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Trans-Regulation of Mouse Meiotic
Recombination Hotspots by Rcri1
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Meiotic recombination is required for the orderly segregation of chromosomes during meiosis and for providing
genetic diversity among offspring. Among mammals, as well as yeast and higher plants, recombination preferentially
occurs at highly delimited chromosomal sites 1-2 kb long known as hotspots. Although considerable progress has
been made in understanding the roles various proteins play in carrying out the molecular events of the recombination
process, relatively little is understood about the factors controlling the location and relative activity of mammalian
recombination hotspots. To search for trans-acting factors controlling the positioning of recombination events, we
compared the locations of crossovers arising in an 8-Mb segment of a 100-Mb region of mouse Chromosome 1 (Chr 1)
when the longer region was heterozygous C57BL/6J (B6) X CAST/EiJ (CAST) and the remainder of the genome was
either similarly heterozygous or entirely homozygous B6. The lack of CAST alleles in the remainder of the genome
resulted in profound changes in hotspot activity in both females and males. Recombination activity was lost at several
hotspots; new, previously undetected hotspots appeared; and still other hotspots remained unaffected, indicating the
presence of distant trans-acting gene(s) whose CAST allele(s) activate or suppress the activity of specific hotspots.
Testing the activity of three activated hotspots in sperm samples from individual male progeny of two genetic crosses,
we identified a single trans-acting regulator of hotspot activity, designated Rcr1, that is located in a 5.30-Mb interval
(11.74-17.04 Mb) on Chr 17. Using an Escherichia coli cloning assay to characterize the molecular products of
recombination at two of these hotspots, we found that Rcr1 controls the appearance of both crossover and
noncrossover gene conversion events, indicating that it likely controls the sites of the double-strand DNA breaks that
initiate the recombination process.
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Introduction

Meiotic homologous recombination is responsible for
generating genetic variety among offspring as well as
ensuring accurate chromosome segregation during meiotic
cell divisions. The process of recombination is initiated by the
formation of DNA double-strand breaks (DSBs) created by
the highly conserved topoisomerase IV-like protein SPO11
[1]. These DSBs provide the sites at which chiasmata and
crossovers form, events that are necessary for proper
chromosome alignment and segregation in Meiosis I. When
the repair of a DSB involves a homologous chromatid, the
outcome can be recognized genetically as either a reciprocal
exchange of genetic information between the homologous
chromatids (a crossover [CO]), or alternatively as the
unidirectional acquisition of genetic information by the
initiating chromatid from its non-initiating partner (a non-
crossover [NCO], sometimes referred to as a gene conversion)
[2,3]. Studies in Saccharomyces cerevisiae show that COs and
NCOs are the preferred outcomes of two alternative pathways
in meiotic recombination, COs being predominantly pro-
duced by the Double-Strand Break Repair (DSBR) pathway,
and NCOs predominantly produced by the Synthesis-
Dependent Strand-Annealing (SDSA) pathway [4,5].

Importantly, in all organisms, meiotic recombination does
not occur at uniform rates along chromosomes. In both yeast
and mammals—the most extensively studied cases—recombi-
nation rates vary considerably along the length of a
chromosome [6-10]. When examined at high resolution, the
great majority of recombination, possibly all, occurs in
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restricted regions, termed hotspots, that are typically 1-2 kb
long in humans and mice [11,12].

In contrast to the considerable body of information
describing the participation of a variety of proteins in the
overall processes of recombination, relatively little is pres-
ently understood about the factors determining the chromo-
somal locations and relative activity of recombination
hotspots. In yeast, hotspots have been classified into three
groups based on their presumed activation requirements.
Activation of “o” hotspots requires transcription factors; the
“B” hotspots require the presence of nuclease-sensitive
chromatin (a necessary, but not sufficient, condition); and
the “y” hotspots are dependent on the G+C content of DNA
(reviewed in [13]). Many yeast hotspots can be assigned to
more than one class due to multiple mechanisms involved in
the initiation of recombination. There is no obvious
consensus sequence defining hotspots in either S. cerevisiae
or Schizosaccharomyces pombe with the exception of the class of
hotspots in S. pombe, which have an 18-bp consensus sequence
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Author Summary

