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Article

It is well known that being overweight is associated with a 
host of adverse physical outcomes, such as hypertension, 
diabetes, dyslipidemia (Kawada et al., 2007; Narayan 
et al., 2007; Panizzon et al., 2015; Xian et al., 2017), coro-
nary artery disease (Jahangir et al., 2014), and sleep apnea 
(Schwartz et al., 2008). There is also significant evidence 
that being overweight may have deleterious effects on 
neuropsychological functioning (Dahl et al., 2009; 
Kalmijn et al., 2000; Whitmer et al., 2005). For example, 
numerous studies have demonstrated an association 
between being overweight in midlife and risk for dementia 
(Albanese et al., 2017; Kalmijn et al., 2000; Pedditizi 
et al., 2016; Whitmer et al., 2005). Body mass index (BMI) 
is a commonly utilized indicator of obesity and being 
overweight that has been intensively studied in relation to 
various cognitive abilities and functioning. Cognitive abil-
ities are an important indicator of individuals’ overall 

mental capability, ranging from one’s reasoning and 
problem-solving skills to one’s ability to comprehend 
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Abstract
Objectives: First, we test for differences in various cognitive abilities across trajectories of body mass index (BMI) 
over the later life course.  Second, we examine whether genetic risk factors for unhealthy BMIs—assessed via 
polygenic risk scores (PRS)—predict cognitive abilities in late-life. Methods: The study used a longitudinal sample 
of Vietnam veteran males to explore the associations between BMI trajectories, measured across four time points, 
and later cognitive abilities. The sample of 977 individuals was drawn from the Vietnam Era Twin Study of Aging. 
Cognitive abilities evaluated included executive function, abstract reasoning, episodic memory, processing speed, 
verbal fluency, and visual spatial ability. Multilevel linear regression models were used to estimate the associations 
between BMI trajectories and cognitive abilities. Then, BMI PRS was added to the models to evaluate polygenic 
associations with cognitive abilities. Results: There were no significant differences in cognitive ability between any of 
the BMI trajectory groups. There was a significant inverse relationship between BMI-PRS and several cognitive ability 
measures. Discussion: While no associations emerged for BMI trajectories and cognitive abilities at the phenotypic 
levels, BMI PRS measures did correlate with key cognitive domains. Our results suggest possible polygenic linkages 
cutting across key components of the central and peripheral nervous system.
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complex ideas (Ispas & Borman, 2015). Relationships 
between BMI and specific aspects of cognitive ability, 
such as memory (Hassing et al., 2010), general intellectual 
ability (Corley et al., 2010), and executive functioning 
(Fitzpatrick et al., 2013), have been shown in existing 
literature.

Several studies have examined relationships specifi-
cally between BMI in adulthood and cognitive ability in 
late life. In particular, Hassing and colleagues (2010) 
tested the association between BMI assessed at age 50 to 
60 and numerous indicators of cognitive ability mea-
sured at five regularly spaced follow-up assessments 30 
years later. After adjusting for demographic and other 
lifestyle variables, the researchers found that a higher 
midlife BMI was associated with poorer short- and long-
term memory, processing speed, and spatial and verbal 
abilities (Hassing et al., 2010). However, no association 
was found between midlife BMI and the rate of cognitive 
decline, suggesting that the negative effects of BMI 
emerge earlier in the aging process (Hassing et al., 2010).

Another example of a study examining the relation-
ship between midlife BMI and later cognitive ability 
was conducted by Dahl et al. (2009) using a subsample 
from the Swedish Adoption/Twin Study of Aging. In 
this study, latent growth curve models showed that a 
higher midlife BMI was associated with lower cognitive 
ability and steeper rates of decline in later life (Dahl 
et al., 2009). The same group of researchers followed up 
these analyses by examining the associations between 
BMI and cognitive ability at the domain level (e.g., ver-
bal, spatial, processing speed, memory) and found simi-
lar results (Dahl et al., 2013). Importantly, the sample 
analyzed by Dahl et al. (2013) was younger on average 
compared with those in the study conducted by Hassing 
et al. (2010). With this in mind, the discrepancies in the 
findings of the two studies suggest that the deleterious 
effects of BMI on later life cognition may partly depend 
on how long someone is at high BMI.

