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GAS41 interacts with transcription factor AP-23
and stimulates AP-2B-mediated transactivation
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ABSTRACT

Transcription factor AP-2 regulates transcription of a
number of genes involving mammalian development,
differentiation and carcinogenesis. Recent studies
have shown that interaction partners can modulate
the transcriptional activity of AP-2 over the down-
stream targets. In this study, we reported the identi-
fication of GAS41 as an interaction partner of AP-2p.
We documented the interaction both in vivo by
co-immunoprecipitation as well as in vitro through
glutathione S-transferase (GST) pull-down assays.
We also showed that the two proteins are co-localized
in the nuclei of mammalian cells. We further mapped
the interaction domains between the two proteins to
the C-termini of both AP-2B and GAS41, respectively.
Furthermore, we have identified three critical resi-
dues of GAS41 that are important for the interaction
between the two proteins. In addition, by transient
co-expression experiments using reporter contain-
ing three AP-2 consensus binding sites in the pro-
moter region, we found that GAS41 stimulates the
transcriptional activity of AP-23 over the reporter.
Finally, electrophoretic mobility shift assay (EMSA)
suggested that GAS41 enhances the DNA-binding
activity of AP-2B. Our data provide evidence for a
novel cellular function of GAS41 as a transcriptional
co-activator for AP-2p.

INTRODUCTION

To date, five members of the AP-2 family of transcription
factors, AP-20, AP-2B, AP-2y, AP-20 and AP-2g,
have been identified. The AP-20, AP-23, AP-2y genes are

relatively well characterized (1-6). The AP-2 protein forms
a unique modular structure consisting of an N-terminal pro-
line- and glutamine-rich transactivational domain and a com-
plex helix-span-helix motif necessary and sufficient for
dimerization and site-specific DNA binding (7,8). A number
of genes that mediate cell growth, cell shape, cell movement,
cell fate and cell communication frequently possess the AP-2
binding site in their cis-regulatory sequences (9—15). Several
genes related to cancers have also been shown to be regulated
by AP-2, such as erbB-2 (3,10,16,17), ERa (12) and IGF IR
(16,18) in breast cancer, and MUCI18 and c-KIT genes in
melanoma (19,20). The AP-2 family of genes also plays
important roles in mammalian development. AP-2 genes
show overlapping but distinct patterns of expression during
vertebrate embryogenesis, and function in the development
and differentiation of the neural tube, neural crest derivatives,
heart, skin, urogenital tissues and extraembryonic tropho-
blasts (21-23). The importance of AP-2 genes is highlighted
by knockout experiments of AP-2a,, AP-2f3 and AP-2y. Mice
lacking both copies of AP-2o. gene die perinatally and exhibit
at least six major defects during embryogenesis: morphogen-
esis of the neural tube, face, eye, body-wall, cardiovascular
system and forelimbs (24-27). Mice lacking AP-2[3 display
fewer gross phenotypic defects but die shortly after birth
due to the disruption of terminal kidney differentiation (28).
The AP-2y-null mice die around E7.5, shortly after implan-
tation due to the defects within the extraembryonic cell
lineages (23,29).

The AP-2 family of transcription factors plays a broad
range of roles from cell growth, tissue morphogenesis and
cancers. One of mechanisms for the AP-2 family fulfills
their roles is to activate or suppress various downstream tar-
get genes at transcriptional levels. A number of studies
demonstrated that AP-2-interacting proteins can affect the
transcription of AP-2 downstream targets by modulating
the transcriptional activity of AP-2. In fact, several AP-20.-
interacting partners have been identified. For example, the

*To whom correspondence should be addressed. Tel/Fax: +86 731 8872792; Email: zhangjian@hunnu.edu.cn

© The Author 2006. Published by Oxford University Press. All rights reserved.