Recombination is an essential aspect of meiosis, ensuring proper
contact and exchange of genetic material between homologous
parental chromosomes, as well as their subsequent segregation to
produce haploid gametes. In humans and mice, recombination
events are located at preferential sites termed hotspots, whose
placement and activity are tightly regulated. We have now identified
a hotspot-regulating locus in mammals, Rcr1, that simultaneously
controls the locations of multiple hotspots. The discovery of Rcr1
indicates the existence of a newly emerging class of genes
important in the recombination processes. Gaining further insights
into their function may contribute to a better understanding of
genetic factors underlying human fertility and evolution.

containing the CRE-heptameric cyclic AMP response element
ATGACGT [14-16]. However, this sequence accounts for only
a minority of hotspots in S. pombe; the defining elements of
the remainder are unknown. A 13-bp consensus sequence has
been identified that is present in 41% of human hotspots [17];
although this sequence is highly enriched in hotspots, its
presence alone is not sufficient to initiate hotspot activity,
suggesting that other presently unknown factors are also
required. This 13-bp sequence also has the interesting
property of serving as a site of spontaneous DNA breakage
in mitochondrial DNA.

That the location of a hotspot is not determined simply by
its internal DNA sequence was shown by DSB mapping
experiments in S. cerevisiae. The DSBs initiating recombina-
tion preferentially occurred within a window of 100-500 bp
near the center of the hotspot [18-21]. However, replacement
of these preferred sites for DSB formation did not eliminate
DSB formation there, and DSBs now occurred at the
replacement sequence [22,23].

Trans-acting factors controlling hotspot activation have
been identified in several cases in yeast. Binding of the ATFI1/
PCR1 transcription factor is required for activity of the
aforementioned ADE6-M26 hotspot in S. pombe [24], and
activity of the HIS4 hotspot in S. cerevisiae requires binding by
the transcription factors BASI, BAS2, and RAPI [25] and
GCN4 [26]. A more extensive analysis of the effect of BASI has
shown that loss of this protein can either reduce or increase
the recombination activity of a number of S§. cerevisiae
hotspots [27].

Recent data indicate that such trans-acting factors may act
through posttranslational modifications of histones with
attendant nucleosome rearrangements. For example, in the
MAT2-MATS3 cold region in S. pombe, the cooperative action of
histone deacetylases and histone methyltransferases contrib-
ute to recruitment of heterochromatin proteins, keeping the
region both transcriptionally and recombinationally silent
[28] and directing recombination to the adjacent mating-type
locus [29]. Regulation of recombination by histone methyl-
transferases has also been shown in S. cerevisiae [30,31] and
Caenorhabditis elegans [32], and histone H2B ubiquitination has
been shown to play a role in DSB formation, by recruitment
and/or stabilization of DSB-initiating factors through RAD6-
BREI [33]. The most detailed analysis of the influence of
chromatin modifications on meiotic recombination has been
achieved for the ADE6-M26 hotspot in S. pombe, at which a set
of histone acetyltransferases and ATP-dependent chromatin
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remodeling factors alter chromatin structure, regulating both
transcription and recombination [34].

In contrast to what is known in yeast, we know considerably
less about possible trans-acting factors influencing the location
and relative activity of mammalian hotspots, although there is
now evidence that such factors exist. The MSTM Ia and 1b
hotspots in humans vary considerably in activity among
individual males even when they share the same haplotype
within and around the hotspots themselves [35], suggesting
control by either trans-acting factors or very distant cis-acting
factors; and in mice, Baudat and de Massy [36] have shown that
initiation of recombination at the Psmb9 hotspot on chromo-
some 17 (Chr 17) requires the presence of a trans-acting gene
located some distance proximal to the site of the hotspot.

To systematically explore the possible existence and
identity of trans-acting factors controlling hotspot specificity
in mammals, we have taken advantage of the possibilities
inbred mouse strains provide for genetic analysis and
compared the recombination maps generated along a region
of mouse Chr 1 when this region was always heterozygous
C57/BL6 (B6) X CASTI/Ei] (CAST), and the rest of the genome
either did or did not carry CAST alleles. In doing so, we found
hotspots whose activity was either dependent upon, or
suppressed by, the presence of CAST alleles at distant loci,
whereas other hotspots were unaffected. Assaying the activity
of specific hotspots in the sperm of males segregating in
genetic crosses, we found that the activity of several hotspots
depended on a single Mendelian factor we have designated
Recombination regulator 1 (Rerl) that maps to a 5.30-Mb region
on proximal Chr 17. Molecular assays of individual products
of recombination at these hotspots indicated that Rerl acts to
control the initiation of recombination rather than the
choice between the CO and NCO pathways of the recombi-
nation process. In their accompanying paper, Grey et al. [37]
describe a similar frans-acting locus controlling the appear-
ance of both CO and NCO gene conversions at the Psmb9
hotspot on Chr 17 of the mouse as well as elsewhere in the
genome.