However, not all research has found a consistent link 
between BMI and cognitive ability in later adulthood. 
For example, a study by Corley and colleagues (2010) 
examined Lothian Birth Cohort 1936 participants to 
evaluate the association between BMI and cognitive 
ability in late life, while controlling for childhood cogni-
tive ability and other sociodemographic variables. After 
controlling for covariates, no significant associations 
between BMI and cognitive ability were identified, with 
the exception of an inverse relationship between BMI 
and verbal ability (Corley et al., 2010). Relatedly, some 
research has raised the possibility that the temporal 
ordering is reversed and that poorer cognitive ability 
might result in higher BMI. This notion is supported by 
a study conducted by Belsky and colleagues (2013), 
which found that one indicator of poor cognitive ability, 
low IQ, in childhood was associated with obesity in 
adulthood, but that obesity was not found to predict later 
decline in cognitive ability.

According to a systematic review on the relationship 
between BMI and executive function, which is one spe-
cific domain of cognitive ability, there appears to be 
relatively consistent evidence that individuals with 
higher BMIs have more difficulty with executive func-
tion abilities, such as decision making and problem solv-
ing, compared to people with a lower BMI (Fitzpatrick 
et al., 2013). However, it was also reported that a lack of 
replications and an underreporting of descriptive data 
hinder interpretation with regard to the associations 
between BMI and executive function. Thus, additional 
research to further clarify how BMI is related to execu-
tive function is warranted.

Molecular Genetics, BMI, and Cognitive 
Ability

Cognitive abilities and BMI are highly polygenic, and at 
least some prior research has suggested that these traits 
may also correlate at a genetic level (Deary et al., 2018). 
To date, however, the evidence from both quantitative 
genetic (i.e., twin) and molecular genetic studies on this 
has been mixed. For example, in twin studies, estimates 
of the genetic correlation—an index of shared genetic 
variance—between BMI and cognitive ability have 
ranged from nonsignificant (Benyamin et al., 2005) to 
significant, albeit modest, negative associations. Another 
study by Laitala and colleagues (2011) reported a signifi-
cant genetic correlation (rg = −0.12) between midlife 
BMI and cognitive abilities in later life Finnish twins.

Several studies have used additional measures of geno-
typic BMI in examining the relationship between BMI and 
cognitive ability. Marioni et al. (2016) utilized polygenic 
risk scores for BMI and observed significant prediction of 
late midlife BMI and cognitive ability, based on a general 
cognitive factor (derived from principal components anal-
ysis of scores on measures of processing speed, verbal 
memory, executive functioning, and vocabulary). 
Moreover, the study reported a significant (albeit small) 
joint association of seven genetic variants from four genes 
in common to both general cognitive ability and BMI 
(Marioni et al., 2016). Another study by Hagenaars and 
colleagues (2017) utilized a Mendelian randomization 
approach in the U.K. Biobank to examine whether single 
nucleotide polymorphisms (SNPs) associated with BMI 
predicted variation in measures of educational attainment, 
which was utilized as a proxy for cognitive ability. 
Although the traits correlated at a phenotypic level, no evi-
dence emerged for SNPs linked with BMI correlating with 
educational attainment (Deary et al., 2018). Thus, there 
remains a need to further examine possible linkages 
between genetic risk for BMI and cognitive ability. Such 
information is important, as genetic covariation (or lack 
thereof) can offer additional insight regarding possible 
biological mechanisms underlying previously observed 
correlations between BMI and various cognitive abilities.
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The Current Study

The current study utilized a longitudinal sample of 
American participants to examine (a) the association 
between BMI trajectories measured across four time 
points from mean age 20 to 62 and age 62 cognitive 
abilities; and (b) association between a BMI polygenic 
risk score and cognitive abilities.

Subjects and Methods

Participants

Participants for the study were comprised of 977 men in 
Wave 2 of the Vietnam Era Twin Study of Aging 
(VETSA 2; mean age = 61.6 years; range = 56–66), all 
of whom had complete data (Kremen, Franz, & Lyons, 
2013). The VETSA project is a longitudinal study of 
risk and protective factors for cognitive aging and risk 
for dementia in a community-dwelling sample across 
the United States.