The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access
version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press
are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but
only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions @oxfordjournals.org



transactivation of p21WAF1 by AP-20. was augmented while
activation of laminin receptor by AP-20. was reduced through
a direct interaction with p53 (30,31). AP-2a represses the
transactivation by Myc through associating with Myc and
competing the binding site with Myc (11). Other AP-20.-
interacting proteins include Yin Yang factor 1 (YY1) (32),
retinoblastoma protein (RB) (33,34) and oncogene DEK
(35). Wwox tumor suppressor protein was also identified as
an AP-2y interacting partner, and Wwox protein triggers
redistribution of nuclear AP-2y to the cytoplasm, hence
suppressing AP-2y-mediated transactivation (36).

To date, no AP-2B-interacting factor has been reported yet.
To search for AP-2fB-interacting proteins, we used AP-2f as
the bait and screened a HeLa cDNA library in yeast two-
hybrid system. We identified GAS41 as a protein partner of
AP-2B. The interaction between the two proteins was con-
firmed in vivo by co-immunoprecipitation and co-localization
assays, and demonstrated in vitro by glutathione S-transferase
(GST) pull-down assay. The interaction domains between the
two proteins were mapped to the C-terminus of AP-2f3 and
C-terminus of GAS41. Furthermore, we demonstrated that
GAS41 resulted in enhancement of transcriptional activity
of AP-2B over AP-2 response element reporter by, at least
in part, enhancing the DNA-binding activity of AP-2f.

MATERIALS AND METHODS

Vector construction

For yeast two-hybrid screening, full-length cDNA of AP-23
was ligated in frame with the GAL4 DNA-binding domain
of the pDBLeu vector resulting in pDBLeu/AP-28. For
immunoprecipitation and colocalization assays, the full-
length ¢cDNA of AP-2f was cloned into the mammalian
expression plasmid pCMV-Myc vector (Clontech), forming
a Myc tagged AP-2B expression vector pPCMV-Myc-AP-2f3,
while full-length ¢cDNA and the mutations of GAS41
were inserted into pPCMV-HA vector (Clontech), forming a
HA tagged GAS41 expression vector pCMV-HA-GAS41,
and full-length ¢cDNA of GAS41 was also cloned into
pCMV-Myc vector. Vector pGEX-4T-2 (Amersham) was
used to construct vectors expressing GST-AP-2B fusion
proteins. The cDNA fragments encoding full-length and
subdomains (Figure 3G) of AP-2 were cloned in frame
with respect to GST into pGEX-4T-2 individually. Plasmid
pQE-N;3 (Qiagen) was used to generate vectors expressing
His-tagged GAS41 fusion proteins. The cDNAs encoding
full-length subdomains (Figure 4F) and point mutations of
GAS41 were fused in frame to His tag of pQE-Nj; individu-
ally. Reporter plasmid A2-Luc was constructed by replacing
CAT gene with luciferase gene in pA2BCAT vector (gener-
ous gift of T. Williams) which contains three copies of
AP-2 binding site in human metallothionein Ila gene in the
promoter region (7). Vector pCMV-LacZ was constructed
by fusing LacZ gene into pCMV-Myc.

Yeast two-hybrid screens

The pro yeast two-hybrid system was obtained from GIBCO/
BRL. A HeLa cDNA library cloned in frame with the GAL4
activation domain in the vector pPC86 was used to screen
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AP-2B-interacting clones. The MaV203 yeast strain was
transformed with the pDBLeu-AP-2f and tested for a basal
expression activity, as described in the GIBCO/BRL protocol.
The bait-containing MaV203 cells were subsequently trans-
formed with the HeLLa cDNA library, and transformants were
selected by growing SD-leu, Trp~, Ura™, His~™ medium
supplemented with 25 mM 3-amino-1, 2, 4-triazole (3-AT).
False positive clones were eliminated by retransforming the
prey DNA to the original bait strain and positive clones
were further verified using X-gal filter assay. Finally, plas-
mids from positive clones were sequenced and characterized.

Cell culture and transient transfections

HeLa cells and human HepG2 cells were cultured in DMEM
supplemented with 10% fetal bovine serum, penicillin
(100 U/ml) and streptomycin (100 pg/ml). The cells were cul-
tured at 37°C in a 5% CO, incubator. Cells were transfected
at 70% confluence using the Lipofectamine 2000 (Invitrogen)
according to the manufacturer’s instructions.