Results

Transactivation and Suppression of Specific Hotspots

The existence of trans-acting genes became apparent when
comparing the recombination maps obtained by two genetic
crosses involving the B6 and CAST mouse strains, which were
chosen for their genetic diversity. In the first cross, hereafter
referred to as the interstrain cross, B6 mice were mated to
CAST, and the F1 hybrids were backcrossed to B6. In the
second cross, hereafter referred to as the congenic cross, B6
were mated to B6.CAST-1T, a congenic strain carrying 100
Mb of CAST DNA sequences from distal Chr 1 introgressed
into C57BL/6] (see Materials and Methods for details of this
strain); the resulting F1 hybrids were then backcrossed to B6.
In both crosses, the F1 hybrids shared the same heterozygous
100-Mb segment on Chr 1. The fundamental difference was
the presence of CAST alleles in the remainder of the genome
in the interstrain B6xCAST F1 animals and their absence in
congenic B6xB6.CAST-1T F1 mice, which are homozygous B6
outside the 100-Mb Chr 1 region (Figure 1).

In both crosses, recombination was tested in an 8-Mb
region (183.5-191.5 Mb, National Center for Biotechnology
Information [NCBI] build 36) located within the 100-Mb
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Crosses of B6xCAST (interstrain) and B6xB6.CAST-1T (congenic): B6 sequences are black; CAST sequences are red. The region within which
recombination was measured is boxed; the crossovers are detected in the final progeny.

doi:10.1371/journal.pbio.1000036.9g001

heterozygous B6/CAST region. The B6xCAST recombination
map utilized the products of 6,028 meioses occurring in F1
animals (3,002 offspring of female F1 and 3,026 offspring of
male F1) and was part of the entire map of Chr 1 described
previously [10]. Among these offspring, 735 contained a single
CO event in the 8-Mb region (264 arising in female F1s and
471 in male F1s), producing a total sex-averaged map length
of 12.2 cM (8.8 cM in females and 15.6 ¢cM in males), or 1.52
cM/Mb (1.1 cM/Mb and 1.95 cM/Mb in females and males,
respectively). The B6xB6.CAST-1T map utilized 2,083 meioses
(1,173 offspring of female F1 and 910 offspring of male F1), of
which 175 meioses provided a single CO event in the 8-Mb
region (83 from females and 92 from males). The sex-
averaged map length of the region in this cross was 8.4 cM
(7.1 ¢M in females and 10.1 ¢cM in males), or 1.05 cM/Mb (0.89
cM/Mb and 1.26 cM/Mb in females and males, respectively). To
test for any possible effect of genomic imprinting on
recombination rates, half of the offspring of each cross were
derived from F1 animals in which the dam was B6 and the sire
was CAST or B6.CAST-1T, and the other half were derived
from a reciprocal parental combination; there were no
significant differences in hotspot locations between these
reciprocal crosses.

The COs occurring in the 8-Mb region of Chr 1 were
mapped to hotspot-level resolution using the same markers
for both crosses. Figure 2 presents the female and male
recombination maps obtained. Although most regions
showed similar activity in both crosses, there were nine
regions, indicated by arrows, where the results differed
dramatically; six hotspots disappeared in the congenic cross
(Fbx028, Dusp10, Hix1, D1Pasl, Esrrg-1, and Kenk2, named after
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their closest genes), and three regions that were devoid of
recombination in the interstrain cross contained new, active
hotspots in the congenic cross (Capn2, Kctd3, and Ptpnl4).
Three hotspots in the interstrain cross (HixI, Esrrg-1, and
Kcnk2) and one in the congenic cross (Kctd3) showed statisti-
cally significant sex differences. In no case did we find a
hotspot whose activity depended on a CAST allele in one sex,
but not the other, in a statistically significant manner.
Particularly notable were the twin hotspots FEsrrg-1 and
Esrrg-2, which in the interstrain cross are separated by less
than 5 kb and are significantly more active in males than in
females. Only the hotspot proximal to the centromere, Esrrg-
I, disappeared in the congenic cross; the other, Esrrg-2,
remained active, although with reduced activity (inserts on
Figure 2A and 2B). The probabilities of these results being
observed by chance are very low (Table 1). One of the regions
(188.7-189.1 Mb) in which recombination appeared in the
congenic cross stretched across several markers, indicating
that this region contains several distinct, activated hotspots.