Recruitment. In VETSA 1, 1,237 participants (mean age 
= 56 years; range = 51–60) were randomly selected and 
recruited from the all-male Vietnam Era Twin Registry 
(VETR; Eisen et al., 1987). VETSA 1 eligibility con-
sisted of being age 51 to 59 years when recruited and 
required that both members of a twin pair agreed to take 
part in data collection (Kremen et al., 2006). Approxi-
mately 6 years later, The VETSA 2 follow-up took place 
(2008–2014) and included 1,016 men from VETSA 1 
who agreed to participate (82% retention; Kremen, 
Franz, & Lyons, 2013). While attrition from the study 
was relatively rare, when it did occur the most common 
reason was because of participant death (N = 56). 
VETSA participants, then, correspond to a representative 
sample of men in the United States as it related to key 
demographic characteristics (e.g., marital status, work, 
income, and health characteristics) in the specified age 
ranges according to U.S. Census and Centers for Disease 
Control and Prevention (CDC) data (Schoenborn & Hey-
man, 2009).

Procedures. This study incorporated data collected from 
the same participants at four unique time points: military 
induction data procured from military records (Time 1), 
a National Heart, Lung, and Blood Institute funded sur-
vey conducted in 1990 (Time 2; Goldberg et al., 2002) 
and in-person assessments at VETSA 1 and 2 (Times 3 
and 4; Kremen, Franz, & Lyons, 2013). Institutional 
review board approval was obtained at all sites and par-
ticipants provided written informed consent (Kremen, 
Franz, & Lyons, 2013).

Measures

BMI. Height and weight were assessed at Time 1 dur-
ing a military induction physical; Time 2 height and 

weight were self-reported as part of a mailed survey. 
Although these values at Time 2 were self-reported and 
may be subject to systematic bias, studies have shown 
that self-reported height and weight can successfully 
be used as a proxy for objective measures of height and 
weight (Tang et al., 2016). At Times 3 and 4 (VETSA 
1 and 2, respectively), height was measured via the use 
of a stadiometer. Participant body weight was assessed 
via the use of a digital scale. BMI, however, was the 
only indicator of adiposity available across each of the 
four data collection time points. After transforming 
height and weight to metric scales, BMI was calculated 
as kg/m2 (Flegal et al., 2014; Grundy, 2004). More 
details of the BMI measures have been described else-
where (Xian et al., 2017).

Polygenic risk score. Because the VETSA genotype 
data and the construction of ancestry principal com-
ponents (PC) are described elsewhere (Logue et al., 
2019), we restrict our discussion to an abbreviated 
description of the data. The Illumina HumanOmniEx-
press-24 v1.0A (Illumina, San Diego, CA) array was 
used to perform genotyping for one selected monozy-
gotic (MZ) twin and both dizygotic (DZ) twin pair 
members. SNPs with Hardy-Weinberg equilibrium p 
values <10−6 or SNPs with 5% of greater missing 
data were removed from the data set. Ancestry PCs 
were computed for participants in VETSA and, gener-
ally speaking, most of the subjects selected for the 
analysis were of primarily European (and non-His-
panic) ancestry. The Michigan Imputation Server 
(https://imputationserver.sph.umich.edu), with the 
haplotype reference panel 1000 Genomes Phase 3 
EUR (1000 Genomes Project Consortium, 2015) car-
ried out the imputation procedures using MiniMac 
imputation (Fuchsberger et al., 2014; Howie et al., 
2012).

The BMI polygenic risk score (PRS) was created 
using the genome-wide association study (GWAS) 
conducted by the GIANT consortium (Locke et al., 
2015) and based on the summary data provided for 
subjects of European ancestry (https://portals.broadin-
stitute.org/collaboration/giant/index.php/GIANT_con-
sortium_data_files#GWAS_Anthropometric_2015_
BMI). In particular, the PRS summary scores for this 
analysis comprised a weighted sum across the addi-
tively coded SNP dosages by the untransformed beta 
weights, derived from the GWAS summary statistics 
for anthropomorphic BMI. More specifically, a total of 
six PRS scores were created based on p-value thresh-
olds of p < .05, .1, .2, .3, .4, and .5. For our study, 
however, we utilized the PRS constructed using the 
threshold of p < .05, which was most strongly corre-
lated to BMI. Selected SNPs for PRS formation were 
selected based on the SNPs in common among VETSA 
genotypes, the GIANT discovery SNP set, and a refer-
ence data set to evaluate linkage disequilibrium (LD) 
patterns (1000G Phase I v3 CEU). In the reference set, 