Immunoprecipitation and western blot analysis

HeLa cells were co-transfected with pCMV-Myc-AP-2f3 and
pCMV-HA-GAS41 or only transfected with pPCMV-Myc-AP-
2B. Twenty four hours after transfection, HeLa cells were
lysed in RIPA buffer [SO0 mM Tris—HCI (pH 7.2), 150 mM
NaCl, 1% (v/v) Triton X-100, 1% (w/v) sodium deoxy-
cholate, 0.1% (w/v) SDS] with protease inhibitors. Immuno-
precipitation using either mouse monoclonal anti-Myc
antibody or rabbit polyclonal anti-HA antibody (Santa Cruz
Biotech) were performed as described previously (37).
Co-precipitated proteins were subjected to electrophoresis
on 13% SDS-polyacrylamide gel, and were then analyzed
by western blot analysis using rabbit polyclonal anti-HA
antibody, monoclonal anti-Myc antibody or rabbit polyclonal
anti-GAS41 antibody (Santa Cruz Biotech).

Immunofluorescent staining

HeLa cells were cultured on glass coverslips and transfected
with pCMV-Myc-AP-2 and pCMV-HA-GAS41. Twenty
four hours after transfection, cells were fixed with 4% (w/v)
paraformaldehyde in phosphate-buffered saline (PBS) for
10 min, and permeabilized with 0.2% Triton X-100 for
5 min. Cells were then incubated with primary antibodies
diluted in PBS with 1% (v/v) normal goat serum for 1 h
and with the secondary antibodies under the same conditions.
The primary antibodies used were mouse monoclonal anti-
Myc and rabbit polyclonal anti-HA antibodies (Clontech)
while the secondary antibodies were Alexa 594 goat anti-
mouse and Alexa 488 goat anti-Rabbit antibodies (Molecular
Probes). Hoechst 33 258 (Sigma) was used to stain the nuclei.
Fluorescence on the processed slips was analyzed using a
confocal laser microscope (Radiance 2100, BioRad).

GST pull-down assay

GST, GST-AP-2 and other GST fusion proteins, His-GAS41
and other His fusion proteins were expressed and purified
according to manufacturer’s instructions (Amersham). For
the pull-down assay, 1-5 pg of the GST or GST fusion pro-
teins were mixed with 40 pl of 50% suspension of
glutathione-Sepharose 4B beads for 2 h in binding buffer
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[25 mM HEPES-NaOH (pH 7.5), 12.5 mM MgCl,, 10%
Glycerol, 5 mM DTT, 0.1% NP-40, 150 mM KCI and
20 uM ZnCl,]. Then 1-5 pg of His fusion proteins were
added followed by incubation for another 2 h. The pellets
were washed extensively and boiled. The bound proteins
were resolved by 13% SDS—polyacrylamide gel and analyzed
by western blot analysis with mouse monoclonal anti-His
antibody (Santa Cruz Biotech).

Luciferase assays

Transient transfections of cells with A2-Luc, pCMV-LacZ
and the indicated expression vectors were carried out with
Lipofectamine 2000 (Invitrogen). Twenty four hours after
transfection, the cells were lysed and luciferase assay was
performed using the luciferase assay system (Promega).
pCMV-LacZ was cotransfected in all experiments, and
B-galactosidase activity was used to normalize for different
transfection efficiencies.

Electrophoretic mobility shift assay (EMSA)

The consensus AP-2 binding site in human metallothionein
IIa promoter was used for EMSA. The oligonucleo-
tide sequences used for EMSA were as follows. Forward,
5-TGACCGCCCGCGGC CCGTG-3'; reverse, 5'-CACGG-
GCCGCGGGCGCTCA-3'. The binding specificity was
determined using the AP-2 binding site within the PDIP1 pro-
moter, Spl binding site in SV40 promoter and SV40 oligo
containing no binding site for transcription factor as speci-
fic and non-specific cold competitor DNA, respectively.
The upper oligonucleotide sequences were shown, AP-2:
5'-GACGCGGCCCTCGGCCTGGCC-3, Spl: 5'-GCGCT-
GGGGCGGCTGGTGGACG-3', SV40: 5-ATTCGATCGG-
GGCGGGGCGAGC-3’ (38). The EMSA assay was performed
as described previously (7).