The rates at regions with centromere-proximal ends at
185.220, 185.900, and 187.485 Mb were similar, and others like
those at 187.827, 189.584, 189.785, and 190.001 Mb were
active in both crosses but with different activities.

It is apparent from these results that the products of CAST
alleles of distant loci can activate or suppress the activity of
individual hotspots without affecting other hotspots in the
same chromosomal region.

Mapping Rcr1, the Trans-Acting Locus
Two mapping crosses were used in searching for trans-
acting genes regulating recombination at specific hotspots. In
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Figure 2. Recombination Map of the Chr 1 Region between 183.5 and 191.5 Mb

(A) Comparison between the female maps of B6xB6.CAST-1T (blue line) and B6xCAST (red line).

(B) Comparison between the male maps of the two crosses using the same colors. The maps of B6xCAST are taken from previous experiments [10].
Recombination rates are expressed in centimorgans per megabase for the intervals between adjacent markers. Hotspots included in Table 1 are shown
with their names and positions indicated by arrows. Red arrows mark hotspots where recombination was present only in the B6xCAST cross; blue
arrows mark regions where recombination was present only in the B6xB6.CAST-1T cross. The numbers show actual centimorgans per megabase values
for hotspots exceeding the limits of the figure. The insets expand the map in the 50-kb region between 189.750 and 189.800 Mb; the red arrow marks

the Esrrg-1 hotspot that is active only in the B6xCAST cross.
doi:10.1371/journal.pbio.1000036.9002

the first cross, F1 females derived from a cross between the
B6.CAST-1T congenic strain and CAST were backcrossed to
B6 (Figure 3A). The progeny of this cross were all hetero-
zygous B6/CAST at the 100-Mb congenic region and
segregated CAST alleles in the remainder of the genome.
The advantages of this cross were that it allowed the
detection of any relevant X-linked genes; that all male
progeny were informative, and that any CAST alleles were
always present in the heterozygous condition, as they were in
the F1 animals where the differences in hotspot activity were
originally detected. A total of 211 male animals from this
cross were individually phenotyped for activity of three
hotspots HixI (186.316 Mb, located 110 kb away from the
gene’s 3'-end), Esrrg-1 (189.778 Mb, together with its neighbor
Esrrg-2 located in intron 3-4 of Esrrg) and Kenk2 (191.027 Mb,
located in intron 2-3 of its namesake gene). Phenotyping was
carried out using allele-specific sperm DNA assays (see
Materials and Methods); these assays gave a plus/minus
phenotype for each of the three hotspots; a hotspot was
either active or missing from genetically segregating mice
(Figure 4). Unfortunately, because suitable single nucleotide
polymorphism (SNP) combinations were not available, it was
not possible to develop nested PCR assays for any of the three
hotspots suppressed by the presence of trans-acting CAST
alleles.

To address possible dosage effects of CAST alleles on
recombination activity, a second cross was carried out in
which B6xCAST F1 animals were mated together; the half of
the resulting F2 male progeny that were heterozygous at the
distal part of Chr 1 (including the entire congenic region
between the microsatellite markers DIMitl45 located at
169.132 Mb and DIMit510 located at 194.118 Mb (Figure
3B) were tested for hotspot activity. As with the first mapping

Table 1. Recombination Hotspots Active in Only the Interstrain
or the Congenic Backcross

Hotspot Location Number of Crossovers p° qb
(Mb) B6xCAST B6xB6.CAST-1T

Fbxo28 184.197 50 0 <0.0001 <0.0001
Capn2 184.328 0 6 0.0002 0.0017
Dusp10 185.566 36 0 <0.0001 0.0005
Hix1 186.316 105 0 <0.0001 <0.0001
DiPas1 188.580 23 0 0.0024 0.0144
Esrrg-1 189.778 60 0 <0.0001  <0.0001
Kctd3 190.740 0 7 <0.0001 0.0005
Kcnk2 191.027 33 0 0.0001 0.0012
Ptpn14 191.445 0 16 <0.0001 <0.0001

2 p-Values calculated by the Fisher Exact Test.

b g-Values determined as in Storey and Tibshirani [44] provide a multiple testing
correction.

doi:10.1371/journal.pbio.1000036.t001
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cross, these animals were heterozygous for the distal part of
Chr 1, but segregated both B6 and CAST alleles in either the
homozygous or heterozygous state in the remainder of the
genome. In all, 98 animals from this F2 cross representing 196
meioses were phenotyped.

