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The incidence of human cervix adenocarcinoma (CC) caused by papillomavirus genome
integration into the host chromosome is the third most common cancer among women.
Bacterial cyclodipeptides (CDPs) exert cytotoxic effects in human cervical cancer HeLa
cells, primarily by blocking the PI3K/Akt/mTOR pathway, but downstream responses
comprising gene expression remain unstudied. Seeking to understand the cytotoxic and
anti-proliferative effects of CDPs in HeLa cells, a global RNA-Seq analysis was performed.
This strategy permitted the identification of 151 differentially expressed genes (DEGs),
which were either up- or down-regulated in response to CDPs exposure. Database
analysis, including Gene Ontology (COG), and the Kyoto Encyclopedia of Genes and
Genomes (KEGG), revealed differential gene expression on cancer transduction signals,
and metabolic pathways, for which, expression profiles were modified by the CDPs
exposure. Bioinformatics confirmed the impact of CDPs in the differential expression of
genes from signal transduction pathways such as PI3K-Akt, mTOR, FoxO, Wnt, MAPK,
P53, TGF-b, Notch, apoptosis, EMT, and CSC. Additionally, the CDPs exposure modified
the expression of cancer-related transcription factors involved in the regulation of
processes such as epigenetics, DNA splicing, and damage response. Interestingly,
transcriptomic analysis revealed the participation of genes of the mevalonate and
cholesterol biosynthesis pathways; in agreement with this observation, total cholesterol
diminished, confirming the blockage of the cholesterol synthesis by the exposure of HeLa
cells to CDPs. Interestingly, the expression of some genes of the mevalonate and
cholesterol synthesis such as HMGS1, HMGCR, IDI1, SQLE, MSMO1, SREBF1, and
SOAT1 was up-regulated by CDPs exposure. Accordingly, metabolites of the mevalonate
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pathway were accumulated in cultures treated with CDPs. This finding further suggests
that the metabolism of cholesterol is crucial for the occurrence of CC, and the blockade of
the sterol synthesis as an anti-proliferative mechanism of the bacterial CDPs, represents a
reasonable chemotherapeutic drug target to explore. Our transcriptomic study supports
the anti-neoplastic effects of bacterial CDPs in HeLa cells shown previously, providing new
insights into the transduction signals, transcription factors and metabolic pathways, such
as mevalonate and cholesterol that are impacted by the CDPs and highlights its potential
as anti-neoplastic drugs.
Keywords: cervical cancer, cyclodipeptides, genetic expression, signaling pathways, transcriptome analysis,
cholesterol metabolism
INTRODUCTION

Human cervical cancer (CC) is the third leading cause of cancer
death among women around the world, along with breast, lung
and colorectal cancers (1) and the second leading cause of death
in America. CC arises in normal cervical epithelium as a
progressive disease over the course of years, originated by
human papillomavirus (HPV) infection. HPV infection results
in host genome alterations, leading to the silencing of some
tumor-suppressor factors and the induction of aberrant function
of tumor-promoting factors (2). These oncogenic factors then
drive neoplastic progression. The severity of the outcomes of CC
development depends on the specific subtype of the HPV
infection. The oncoproteins E5, E6, and E7, encoded by the
HPV genome, are the major drivers of oncogenesis in the normal
cervical epithelium (3), disrupting the normal function of the
histocompatibility complex I (MHC class I), P53, Rb, Notch1,
Wnt, MAPK, PI3K/Akt/mTOR, STAT-associated pathways, as
well as HSPs such as Hsp90, Hsp70, and Hsp27 (4), which are
central players control l ing normal cellular growth,
differentiation, and immune function (5, 6).