RESULTS
AP-2 interacts with GAS41 in yeast two-hybrid assay

To identify AP-2B—interacting proteins, we first performed
yeast two-hybrid screening using full-length AP-2J3 protein
as the bait and the HeLa cell cDNA library as a prey. The
transactivational activity of the GAL4-AP-2f fusion protein
in yeast was inhibited by 25 mM 3-AT. Approximately
2.0 x 10° transformants were screened and thirty clones
were obtained on a SD-Leu™, Trp~, uracil~, His™ medium
supplemented with 25 mM 3-AT. Two clones were further
shown to be positive when analyzed for [-galactosidase
activity using the colony lift assay. Sequence analysis
revealed that one of the clones was identical to human
GAS41 cDNA previously cloned from a glioblastoma cell
line (39).

AP-2B and GAS41 are co-immunoprecipitated
in HeLa cells

To demonstrate the possible interaction between AP-2 and
GAS41 in mammalian cells, we asked whether the two
proteins could be co-immunoprecipitated. HeLa cells were
transiently transfected with expression vectors pCMV-
Myc-AP-23 and pCMV-HA-GAS41. The lysates were

immunoprecipitated with either control IgG or anti-HA
polyclonal antibody. The co-immunoprecipitated protein
was examined for the presence of Myc-AP-2B by immun-
oblotting assay using anti-Myc monoclonal antibody. As
shown in Figure 1A, AP-2f3 could be co-immunoprecipitated
with HA tagged GAS41 (Figure 1A, lane 2) but not by con-
trol rabbit IgG (Figure 1A, lane 3). To further confirm this
finding, the same lysates were immunoprecipitated with anti-
Myc monoclonal antibody, and the bound protein was detec-
ted by immunoblotting with anti-HA polyclonal antibody.
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Figure 1. Interaction of AP-23 with GAS41 in HeLa cells. (A) Western blot
analysis with mouse monoclonal anti-Myc antibody of HA-GAS41 precipi-
tated protein from 300 ug of protein extract of transfected HeLa cells (lane 2).
A total of 30 ug of protein extract was used as positive control (lane 1).
Immunoprecipitates with rabbit preimmune serum were used as negative
control (lane 3). (B) Western blot analysis with rabbit polyclonal anti-HA
antibody of Myc-AP-2 precipitated protein (lane 2). A total of 30 g of protein
extract was used as positive control (lane 1). Immunoprecipitates with mouse
preimmune serum were used as negative control (lane 3). (C) Western blot
analysis with rabbit polyclonal anti-GAS41 antibody of Myc-AP-2f precipi-
tated protein from 2 mg of nuclear protein extract of HeLa cells (lane 2). A total
of 100 pug of nuclear protein extract was used as positive control (lane 1).
Immunoprecipitates with mouse preimmune serum were used as negative
control (lane 3). IP, Immunoprecipitation. IB, Immunoblot.



As shown in Figure 1B, GAS41 could also be precipitated by
Myc tagged AP-2B (Figure 1B, lane 2) but not by control
mouse IgG (Figure 1B, lane 3). Furthermore, HelLa cells
were only transfected with pCMV-Myc-AP-2f. Endogenous
GAS41 in HeLa cells could be co-immunoprecipitated with
Myc tagged AP-2B (Figure 1C, lane 2) but not by control
mouse IgG (Figure 1C, lane 3). These results indicated that
AP-2P and GAS41 could be found in the same complex in
mammalian cells, and GAS41 may directly or indirectly
interact with AP-23.

AP-2 colocalizes with GAS41 in HeLa cell nuclei

Because of the tight association found in immunoprecipita-
tion experiments, we next investigated whether these proteins
were present in the same region in cells. The immunofluores-
cent assays were performed as described in Materials and
Methods. The images obtained with confocal laser scann-
ing microscope revealed that both Myc-tagged AP-2B3
(Figure 2B) and HA-tagged GAS41 (Figure 2C) were local-
ized in the nuclei of cells. After overlay, co-localized signals
(yellow) were clearly observed (Figure 2D). These results
are consistent with the presence of GAS41 and AP-2f in
same complex in vivo but do not address whether both pro-
teins directly interact.