Phenotyped animals from both crosses were genotyped
with 165 SNP markers spaced across the genome, ensuring
20-Mb resolution (Table S1). The genotyping and phenotyp-
ing data were analyzed by the R/QTL-based software package
Jlqtl (http:/iresearch.jax.org/faculty/churchill/software/Jqtl/
index.html).

The results showed strong linkage between hotspot
activities and a single interval on proximal Chr 17 located
between 5 and 25 Mb, with LOD scores above 30 for hotspots
Hixl and Esrrg-1 and around 8 for hotspot Kenk2 in the
congenic backcross (Figure 5A), and above 10 for hotspots
HixI and Esrrg-1 in the interstrain cross (Figure 5B). The two
crosses produced identical map locations, providing evidence
that CAST alleles in either homozygous or heterozygous
condition activate recombination at the analyzed hotspots.
No other chromosome location showed significant linkage in
either cross. The reason for the lower LOD scores with the
Kcenk2 hotspot is the lower efficiency of the nested PCR assay
for this hotspot, which although it never gave a false-positive
result with control DNA samples, did not always give a
positive result with samples known to contain COs.

We have designated the Chrl7 locus Recombination regulator
1 (Rerl). To further refine the location of Rerl, all of the
crossovers occurring between 5 and 25 Mb on Chr 17 were
typed for a combination of microsatellite and SNP markers
(Figure 5C). The left border of the critical interval was located
between 11.74 Mb (D17Mitl113) and 13.01 Mb (NES15751522),
and the right border was located between 16.14 Mb
(NES12260613) and 17.04 Mb (NES12247255), showing that
Rerl must lie in the 5.30-Mb interval between 11.74 and 17.04
Mb on Chrl7.

Rcr1 Controls the Initiation Steps of the Recombination
Process

We tested whether Rcrl controls the earlier stages of
recombination process, between the initiation of DSB and the
formation of recombination intermediates, or the later
decision to process the recombination intermediates into
either COs or NCOs. If Rerl acts early in recombination, it
should control the appearance of both COs and NCO gene
conversions at susceptible hotspots. If, however, it acts on the
choice between CO and NCO pathways as alternative
outcomes of repairing the DSBs that initiate recombination,
we would expect to see persistence of NCOs at susceptible
hotspots in the absence of the Rerl CAST allele.

A cloning assay counting the number of COs and NCOs at
individual hotspots in F1 sperm DNA [38] was used to make
this distinction. In essence, the region containing the hotspot
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doi:10.1371/journal.pbio.1000036.g003

was amplified from sperm DNA using primers common to
both B6 and CAST. The amplified product was then cloned
into E. coli such that the mammalian DNA in each clone is
derived from a single strand of an individual sperm, and the
individual clones were genotyped (see Material and Methods).
This assay was feasible for the HixI and Esrrg-1 hotspots, in
which the availability of suitable internal markers facilitated

F2 sperm samples

M1 2 345 6 7 8 91011 1213 1415 16 1718 1920

Figure 4. Allele-Specific PCR for Hotspot Hix7
Gel electrophoresis of F2 samples from the interstrain cross after two rounds of allele-specific PCR. M is a 100-bp ladder; 1-20 are F2 samples; the last
three lanes contain negative and positive controls as described.
doi:10.1371/journal.pbio.1000036.g004
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the detection of both COs and NCOs. In B6/CAST F1 sperm,
in which these hotspots are expected to be active, both COs
and NCOs were present at the two hotspots, but in B6/
B6.CAST-1T F1 sperm, in which the hotspots are expected to
be inactive, NCOs as well as COs were entirely absent from
these hotspots, suggesting that Rerl controls the initiation of
recombination (Table 2).
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Figure 5. QTL Analysis of Phenotyping and Genotyping Data
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(A) A total of 211 samples from the first mapping and (B) 98 samples from the second mapping cross were used in the analysis. The LOD scores are the

result of 10,000 permutations per analysis.