https://imputationserver.sph.umich.edu
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files#GWAS_Anthropometric_2015_BMI
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files#GWAS_Anthropometric_2015_BMI
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files#GWAS_Anthropometric_2015_BMI
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files#GWAS_Anthropometric_2015_BMI
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SNPs with minor allele frequencies (MAF) < 1%, 
variants with missing call rates >1%, and any samples 
with missing call rates >1% were filtered out using 
Plink 1.9 (Chang et al., 2015), and clumping proceeded 
in Plink using an r2 threshold of 0.1 in a 1,000 kb 
window.

VETSA 2 dimensions of cognitive ability. Specific cogni-
tive abilities were evaluated using 13 neuropsycho-
logical tests administered when respondents were at 
the approximate age of 62 years old (Kremen, Jak,  
et al., 2013). Although these measures have been 
described in detail elsewhere (Beck et al., 2018), we 
offer a brief overview in the current study. Abstract 
reasoning was measured via the Wechsler Abbreviated 
Scale of Intelligence Matrix Reasoning subtest 
(Wechsler, 1997a). Verbal fluency/language was 
assessed via a combination of scores from Delis-
Kaplan Executive Function System (D-KEFS), Letter 
Fluency (F-A-S), and Category Fluency (animals, 
boys’ names) conditions (Delis et al., 2001). To exam-
ine visual-spatial ability, we included scores from 
Card Rotations (Ekstrom et al., 1976) and Hidden Fig-
ures (Thurstone, 1944).

Processing speed was also included and captured 
via Stroop word and color conditions (Golden & 
Freshwater, 1978), as well as D-KEFS Trails number 
sequencing and letter sequencing (Trails conditions 2 
and 3; Delis et al., 2001). Stroop processing speed 
scores represented the number of items read correctly 
in 45 seconds. D-KEFS Trails tests are timed, and 
scores were reversed so that high scores represent 
better performance. Episodic memory performance 
was collected via scores on the California Verbal 
Learning Test-II short-delay free recall, long-delay 
recall, and total trials 1 to 5 scores (Delis et al., 2000), 
as well as immediate and delayed recall scores from 
the Wechsler Memory Scale (WMS-III) Logical 
Memory and Visual Reproduction subtests (Wechsler, 
1997b). Finally, to assess broad executive functioning 
(EF) in participants, a global measure of EF was cre-
ated with a factor score derived by confirmatory fac-
tor analysis. The CFA analysis was based on seven 
tasks spanning prepotent response inhibition, work-
ing memory, and shifting executive functions 
(Gustavson et al., 2018).

Measures of VETSA 2 Cardiometabolic 
Conditions

Hypertension. Age 62 blood pressure (BP) was assessed 
by computing the average of four systolic (SBP) read-
ings and four diastolic (DBP) readings taken on the day 
of data collection. Specifically, measurements were 
taken twice each day, in the morning and afternoon, 
after participants had been asked to sit quietly for 5 min. 
BP was measured using an automated blood pressure 

machine (1-min breaks took place in between readings). 
Hypertensive classification (75.1%) was given to indi-
viduals with either SBP > 140 or DBP> 90 mm Hg 
(Aronow et al., 2011), as well as to those who took anti-
hypertensive medication.

Diabetes. Fasting insulin levels were assayed using a sen-
sitive electrochemiluminescent immunoassay (ECLIA). 
For the current study, levels of insulin greater than 117 
pmol/L were designated as being at risk. Fasting plasma 
glucose was assayed with spectrophotometry and glucose 
levels greater than 5.54 mmol/L were labeled at risk. Tak-
ing a prescription medication used to manage diabetes, or 
having insulin or glucose levels in the at-risk range mer-
ited classification as having diabetes or being at risk 
(51.7%).

Dyslipidemia. Spectrophotometry was used to assay tri-
glyceride and HDL cholesterol levels. Cutoff values for 
at-risk HDL cholesterol were defined as being < 0.37 
mmol/L (28.9%). Triglycerides values greater than 1.68 
mmol/L (31.5%) were classified as at risk. Participants 
were labeled at risk for overall cholesterol if they were 
classified as at risk for either HDL or triglycerides or 
were taking cholesterol-lowering medication (72% 
labeled at risk).