AP-2B and GAS41 interact directly in vitro

It is possible that GAS41-AP-2f interaction may be indirect
because other protein factors in the whole cell extract may be
involved in mediating the interaction, e.g. acting as ‘bridging’
factors. Therefore we next decided to examine a possible
direct interaction between the two proteins using GST pull-
down assays. GST, GST fusion proteins and His fusion

Nucleus Myc-AP-28

HA-GAS41

Merge

Figure 2. Colocalization of AP-2f and GAS41 in human HeLa cell by
immunofluorescence. (A) Nuclear staining of HeLa cells by Hoechst 33258.
(B) Nuclear localization of Myc-AP-2f, detected with mouse monoclonal
anti-Myc antibody and Alexa 594 conjugated goat anti-mouse secondary anti-
body. (C) Nuclear localization of HA-GAS41, detected with rabbit polyclonal
anti-HA antibody and Alexa 488 goat anti-Rabbit secondary antibody. (D)
Overlay of images in (B) and (C), showing co-localization (yellow) of two
proteins.
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proteins were expressed and purified. Figure 3A showed the
bacterially expressed and purified proteins. Figure 3B showed
that GAS41 could be pulled-down by GST fused AP-2P3
(Figure 3B, lane 2) but not by GST alone (Figure 3B,
lane 3), indicating that GAS41 and AP-2f specifically inter-
act directly in vitro. We next decided to map the interaction
domains between AP-2 and GAS41 using the same assay.
The truncated proteins of AP-2 (Figure 3C and E) were
used with His-GAS41 in pull-down experiments (Figure 3D
and F). AP-23 P62R with the PY motif mutation that causes
Char Syndrome (40) and AP-2BAN233 efficiently pulled
down GAS41 (Figure 3D and F, lanes 4 and 5), whereas
other truncations of AP-2f pulled down little or none of
GAS41 ((Figure 3D and F). The results obtained indicated
that domain of AP-2 interacting with GAS41 is located in
the C-terminus.

The domain of GAS41 interacting with AP-23 was also
mapped by same assay. As shown in Figure 4A, GST-AP-
2B pulled down His-GAS41AN162 (Figure 4A, lane 4),
but not His-GAS41AC96 (Figure 4A, lane 2). The His-
GAS41AN162 contains C-terminal 65 amino acid residues
(amino acids 163-227) of GAS41, indicating that the domain
of GAS41 interacting with AP-2f is located in C-terminus.
We next examined the ability of different fragments of
GAS41 to interact with AP-2P. A further C-terminal deletion
that deleted residues 215-227 did not affect the interaction
with AP-2P (Figure 4B, lane 7). But deletions of C-terminal
residues 203-227 and 193-227 abrogated the interaction
(Figure 4B, lanes 8 and 9). And the further deletion of the
C-terminal residues 212-227 and 208-227 also affected the
interaction (Figure 4C, lanes 6-9). These results suggest lys-
ine at position 212, Asparagine at position 213, Glutamic acid
at position 214 or three are possibly critical for the interac-
tion. Moreover, the three point mutations of GAS41, res-
pectively, significantly reduced the interaction with AP-20
confirmed by the GST pull-down assay (Figure 4D) and
co-immunoprecipitation (Figure 4E). However, GAS41
containing the three point mutations did not interact with
AP-2B, (Figure 4E, lane 2). Therefore, the three residues of
GAS41 have played an important role in the interaction,
but we haven’t found any change in their co-localization
(data not shown).