(C) Further mapping on Chr 17 of recombinants in the interval 5-25 Mb, including eight recombinants from the congenic backcross and two from the
interstrain cross. The borders of the critical region within which Rcr1 must lie are marked with dashed vertical lines.

doi:10.1371/journal.pbio.1000036.g005

Discussion

Our major findings are, first, that the recombination
activity of several hotspots on mouse Chr 1 is either activated
or suppressed by the presence of CAST allele(s) of distant
trans-acting loci; second, that activation of several of the
hotspots is controlled by a locus, Rerl, located within a 5.30-
Mb window on proximal Chr 17; and third, that Rerl exerts its
effect at the initiation of recombination, prior to the CO-
NCO choice.

Rerl does not have a generalized effect on recombination
rates as many of the hotspots within the 8-Mb segment of Chr
1 mapped here were not affected by the presence versus
absence of a CAST allele at this locus; moreover, the number
of regions exhibiting greater than 0.1% recombination in the
congenic cross (21) is similar to the number of such regions
(20) in the interstrain cross across (Figure 2). Although the
total recombination rate across this 8-Mb region is somewhat
lower in the congenic cross compared to the interstrain cross,
presumably due to the loss in the congenic cross of several
hotspots that were highly active in the interstrain cross, this
appears to be a localized effect as the overall recombination
rate across the larger interval 169-193 Mb was the same in
both crosses (unpublished data).

Some of the hotspots in the 8-Mb tested region remained
active in both crosses, leaving open the question of what
controls their activity. Presumably, these hotspots are
activated either by the B6 allele of Rerl, which was always
present, or by other trans-acting genes. Previous observations
suggest that there are approximately 13,500-14,000 hotspots
across the mouse genome active in the same B6xCAST cross
used in this study [10], and the known variation in hotspot
usage among different mouse crosses suggests a potentially
even higher number for the species as a whole. This is true for
the human genome as well, which is estimated to contain an
even larger number of hotspots [9]. Given these high
numbers, it is unlikely that each hotspot is controlled by its
specific trans-acting gene, and it is more likely that, as in the
present case, a lrans-acting gene controls a family of hotspots.
However, the only prior indications that such families might

exist were the finding that the 13-bp consensus sequence
CCNCCNTNNCCNC occurs in 41% of human hotspots ([17]
and the existence of the ATFI.PCR1 transcription factor of S.
pombe which binds to an 18-bp consensus sequence, effecting a
chromatin reorganization in the region and activating
recombination [16].

It is interesting that although activation of the HixI hotspot
requires the presence of a CAST allele at Rerl, former
investigations showed that recombination at this hotspot
initiates almost three times more frequently on the B6
chromatid then on the CAST one [10]. The origin of this
seemingly contradictory effect may lie in the so-called
“hotspot paradox” [39], which postulates that whenever there
are cis-acting sequences influencing the activity of hotspots,
because in the process of recombination, the more active
initiating chromatid acquires the DNA sequence of its less
active partner more frequently than the reverse, hotspots will
slowly degrade their activity over time as any mutations
diminishing activity accumulate in the population. In the case
of Hix1, which is activated by the CAST allele present in Mus
musculus castaneus, but not by the B6 allele present in M. m.
domesticus, it may be that over evolutionary time, the Hixl
haplotype has been under selection pressure for diminished
activity in M. m. castaneus but not M. m. domesticus, leaving the
B6 HixI haplotype closer to the more active primordial
sequence. Although indirect, this may be the first exper-
imental evidence that the hotspot paradox does operate over
evolutionary time.