The PI3K/Akt/mTOR signaling pathway is involved in several
biological processes such as cell survival, apoptosis, and tumor
development and progression (7–9). In this signaling pathway,
the mammalian target of rapamycin (mTOR) protein-kinase is a
master regulator that acts through two complexes: mTORC1 and
mTORC2, playing pivotal roles in the induction of tumor growth
(10), where aberrant activation of their components is associated
with many cancer types (11–13). mTORC2 is activated by
growth factors (14, 15) and is considered important for the
maximum activation of Akt by phosphorylation at the serine-473
residue (16), which contributes to tumor pathogenesis (17).
Indeed, mTORC1 inhibitors, like rapamycin and other
rapalogs, initially showed some promise in treating cancers,
but their chronic administration resulted in drug resistance
due to feedback activation of the PI3K/Akt pathway by
mTORC2 (18, 19). Therefore, simultaneous targeting of
downstream mTORC1 and mTORC2 signaling pathways
would enhance the efficacy of drugs blocking the upstream
tumor-initiating pathways (20–22). Extensive efforts are
currently underway to develop potent inhibitors that could
2

simultaneously target both the mTORC1 and mTORC2
signaling pathways (21, 23, 24).

Searching for novel and natural molecules with anticancer
activity is always in progress, as natural molecules are considered
more target-specific than their synthetic counterparts.
Specifically, bacterial cyclodipeptides (CDPs) have been
proposed as compounds with strong pharmaceutical potential
for cancer treatment (25). CDPs have recently drawn attention
for their antiproliferative and cytotoxic effects on cancerous cell
lines (24–30). CDPs possess intrinsic physiological advantages
compared to other molecules due to higher stability, protease
resistance, and conformational rigidity, all these factors increase
their ability to specifically interact with biological targets, making
them more promising than their linear counterparts (31, 32).

Recently we reported that CDPs isolated from the
Pseudomonas aeruginosa PAO1 strain composed mostly of
cyclo (L-Pro- L-Tyr), cyclo (L-Pro- L-Val), and cyclo (L-Pro- L-
Phe), suppress the proliferation of human adenocarcinoma HeLa
and CaCo-2 cell lines (29). In HeLa cells, CDPs arrest the cell
cycle at the G0–G1 transition by blocking the PI3K/Akt/mTOR
pathway, inhibiting the mTORC1/mTORC2 complexes in a
TSC1/TSC2-dependent manner. The effects of which lead to
inhibition of the phosphorylation of both the Akt-S473 and S6k-
T389 protein kinases (24). In addition, the CDPs inhibit protein
kinases from multiple signaling pathways involved in survival,
proliferation, invasiveness, apoptosis, autophagy, and energy
metabolism, such as Ras/Raf/MEK/ERK1/2, PI3K/JNK/PKA,
p27Kip1/CDK1/survivin, MAPK, HIF-1, Wnt/b-catenin,
HSP27, EMT, CSCs, and most likely receptors, such as EGF/
ErbB2/HGF/Met (24). Thus, the antiproliferative effect of the
bacterial CDPs may aid to identify the crosstalk of the signaling
pathways dysregulated in HeLa cell line.

The proteomic study performed in HeLa cells after CDPs
exposure evidenced the blockage of the PI3K/Akt/mTOR, as well
as other pathways with a short time of exposure, but it reverted at
longer time periods, suggesting inhibition of signal translation of
protein kinases. However, the response to longer time periods
indicates that subsequent responses related to gene expression
could be occurring. The reversion in protein expression/
phosphorylation was observed in Vimetin, N-Cadherin, E-
Cadherin, VE-Cadherin, MUC1, PCNA, CD31, CD44, CD45,
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EpCAM, Rb, p27Kip1, Ki67, and HIF-1a (24). In addition, over-
expression of the HIF-1a protein was also observed in the CDPs-
exposed HeLa cells. This protein is a component of the HIF-1
suppressor, a master regulator of elements involved in glycolysis,
and which is dysregulated in tumorigenesis and invasiveness. It is
known that the regulation of HIF-1 is closely related to the PI3K/
Akt/mTOR pathway, and it has even been shown that Akt and
HIF-1 interact synergistically during the development of cancer
(33). Additionally, data suggest that the PI3K/Akt/mTOR and
HIF-1 pathways crosstalk is implicated in mouse melanoma
development and that CDPs targeted these pathways (25).