GAS41 stimulates activation of transcription by AP-2(3

To investigate the physiological relevance of the AP-2[3-
GAS41 interaction, we asked whether GAS41 could modu-
late AP-2f transcriptional activity. The A2-luc reporter
construct was transfected into HepG2 cells either alone or
together with AP-2 expression vector pCMV-Myc-AP-23
and/or GAS41 expression vector pPCMV-HA-GAS41 as well
as the mutants of GAS41 as indicated in the Figure 5. GAS41
alone hardly stimulated the luciferase expression (Figure 5,
lane 2) in HepG2 cells which lack the expression of AP-2
proteins. Transfection of AP-2[3 significantly stimulated the
luciferase activity (Figure 5, lane 3). The addition of
GAS41 enhanced AP-2f activity (Figure 5, lane 4). Further-
more, notably, these mutations reduced their ability in stimu-
lating AP-2 activity (Figure 5, lanes 5-8). Taken together,
these results suggested that GAS41 can function as
co-activator of AP-23.
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Figure 3. Identification of GAS41 binding domain in AP-23. (A) Expressed and purified AP-2f fusion proteins run on a 10% SDS—polyacrylamide gel. (B) Western
blot analysis with anti-His antibody of His-GAS41 protein pulled down with GST-AP-2f3 (lane 2) and GST alone (lane 3). A total of 5 ig of His-GAS41 was used as a
positive control (lane 1). (C) The truncated proteins of GST-AP-2f3 were expressed, purified and run on a 10% SDS—polyacrylamide gel. (D) The proteins purified
above were used in pull-down experiments with His-GAS41. Lane 1 is a positive control. Only lanes 2 and 4 had a pull-down of His-GAS41, whereas other lanes had
none. (E) Expressed and purified subdomains of GST-AP-2p. (F) The proteins expressed from (E) were used to pull down His-GAS41, respectively. Lane 1 is a
positive control using His-GAS41. Lanes 2 and 5 contained pull-downs. Other lanes had little or none of pull-downs. (G) Linear diagram showing domain structure
of GST-AP-2f and summary of the interactions between GST-AP-2[3 and His-GAS41 detected by pull-down assays. + indicates the interaction between GST-AP-2[3
and His-GAS41, — indicates the lack of interactions between the two proteins. The AP-2f domains in the schematic cartoon are indicated as follows: AD,

activation domain; DBD, DNA binding domain; DIM, dimerization domain.

GAS41 enhances binding of AP-2 to DNA

To elucidate the mechanism for the enhanced transcription
activity of AP-2B by GAS41, we then examined whether
GAS41 affected the formation of AP-23-DNA complexes
by the EMSA experiment. First, we documented the DNA-
binding specificity, 10- and 50-fold amounts of unlabeled
AP-2, Spl or SV40 oligonucleotide were added in competi-
tion. Cold AP-2 oligonucleotide significantly competed
away the signal, whereas cold Sp-1 or SV40 oligonucleotide
did not reduce the intensity of the band (Figure 6A). The
result documented that AP-2B binds the consensus AP-2
site with specificity.

As shown in Figure 6B, His-GAS41 significantly enhanced
the DNA-binding activity of GST-AP-2p (lanes 5-7), com-
paring with BSA (lanes 2 and 3). The stimulatory effect of
His-GAS41 was dose dependent. GAS41 alone incubated
with the probe did not produce a band (lane 4). Furthermore,
the point mutants of GAS41 markedly reduced the enhance-
ment for DNA-binding activity of GST-AP-23 (lanes 9-11)
compared to the same amount of wild-type GAS41 (lane 7),
whereas the mutant GAS41 that is not capable of interacting
with AP-2 did not stimulate the DNA-binding activity of
GST-AP-2f (lane 8). Taken together, our result suggests

GAS41 enhances the transcriptional activity by a mechanism
that appears to involve an enhancement in the formation of
AP-23-DNA complex.