Inflammation. The sensitivity of C-reactive protein (a 
protein measured in blood) can be an indicator of inflam-
mation, with high sensitivity indicating greater inflam-
mation. C-reactive protein sensitivity was assayed using 
nephelometry (Mora et al., 2009). At-risk inflammation 
was defined by C-reactive protein levels above 28.5 
nmol/L (27.5%).

Ischemic heart disease (IHD). Presence of IHD at age 
62 (18%) was coded using a previously validated pop-
ulation-based index (Xian et al., 2010). Items included 
self-reported heart attack/myocardial infarction, pres-
ence of angina, and/or heart surgery (e.g., stent place-
ment, angioplasty, coronary artery bypass). Presence 
of angina was defined as positive Rose Angina scores 
and/or having a prescription for nitroglycerin (Lampe 
et al., 1999).

Demographic data. Participant age at VETSA 2, lifetime 
education, ethnicity (white non-Hispanic vs. other), and 
tobacco smoking (never, past, or current) were included 
in analyses as covariates.

BMI trajectory. As reported previously (Xian et al., 
2017), BMI trajectories were created by utilizing 
latent class growth modeling (LCGM). Specifically, 
we analyzed continuous BMI scores across four time 
points using the statistical program Mplus version 7.4 
(Muthen & Muthen, 2015). Lo-Mendel-Rubin test 
(Lo et al., 2001) was consulted, and identified three 
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BMI trajectories from early adulthood to late midlife. 
Trajectory 1 (N = 490, 50%) had the lowest BMI at 
all time points with baseline BMI 21.3 kg/m2 (SD = 
2.1), rising to 26.1 (SD = 5.2) by age 62. Trajectory 2 
(N = 400, 41%) baseline BMI was in the normal 
range (23.6, SD = 2.7), rising to Level 1 obesity 
(mean BMI = 32.1, SD = 2.5) by age 62. Trajectory 
3 (N = 87, 9%) was overweight at the baseline (mean 
BMI = 26.3, SD = 3.5), increased to Level 1 obesity 
by age 40, and reached Level 3 obesity by age 62 
(mean BMI = 41.0, SD = 4.2).

Statistical Analysis

Descriptive statistics were calculated as frequencies and 
percentages for categorical variables and means and stan-
dard deviations for continuous variables. Multilevel lin-
ear mixed-effects regression models were used to assess 
the relationship between BMI and cognitive abilities. The 
multilevel models accounted for the clustering of twin 
pairs within the sample, such that the first level repre-
sented individuals and the second level represented the 
twin pair. We first analyzed the associations between BMI 
and cognitive abilities, and then added the BMI PRS vari-
able to the models to test the polygenic associations with 
cognitive ability. Unadjusted and adjusted models were 
run for all cognitive ability outcomes. Covariates in the 
adjusted models included age, ethnicity, education, car-
diometabolic conditions, and smoking status. When esti-
mating the association between the BMI and the cognitive 

abilities, the 10 ancestry PC variables were included in 
the models to adjust for genetic ancestry. In the analysis 
of the BMI trajectories, the flat BMI trajectory (Group 1) 
was used as reference for comparisons between BMI tra-
jectory groups. All statistical analyses for the present 
study were performed in SAS for Windows version 9.4 
and α = .05 was used to assess statistical significance.

Results

Descriptive Statistics

Table 1 provides descriptive statistics for the study 
sample of 977 participants. The participants had an 
average age of 61.6 years (SD = 2.4) and an average 
of 13.9 years of education (SD = 2.1). The majority of 
the sample was non-Hispanic White (90.0%). About 
one third (34.7%) of individuals had never smoked, 
while 45.3% were former smokers and 20.0% were 
current smokers. The prevalence of cardiometabolic 
conditions in the sample ranged from 75.1% of the 
sample with hypertension to 17.9% with ischemic 
heart disease.

Associations Between BMI Trajectory Groups, 
BMI-PRS, and Cognitive Abilities

There were no statistically significant differences in 
cognitive ability between any of the BMI trajectory 
groups (Table 2 [unadjusted], Table 3 [adjusted]). 
There was a significant inverse relationship between 
BMI-PRS and executive function (β = −.055,  
p = .0004), episodic memory (β = −.157, p = .004), 
processing speed (β = −.190, p = .001), and verbal 
fluency (β = −.181, p = .001) (Table 3). BMI-PRS 
was not significantly related to abstract reasoning  
(β = −.047, p = .494) or visual spatial ability  
(β = −.008, p = .896). Figure 1 provides a visual rep-
resentation of the effects identified in Table 3.