These results with hotspot HixI demonstrate that activity of
a hotspot can be determined by the interaction of a trans-
acting factor with cis-acting DNA sequences on each
chromatid. A similar interaction between cis- and trans-acting
elements has been reported at the Psmb9 hotspot on mouse
Chr 17 [36]. In their accompanying paper, Grey et al [37] now
report that this trans-acting element (Dsbcl) is located on Chr
17 within a 6.7-Mb region between 10.1 and 16.8 Mb, and
affects the distribution of recombination in other regions of
Chr 17, Chr 15, and Chr 18, as well as the HixI hotspot
described here. The Dsbcl interval overlaps the location of

Table 2. Results of the E. coli Cloning Assay for Crossing Over and Conversion at Hotspots Hix1 and Esrrg-1

F1 Males Hix1 Esrrg-1

B6xCAST B6xB6.CAST-1T Pger B6xCAST B6xB6.CAST-1T Pger
Total clones examined 500 405 445 229
Crossovers 14 0 0.0004 9 0 0.03
Conversions 8 0 0.01 11 0 0.02
Uncertain recombinants 2 0 7 0
Total recombinant clones 24 0 6 X 1077 277 0 107°

Uncertain recombinants are cases in which only the distal marker was exchanged, making it impossible to decide whether these represent conversions or crossovers. Pger are p-values

calculated by the Fisher exact test.
doi:10.1371/journal.pbio.1000036.t002
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Rerl, suggesting that Rerl and Dsbel are likely to be the same
gene or at least members of the same gene family.

The evidence that Rerl acts prior to the choice between
processing DSBs into COs or NCOs derives from the fact that
both CO and NCO products of recombination at hotspots
HixI and Esrrg-1 depend upon the presence of a CAST allele
at Rerl. If mammalian recombination processes parallel those
in the yeast, this choice is made very early in the
recombination process [4,5,40]. Given that result, and the
difficulty of sustaining any unrepaired DSBs during meiosis,
it seems highly likely that Rerl influences the choice of sites
for the SPO11 catalyzed DSBs that initiate the recombination
process.

At this point, the molecular identity of Rerl is unknown.
The closest known phenotypic parallel is the ADE6-M26
hotspot in S. pombe that is activated via chromatin remodeling
mediated by the ATFI.PCRI transcription factor. Somewhat
less similar is the effect of histone deacetylase SIR2™ mutants
on recombination at multiple sites in S. cerevisiae [41]. In this
latter case, the magnitude of the effects and their frequency
differ appreciably from what is seen in mice; only 12% of
recombination sites were affected, and less than 1% of those
affected (<0.1% of total sites) showed greater than 5-fold
difference between mutant and wild type. Moreover, the 12%
of recombination sites affected at any level tended to be
regionally concentrated depending on whether they showed
increased or decreased recombination. Mieczkowski et al. [41]
drew the reasonable conclusion that SIR2 likely affects
regional chromatin configurations. If Rerl acts by modifying
chromatin, it must do so over a very small range as the Esrrg-1
and Esrrg-2 hotspots differed markedly in their responses to
the presence of an Rerl CAST allele despite being less than 5
kb apart.

Whatever the molecular nature of the Rerl gene product,
the existence of such trans-acting factors offers a potential
means of explaining several presently enigmatic features of
mammalian recombination, including varying hotspot activ-
ities (the relative affinity of adaptors for their cognate
sequences), sex differences in activities of individual hotspots
(differential rates of transcription), and the failure to find a
consensus DNA sequence that accounts for the specificity of
SPO11 cleavage (if SPO11 acts by recognizing the existence of
complex between a hotspot and its cognate adaptor, each
family of hotspots may have its own, unique consensus
sequence).

Materials and Methods

Strains and DNA preparation. C57BL/6] and CASTI/Ei] were
obtained from the Jackson Laboratory. B6.CAST-1T (rs3022828-
1rs13476307) was kindly provided by Dr. Wesley Beamer [42].

The Jackson Laboratory is American Association for Laboratory
Animal Science (AALAS) accredited, and the Jackson Laboratory
Animal Care and Use Committee approved all animal procedures.

Partially purified DNA was used for genotyping. The sample
preparation was done as described earlier [10]. Sperm phenotyping
used DNA from 12-wk-old animals. Sperm DNA was isolated by a
modified protocol using the DNeasy tissue kit (Qiagen) as described
before [38].