DISCUSSION

We reported here the interaction between transcription factor
AP-2p3 and GAS41, which resulted in the enhancement of
transcriptional activity of AP-2B. The stimulating effect of
GAS41 to AP-2f3 was, at least in part, due to the enhancement
of AP-2B3 to bind to its specific DNA-binding site. In the
EMSA assay, GAS41 appears to enhance the binding of
AP-2B to DNA without affecting the rate of migration of
this complex. There may be a transient interaction between
GAS41 and AP-2P in which GAS41 induces conformational
change of AP-2f3, favoring its DNA-binding. After AP-2f3
bound to its DNA, GAS41 leaves without forming a ternary
complex. Such ‘hit and run’ mechanism has been demon-
strated for the effects of Miz 1 over the DNA-binding of tran-
scription factor Msx2 (41) and oncogene DEK over AP-2a
(35). In both transient transfection and EMSA assays, the
GAS41 protein with mutation of three critical amino acid
residues that does not interact with AP-2 lost its stimulating
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Figure 4. Identification of AP-23 binding domain in GAS41. (A) His-GAS41AC96 (lane 2) and His-GAS41AN162 (lane 4) pulled down by GST-AP-2f3 were
analyzed by anti-His antibody immunoblot. His-GAS41AC96 (lane 1) or His-GAS41AN162 (lane 3) was used as positive controls. (B) Pull-down experiments
were performed with AP-2f3 and purified truncated proteins of GAS41 from lanes 1-4. (C) The same pull-down experiments were performed as Figure 4B.
Lane 5 is a control experiment in which GST alone was used. Increasing the input amount of GAS41 deletions didn’t lead to any pull-downs (lanes 6-9). (D) Three
point mutants of GAS41 were used in pull-down assays with AP-23. A total of 2.5 pg of point mutants of GAS41 used were not pulled down by AP-2f3 (lanes 4-6),
while 5 g only detected weak bands (lanes 7-9). (E) Western blot was performed using cell extracts with transfected plasmids expressing the proteins indicated and
reprobed with anti-Myc antibody to detect AP-2f3 and mutants of GAS41. Lanes 2, 3, 4 and 5 contained proteins immunoprecipitated by AP-2f3 antibodies, whereas
other lanes were immunoprecipitated by preimmune 1gG. (F) Schematic representation of GAS41 constructs used for pull-down and co-immunoprecipitation
analysis. Faint indicates the weak interaction. AD, activation domain.

effect on AP-2P3 activity, whereas those with mutation of  essential for the physiological relevance of these two pro-
single amino acid residue that significantly reduced their  teins. To the best of our knowledge, this is the first report
abilities to interact with AP-2P also significantly reduced that suggests a role for GAS41 as a co-activator of a
their stimulating activity over AP-2f (Figures 4-6), sug- sequence-specific transcription factor by directly interacting
gesting that the interaction between GAS41 and AP-2P is with the transcription factor AP-2B. In addition, GAS41
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Figure 5. Effects of GAS41 on transcriptional activity of AP-2f in HepG2
cells. HepG2 cells were transfected with 0.5 pg of luciferase reporter A2 Luc
vector alone (lane 1) or with 0.3 pg of GAS41 expression vector pCMV-
HA-GAS41 (lane 2) or with 0.3 pg of AP-2f expression vector pCMV-
Myc-AP-2f3 (lane 3) or with both AP-2 expression vector and 0.3 ug of
pCMV-HA-GAS41 (lane 4) or the mutations GAS41 (lanes 5-8). Relative
activity of luciferase was presented as the mean + SD of three independent
transfection experiments performed in triplicate each treatment.

also stimulated the transcriptional activity of endogenous
AP-2 family members in COS7, MCF-7 and NIH3T3 cells
(data not shown).

GAS41 gene was originally identified as an amplified
sequence in the chromosome region 12ql13-15, a region
known to be involved in gene amplification in human gliomas
(39). GAS41 amplification was detected in 23% of glio-
blastomas and 80% of grade I astrocytomas, suggesting
gene amplification can occur not only in late tumor progres-
sion but also in early tumor development (39,42). Sequence
analysis and comparison of GAS41 and known protein
sequences revealed a high similarity between GAS41 and
human AF-9 and ENL proteins (43). This finding is intriguing
since AF-9 and ENL genes are frequently involved in trans-
location events in leukemia, in particular, AF-9 being found
fused to the ALL-gene with t(9:11) translocations and ENL
being found fused to the ALL-1 gene with t(11:19) transloca-
tions (44), leaving the question open whether GAS41 also
plays roles in leukemia.

