and
clinical features; this nomogram was able to precisely predict 1-,
2-, and 3-year overall RFS. In addition, good performance of this
gene signature and nomogram was evaluated and validated in
both the training and test groups. GSEA revealed that cytokine
signaling pathways and immune responses were associated with
high risk, whereas the metabolism of RNA and proteins was
related to low risk. Indeed, our results showed that this gene
signature could be a useful tool in predicting overall RFS in
clinical practice.

Similar to a previous study, we identified FTH1 as significantly
associated with a relapse of MS (29). FTH1, a key protein in
ferroxidase activity, has antioxidant effects and delivers iron to

cells. Wang et al. found that FTH1 could be a potential target
of the active metabolite dimethyl fumarate, which is remarkably
efficacious at reducing relapse rates and protecting neurons from
oxidative damage via regulation of the ERK1/2 MAPK signal
pathway (29). Furthermore, Dunham et al. (30) developed an
accurate marmoset experimental autoimmune encephalomyelitis
model showing oxidative injuries within the hallmark of active
demyelinating lesions. Thus, dysfunction in the metabolism
of oxidative stress might be involved in the pathogenesis
of MS.

Unlike previous studies, our study revealed that GBP2,
NCOA4, SRP9, and MYL6 are key prognostic genes related to
overall RFS in MS. GBP2 in the GTPase family is associated with
cellular apoptosis in interferon stimuli. Miao et al. (31) found
that highly expressed GBP2 is associated with increased neuronal
apoptosis and delayed neurological recovery after traumatic brain
injury. Current evidence suggests that it has anti-inflammatory
effects by activating the AIM2 inflammasome (32). NCOA4 is a
selective cargo receptor that cooperates with ATG8 in autophagy.
Mancias et al. (33) found that it plays a key role in ferritinophagy.
Also, a lack of NCOA4 leads to a reduction in bioavailable
intracellular iron (33). In addition, NCOA4 is a therapeutic target
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FIGURE 5 | Performance of the gene signature in the training and test groups. (A,B) Expression of key genes in high- and low-risk patients in the training group. (C)

Expression of key genes in high- and low-risk patients in the test group. (D) Distribution of risk scores and associated RFS in the training group. (E) Distribution of risk

scores and associated RFS in the test group. RFS, relapse-free survival.

in human cancer. Bellelli et al. (34) found that downregulated
NCOA4 improves the sensitivity of DNA-damaging agents for
cancer cells. SRP9 is a crucial molecule in signal recognition
particle assembly for targeting secretory proteins to the rough
endoplasmic reticulum membrane. Along with SRP14 and Alu
it forms the ribosome-stalling conformation. It is significantly
enriched in ribosome function and neoplasm (35, 36).MYL6 is an
ATPase cellular motor protein that is highly expressed in obesity,
asthma, and cervical cancer, but the potential mechanisms are
not fully known (37, 38). These findings suggest that dysfunctions
in inflammatory response, neuron apoptosis, autophagy, and the
endoplasmic reticulum might participate in the MS pathology,
speculation that should be validated in the future.

Relapse is often accompanied by serious disability and death.
Long-term glucocorticoid therapies, immunosuppressive agents,
and disease-modifying therapies cannot effectively prevent future
relapses in MS patients. Here we developed and validated a novel
gene signature to predict the individual risk of relapse in MS
patients. We hoped that this signature might precisely classify
patients into high- and low-risk groups and evaluate 1-, 2-, and
3-year overall RFS. Our results suggest that the microarray can
indeed be used to measure a patient’s gene expression changes
in peripheral blood or PBMC samples. Next, we developed

the following equation using the five-gene system to calculate
individual risk scores: risk score = FTH1 × 2.20612057 + GBP2
× (−1.86214371) + MYL6 × (−3.98367166) + NCOA4 ×

(−2.24490633) + SRP9 × 3.13745827. Using this equation, we
determined that the normal risk value would be a median value
of 1.12 with an IQR of 1.11. Next, we confirmed this by testing it
against real patients. One patient who presented with an FTH1 of
11.0352449, GBP2 of 9.16016007, MYL6 of 9.23298478, NCOA4
of 11.5240002, and SRP9 of 9.92136955 was calculated to have a
risk score of 1.47, representing a high risk of relapses; indeed, this
patient relapsed in 178 days (Supplementary Table 8). Another
patient who presented with an FTH1 of 10.7886453, GBP2 of
9.50607014, MYL6 of 9.3180747, NCOA4 of 11.4456997, and
SRP9 of 9.90380955 was calculated to have a risk score of 0.36,
representing low risk; this patient has not yet relapsed and
3 years have passed (Supplementary Table 8). For patients at
high risk, personalized therapy, lifestyle intervention, and more
frequent outpatient follow-ups are needed. In addition, the genes
discussed above can act as key molecules in the mechanism of
MS and provide insights into relevant biological and signaling
pathways, such as antioxidation, immune reaction, apoptosis,
autophagy, and so on. They can also be therapeutic targets for
drug discovery.
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FIGURE 6 | Evaluation of the performance of the five-gene signature in both the training and test groups. (A) Kaplan–Meier plots of the five-gene signature in the

training set. (B) Kaplan–Meier plots of the five-gene signature in the test set. (C–E) ROC curves for predictions of 1-, 2-, and 3-year overall RFS in the training set.

(F–H) ROC curves for predictions of 1-, 2-, and 3-year overall RFS in the test set. ROC, receiver-operating characteristic; AUC, area under the curve; RFS,

relapse-free survival.

FIGURE 7 | Identification of risk factors associated with RFS and development of a predictive nomogram. (A) Univariate Cox regression analyses in the training group.

(B) Multivariate Cox regression analyses in the training group. (C) A novel nomogram predicting the probability of 1-, 2-, and 3-year RFS. RFS, relapse-free survival;

DMT, disease-modifying therapy; MS, multiple sclerosis; CIS, clinically isolated syndrome.

Our study has several strengths. First, we expanded
sample sizes and corrected background deviations via batch
normalization to identify DEGs from seven microarray data

sets. Second, we developed the predictive gene signature
from blood samples, an approach that is noninvasive and has
clinical applications. In the end, external validation revealed
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FIGURE 8 | GSEA. (A) GSEA of molecular pathways. (B) GSEA in the high-risk group. (C) GSEA in the low-risk group. GSEA, gene set enrichment analysis.

that the results were reliable and had clinical utility. However,
this study also has several limitations. The gene expression
data and clinical information were all taken from public
databases. The development and verification of the gene
signature and nomogram were based on one independent
data set (GSE15245). Thus, these results must be verified
with an external validation cohort with complete clinical
and gene expression data. Furthermore, because most of the
patients in the sample were Westerners, the results may not
generalize to Asians. A study that includes Asians is needed
to prove the effectiveness of our gene signature. Finally,
transcription and transportation from genes to proteins
are involved in regulating non-coding RNA and epigenetic
modifying. Differences in the expression of proteins and
their molecular mechanisms must be elucidated in further
experimental studies.

In conclusion, this study revealed that a five-gene
signature is a reliable and noninvasive tool for predicting
overall RFS in MS patients. This finding could assist
doctors in selecting personalized treatment for patients
with MS.
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