Associations Between Continuous BMI at Age 
62, BMI-PRS, and Cognitive Abilities

No significant associations between BMI (measured 
continuously) at age 62 and cognitive abilities 
emerged (Table 4 (unadjusted), Table 5 (adjusted)). 
Consistent with the analysis for the BMI trajectory 
groups, however, when both BMI at age 62 and BMI-
PRS were included in the model, BMI-PRS was sig-
nificantly associated with common executive 
functioning (β = −.054, p = .0005), episodic memory 
(β = −.160, p = .003), processing speed (β = −.199, 
p = .0003), and verbal fluency (β = −.172, p = .011) 
(Table 5). BMI-PRS was not significantly associated 
with abstract reasoning (β = −.053, p = .439) and 
visual spatial ability (β = −.012, p = .834). Figure 2 

Table 1. Descriptive Statistics of the Study Sample.

Characteristic Frequency (%) M (SD)

Demographic covariates
 Age (years at VETSA Wave 2) 61.6 (2.4)
 Ethnicity
  Non-Hispanic White 879 (90.0)  
  Other 98 (10.0)  
 Education (years) 13.9 (2.1)
 Smoking status
  Never smoker 339 (34.7)  
  Former smoker 443 (45.3)  
  Current smoker 195 (20.0)  
Cardiometabolic measures
 Hypertension 734 (75.1)  
 Diabetes 463 (51.7)  
 Dyslipidemia 666 (71.7)  
 Inflammation 253 (27.5)  
 Ischemic heart disease 166 (17.9)  
BMI trajectory
 Group 1 490 (50.2)  
 Group 2 400 (40.9)  
 Group 3 87 (8.9)  

Note. VETSA = Vietnam era twin study of aging; BMI = body mass 
index.
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Table 2. Associationsa Between Cognitive Function and BMI Trajectory Groups and BMI-PRS. 

Variable name
Group 2b 
estimate p value

Group 3 
estimate p value

PRS05  
estimate p value

Common executive function –0.001 .963 –0.019 .483 –0.045 0.005
Abstract reasoning –0.120 .095 0.008 .952 –0.014 .853
Episodic memory 0.020 .720 0.022 .822 –0.126 .027
Processing speed –0.092 .110 –0.162 .109 –0.162 .005
Verbal fluency –0.047 .480 0.065 .585 –0.133 .056
Visual spatial –0.089 .131 –0.097 .349 0.019 .759

Note. Bold font indicates statistical significance. BMI = body mass index; PRS = polygenic risk score; PC = principal components.
aAdjusted for PC1–PC10. bBMI Trajectory Group 1 as the comparison group.

Table 3. Adjusted Associationsa Between Cognitive Function and BMI Trajectory Groups and BMI-PRS.

Variable name
Group 2b 
estimate p value

Group 3 
estimate p value

PRS05 
estimate p value

Common executive function 0.011 .470 –0.0004 .988 –0.055 .0004
Abstract reasoning –0.079 .269 0.092 .464 –0.047 .494
Episodic memory 0.049 .371 0.062 .529 –0.157 .004
Processing speed –0.050 .378 –0.080 .425 –0.190 .001
Verbal fluency –0.007 .921 0.088 .459 –0.181 .007
Visual spatial –0.049 .412 –0.047 .654 –0.008 .896

Note. Bold font indicates statistical significance. BMI = body mass index; PRS = polygenic risk score; PC = principal components.
aAdjusted for age, ethnicity, education, hypertension, dyslipidemia, high inflammation, diabetes, ischemic heart disease, smoking status (never, 
former and current smoking), and PC1–PC10. bBMI Trajectory Group 1 as the comparison group.