GAS41 is a highly conserved protein with homologous
found in invertebrates, vertebrates, plants and fungi (43). It
is probably one of most highly conserved proteins during
evolution with the degree of homology between human and
Drosophila proteins of 61% identity and 70% overall similar-
ity (43), suggesting GAS41 may play an essential role during
biological evolution. A number of proteins involved in nuc-
lear matrix formation, chromatin remodeling, nuclear scaf-
folding or mitotic spindle assembly have been shown to
interact with GAS41, those including NuMA (43), TACCI1
(37) and AF10 (45). It is possible that by associating with
those factors, GAS41 can produce a change in chromatin con-
formation in such a way that enhances the DNA-binding of
transcription factor, such as AP-2B in vivo. Recent studies
have also been shown that targeted disruption of GAS41 in
chicken pre-lymphoid cells results in cell death, indicating
that it is essential for cell viability. It has been further
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Figure 6. Effect of GAS41 on binding of AP-2f3 to DNA in vitro. (A) The fusion
protein GST-AP-2f3 was incubated with 32p_Jabeled hMT sequences, including
competition assay with 10- or 50-fold unlabeled oligos containing AP-2 or
Spl binding site, or SV40 oligo. (B) The probe was radioactively labeled
and incubated with 30 ng of AP-2 in the present of 30 (lane 5), 100 (lane
6) or 200 ng of GAS41 (lane 7) and the GAS4Imutants (lanes 8—11). As
negative controls, the probe was incubated with AP-2f in the presence of
30 (lane 2) or 200 ng (lane 3) of BSA. GAS41 alone (lane 4) were also incubated
with the probe in the absence of AP-23. The intense bands at the bottom were
unbound oligonucleotides.

demonstrated that depletion of GAS41 causes a significant
decrease in RNA synthesis and subsequently cell death, sug-
gesting a role of GAS41 in gene transcription (46). The
gene transcription in eukaryotes is a quite complicated
process which has not been fully understood. However, the



transcription of a specific gene is generally processed by: (i)
remodeling of chromatin to facilitate the binding of sub-
sequent factor to nucleosomal DNA, involving the participa-
tion of SWI-SNF complex or other homologous multiprotein
complexes with similar chromatin-remodeling activities, (ii)
formation of transcription initiation complex involving
recruiting of general transcription factors (TFIIA, TFIIB,
TFIID, TFIF, etc.) and RNA polymerase II to the transcrip-
tion initiation sites of specific gene, (iii) the interaction of
sequence-specific transcription factors with the basal tran-
scriptional initiation complex to enhance or repress the tran-
scription rate. GAS41 seems to be a mediator among these
three steps. GAS41 appears to be a human homologue of
yeast ANCI1, a protein known to be an integral member of
two basal transcription factor complexes, TFIID and TFIIF.
ANCI binds to the SWI-SNF chromatin-remodeling complex
through its interaction with SNF5, a component of SWI-SNF
complex (47). Homologues of SNF5 have been isolated in
both human and Drosophila, named INT1 and Snrl, respect-
ively. They have been shown to be component in large com-
plexes equivalent to the yeast SWI-SNF5 complex (48,49). It
has been shown that GAS41 can interact with INI1 (45),
which bridges the chromatin-remodeling complex and the
basal transcription complex. As a component of basal tran-
scription complex, GAS41 has been proposed to regulate
gene transcription by directly associating with the sequence-
specific transcription factor. However, previous to this report,
GAS41 has not been shown to bind directly to any known
transcription factor. So, it is proposed that an additional pro-
tein may be required for GAS41 to bind to sequence-specific
transcription factor. Our finding fulfils such gap, indicating
that GAS41 can bind to DNA-sequence-specific transcription
factor, such as AP-2P. It is possible that, as a component of
basal transcription complex, one of the roles of GAS41 is to
act as a recruiting protein for certain sequence-specific tran-
scription factors in vivo. Taken together, it is attemptable to
speculate that the general role of GAS41 is to function as a
mediator which bridges the chromatin-remodeling complex,
basal transcription complex and DNA-sequence-specific tran-
scription factor to facilitate the efficient gene transcription,
and deregulation of GAS41 transcription would result in
diseases, such as gliomas and leukemia.
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