E. coli cloning assay. The E. coli cloning assay was applied to
hotspots HixI and Esrrg-1 as described previously [38]. The hotspot
sequence was amplified with primers common to both parents, and
the DNA fragments were cloned in E. coli such that each colony
represents a single DNA strand from the initial meiotic event.
Fluorescent SNP genotyping was carried out directly on an aliquot of
E. coli cultures grown from each colony in 96-well plates.

iE). PLos Biology | www.plosbiology.org
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Phenotyping of recombination activity. Recombination activity was
detected by selectively amplifying recombinant DNA fragments at the
hotspot sequence of interest. Sperm DNA samples were subjected to
two rounds of nested PCR using allele-specific primers in each of the
two rounds. The two pairs of primers were oriented in the B-C
combination: the proximal pair was specific to B6 alleles flanking the
hotspot, and the distal pair to CAST alleles. The primers were PTO-
modified at the last three nucleotides of their 3’-end (MWG-Biotech).
All primer sequences and positions are summarized in Table S2. The
PCR conditions for each tested hotspot were empirically established
to ensure that the amplified product is only from the recombinant
class (B-C) and not the parental types (B-B and C--C) (Figure 4). The
PCR reaction was performed on an Eppendorf PCR system
(Eppendorf AG), using 50-ng initial amount of DNA template and
0.23 mM each dNTP, 0.23 pM of each primer, 1X TITANIUM Taq PCR
Buffer, 0.4 U TITANIUM Taq DNA Polymerase (Clontech) for the
first round of PCR. The amplified product was diluted 500 times and
used for the second allele-specific PCR. The PCR cycling conditions
for hotspot HixI were first round—initial denaturizing step at 94 °C
for 4 min, and 45 rounds of 94 °C for 1 min, 63 °C for 40 s, 72 °C for 3
min 20 s, and a final extension at 72 °C for 10 min; second round—
initial denaturizing step at 94 °C for 1 min, and 35 rounds of 94 °C for
50 s, 64 °C for 355, 72 °C for 1 min, and a final extension at 72 °C for 7
min. The cycling conditions for the Esrrg-1 hotspot were first round—
initial denaturizing step at 94 °C for 2 min, and 30 rounds of 94 °C for
1 min, 63.2 °C for 1 min, 68 °C for 2 min 30 s, and a final extension on
72 °C for 7 min; second round was the same as for hotspot HixI. For
hotspot Kcnk2, the cycling conditions were first round—initial
denaturizing step at 94 °C for 4 min, and 45 rounds of 94 °C for 1
min, 63 °C for 40 s, 72 °C for 4 min 30 s, and a final extension at 72 °C
for 10 min; second round—initial denaturizing step at 94 °C for 4
min, and 35 rounds of 94 °C for 1 min, 64 °C for 30 s, 72 °C for 4 min,
and a final extension at 72 °C for 10 min. The amplified product was
run through standard 2% agarose gel (Invitrogen) with ethidium
bromide and visualized under UV light.

Genotyping. Fine mapping of recombination activities in the
region of 183.5-191.5 Mb on Chr 1 was carried out using SNP markers
and Amplifluor SNPs and the HT FAM-JOE System (Millipore). All
markers used in this study and their positions according to NCBI
build 36 are summarized in Table S3. For genome-wide association
mapping, all progeny were genotyped at 20-Mb resolution using the
KASPar genotyping system (KBiosciences). The markers were selected
from the Jackson Laboratory genotyping panel [43]. The data were
analyzed by SNPviewer2 (KBiosciences). Fine mapping of CAST
alleles on Chr 17 was done by a combination of the microsatellite
markers D17Mit48, D17Mit57, D17Mit113, and D17Mit46 (Invitrogen)
and SNP markers as shown on Figure 5C.

Data analysis. Data analysis was performed using the J/qtl software
package (http://research.jax.org/faculty/churchill/software/Jqtl/index.
html). The linkage between phenotyping and genotyping data was
estimated by One QTL Genome Scan using the Imputation method
and 10,000 permutations per scan. LOD scores above 3 were
considered statistically significant (p < 0.05).

Supporting Information
Table S1. SNP Markers Used in the Genome-Wide Mapping Study

Marker ID are taken from [43]. Marker positions are according to
NCBI Build 36.

Found at doi:10.1371/journal.pbio.1000036.st001 (172 KB DOC).
Table S2. List of Primers Used in the Study

Lowercase letters in the primer sequences indicate phosphoro-
thioated bases.

Found at doi:10.1371/journal.pbio.1000036.st002 (26 KB DOC).
Table S3. Markers and Positions for Mapping Interval 183.5-191.5
Mb and Detected Number of Crossovers

Genomic positions in bp are according to NCBI Build 36.

Found at doi:10.1371/journal.pbio.1000036.st003 (340 KB DOC).
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