Figure 1. Adjusteda parameter estimates for effect of BMI Group 2, BMI Group 3, and BMI PRS on cognitive ability 
measures.b
Note. BMI = body mass index; PRS = polygenic risk score; PC = principal components.
aModel is adjusted for age, ethnicity, education, hypertension, dyslipidemia, high inflammation, diabetes, ischemic heart disease, smoking status 
(never, former and current smoking), and PC1–PC10. bPoint estimates reflected by circles and 95% confidence intervals reflected by bars 
surrounding the circle; significant associations are highlighted in red.
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Table 4. Associationsa Between Cognitive Function and Continuous BMI at Age 62 and BMI-PRS.

Variable name BMI p value PRS05 estimate p value

Common executive function –0.001 .403 –0.044 .006
Abstract reasoning –0.005 .439 –0.017 .816
Episodic memory 0.003 .507 –0.129 .024
Processing speed –0.008 .124 –0.167 .004
Verbal fluency –0.001 .818 –0.133 .058
Visual spatial –0.006 .269 0.015 .806

Note. Bold font indicates statistical significance. BMI = body mass index; PRS = polygenic risk score; PC = principal components.
aAdjusted for PC1–PC10.

Table 5. Adjusted Associationsa Between Cognitive Function and BMI at Age 62 and BMI-PRS.

Variable name BMI p value PRS05 estimate p value

Common executive function 0.0001 .949 –0.053 .0005
Abstract reasoning 0.001 .862 –0.053 .439
Episodic memory 0.007 .224 –0.159 .004
Processing speed –0.003 .625 –0.195 .0004
Verbal fluency 0.001 .901 –0.180 .008
Visual spatial –0.002 .774 –0.012 .834

Note. Bold font indicates statistical significance. BMI = body mass index; PRS = polygenic risk score; PC = principal components.
aAdjusted for age, ethnicity, education, hypertension, dyslipidemia, high inflammation, diabetes, ischemic heart disease, smoking status (never, 
former and current smoking), and PC1–PC10.

Figure 2. Adjusteda parameter estimates for effect of BMI at age 62 and BMI PRS on cognitive ability measures.b
Note. BMI = body mass index; PRS = polygenic risk score; PC = principal components.
aModel is adjusted for age, ethnicity, education, hypertension, dyslipidemia, high inflammation, diabetes, ischemic heart disease, smoking status 
(never, former, and current smoking), and PC1–PC10. bPoint estimates reflected by circles and 95% confidence intervals reflected by bars 
surrounding the circle; significant associations are highlighted in red.
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provides a visual representation of the effects identi-
fied in Table 5. Finally, we analyzed BMI at age 20 
and a dichotomized BMI measured at age 62 (obese 
vs. nonobese). Obese classifications were defined as 
having a BMI value greater than or equal to 30. 
Results were consistent with those for BMI trajectory 
groups and continuous BMI at age 62 (Supplemental 
Table 1 and Table 2).

Discussion

Using a longitudinal sample of American respondents, 
we examined the association between various pheno-
typic indicators of BMI, as well as polygenic risk scores 
for increased BMI, and various measures of cognitive 
ability. At the phenotypic level, our findings revealed no 
association between the BMI of participants from young 
adulthood to late middle age and their scores on indica-
tors of cognitive ability at the final wave. However, 
higher BMI PRS scores were related to poorer function-
ing on several indicators of cognitive ability: executive 
function, episodic memory, processing speed, and ver-
bal fluency.

From a public health perspective, decline in cognitive 
abilities has been, and remains, a looming concern, 
especially as various populations around the world age 
and need increasing care (Belsky et al., 2013). Similarly, 
obesity, typically assessed using BMI, represents a 
pressing health concern, as increases in BMI correspond 
to increased risk for a range of other maladies, including 
diabetes and hyperlipidemia (Kawada et al., 2007; 
Narayan et al., 2007; Panizzon et al., 2015; Xian et al., 
2017). The possibility that two such important public 
health concerns could be both phenotypically and geno-
typically associated is an important topic that has only 
recently begun to be explored. Belsky et al. (2013), for 
example, reported an inverse relationship between a 
broad correlate of cognitive ability—childhood intelli-
gence—and adult obesity. These findings are somewhat 
expected, given the wide swath of phenotypes correlated 
with cognitive abilities (Ritchie, 2015). Importantly, 
Belsky et al. (2013) failed to find that obese individuals 
had greater declines over time on measures of intelli-
gence, compared with individuals with healthier BMI 
levels. Instead, those with higher BMI levels had dem-
onstrated poorer cognitive ability since childhood.

In our study, using a national sample of twin respon-
dents and covering a broader swath of the life course 
compared with Belsky et al. (2013), we too failed to 
detect a phenotypic association between BMI growth 
overtime and various indicators of cognitive ability. 
These findings contrast with other prior work (Dahl 
et al., 2009, 2013; Hassing et al., 2010), which has sug-
gested that higher BMI is associated with lower cogni-
tive ability later in life. Unlike BMI, the BMI-PRS is 
constant over time, and we found evidence of a negative 
genetic association between increased BMI-PRS and 

various measures of cognitive ability. Our finding of a 
correlation between BMI and later cognitive ability 
aligns with prior work by Marioni et al. (2016) in which 
a BMI PRS accounted for a small (0.42%) but statisti-
cally significant portion of the variance in cognitive 
functioning. The magnitude of the associations in the 
current study between the PRS for BMI and several mea-
sures of cognitive ability are somewhat larger than those 
reported by Marioni et al. (2016), yet were still very 
modest in effect size (βs ranged from −.06 to −.19). With 
that in mind, it is helpful to briefly contemplate the clini-
cal significance of our findings, given the relatively mod-
est effect sizes. First, we would not necessarily expect 
any PRS measure to explain all, or even most, of the vari-
ance in a complex measure like cognitive traits. However, 
this does not mean that the results are uninformative or 
potentially unimpactful. Clinically and translationally, 
these results tentatively suggest that interventions which 
have downstream effects on BMI may have at least some 
positive downstream benefits on cognitive domains 
(Albanese et al., 2017). Given this possibility, as Albanese 
and colleagues (2017) also suggest, all of those avenues 
should be enthusiastically explored. Yet, expectations 
concerning effect sizes—certainly based on our find-
ings—should be cautiously tempered. Finally, it is worth 
noting too, that our results dovetail with prior findings 
suggesting that a genetic correlation exists between intel-
ligence and BMI (Deary et al., 2018). Deary and col-
leagues (2018), in particular, reviewed a range of studies 
and noted the apparent existence of a negative genetic 
correlation between intelligence and BMI in samples 
independent from the current study.

Limitations of the current study should be mentioned. 
In particular, our sample is all male and largely non-
Hispanic White. Therefore, our results may not general-
ize to females or racial/ethnic minorities. Relatedly, the 
study was conducted utilizing data drawn from twins, 
further suggesting that the results may not generalize to 
nontwin siblings, or singletons. Yet, prior research 
examining nationally representative data provides rea-
son to suspect that results gleaned using twins do not 
differ substantively from findings utilizing singleton 
data (Barnes & Boutwell, 2013).

Finally, it is interesting that a relationship emerged 
for the BMI PRS variable with several measures of cog-
nitive ability despite no correlation between traits at the 
phenotypic level. Several possibilities might account for 
this. The effect may emerge owing to the fact that both 
phenotypes are so polygenic in their origins (Boyle 
et al., 2017). Put another way, numerous polymorphisms 
would be expected to impact BMI, including genetic 
variants that effect metabolism, hormone secretion, and 
a range of other brain-based outcomes (Boyle et al., 
2017; Wray et al., 2018). It seems plausible that some of 
these alleles—perhaps the ones evincing the strongest 
association with BMI—also exert some detectable 
impact on aspects of the central nervous system that 
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influence measures of cognitive ability. Indeed, the exis-
tence of a genetic correlation suggests that similar alleles 
impact variation in both traits (Deary et al., 2018). Thus, 
we might expect some degree of correlation between 
SNPs related to BMI and measures of cognitive ability.

To the extent that there exists some overlap between 
genetic risk factors for BMI (which capture downstream 
functioning across aspects of metabolism and satiety), 
the current results suggest an important quality about the 
intersection of the central and peripheral nervous sys-
tem. In particular, our findings begin to provide an indi-
cation of the ways in which these overlapping genetic 
influences manifest. Future research with larger and 
more representative samples should further explore 
these associations. This could yield important insight 
into the development of lifestyle interventions aimed at 
preventing various complications associated with both 
obesity and cognitive impairments typical in aging pop-
ulations. Nevertheless, the current study adds to the 
existing literature demonstrating evidence of some asso-
ciations, at a genetic level in particular, between BMI 
and cognitive ability.
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