On the other hand, cholesterol is a lipidic molecule that plays
essential roles in fluidity and integrity of membranes and is also
involved in regulation of multiple cellular functions such as
endocytosis, membrane trafficking, and signaling. Thus, sterol
homeostasis in eukaryote cells is essential for embryonic
development and tumorigenesis (34). Studies indicate that in
cancer cells, the cholesterol synthesis is enhanced, increasing the
serum cholesterol levels, which is associated with increased risk
for cancer development. Clinical trials using inhibitors (such as
statins) of the 3-hydroxy-3-methylglutaryl coenzyme A
reductase (HMGCR; the rate-limiting enzyme in the
mevalonate and cholesterol synthetic pathway), have showed
beneficial and nonbeneficial results. Thus, sterols and
downstream products of the mevalonate pathway have a key
role in cell proliferation, signaling, protein synthesis, and cell-
cycle progression (35). Blocking the mevalonate pathway
through inhibition of HMGCR cause apoptosis, by increasing
intracellular ROS and P38 activation, and suppressing activation
of the Akt and Erk pathways by reducing the metabolic products
downstream of the HMGCR reaction, thereby activating diverse
small GTP-binding proteins of the Ras and Rho families (36).
Anticancer properties of stains (i.e. simvastatin, lovastatin,
atorvastatin, provastain) have been explained through
pleiotropic effects, impacting on protein prenylation,
proliferation and migration, Ras signaling inhibition, and
inducing apoptosis by PI3K/Akt/mTOR pathway (35).

Despite the reported effects of bacterial CDPs inhibiting the
growth of cancer cells, an in-depth exploration of the
mechanisms of action of these drugs is required in order to
understand their cytotoxic and antiproliferative effects. The aim
of the present study was to perform a RNA-Seq transcriptomic
profiling of the gene expression using the HeLa cell line as a
human CC model. This study also seeks to identify the up- and
downstream elements targeted by the antineoplastic effect of the
bacterial CDPs, such as those of the mevalonate and
cholesterol pathways.
MATERIALS AND METHODS

Chemicals, Reagents and Cell Culture
Chemicals and reagents included are Dulbecco’s modified Eagle’s
medium (DMEM; Sigma-Aldrich), fetal bovine serum (FBS;
Gibco Life Technology), and trypsin solution (Sigma Life
Science). Cyclodipeptides were obtained from P. aeruginosa
Frontiers in Oncology | www.frontiersin.org 3
PAO1 cells-free supernatant as previously described (37).
CDPs were dissolved in a DMSO-water ratio of 1:3 to prepare
stock solutions (100 mg/mL).

The HeLa human cancer cell line was obtained from the
American Type Culture Collection (ATCC, Manassas, VA,
USA), which contained mutated the H-Ras oncogene and low-
level expression of the P53 tumor suppressor protein. Cells were
cultured in complete media [DMEM supplemented with 10%
(v/v) FBS, 100 units/mL of penicillin, 40 mg/mL of streptomycin,
and 1 mg/mL of amphotericin B (Sigma-Aldrich Co.)]. Cell
culture media were changed twice a week and maintained at
37°C under 80% humidity, and incubated in an atmosphere of
5% CO2 to confluency. Cells were then trypsin-treated, counted
using a hemocytometer chamber, and used for subsequent
assays. Cell cultures and other procedures were performed in
class II biological safety cabinets. For RNA-Seq and RT-qPCR
analysis, HeLa cells were incubated in DMEM complete medium
containing the CDPs mixture at 0.01 mg/mL for 15 min and 4 h,
along the untreated controls. Afterwards, cells were pelleted by
centrifugation for total RNA extraction.

RNA Extraction, Preparation of cDNA
Library and RNA-Seq
Total RNA was isolated using TRIzol reagent (Thermo-Fisher
Scientific). Total RNA was treated with DNase (Thermo Fischer
Scientific). cDNA libraries were generated using the Illumina
TruSeq RNA Sample Preparation Kit according to the
manufacturer’s instructions. Transcriptome sequencing was
conducted using NextSeq 500 System (Illumina, Inc.). A
configuration for pair-end reads with a 75 bp read length
was used. RNA-seq Massive sequencing was carried out in
the “Unidad Universitaria de Secuenciación Masiva y
Bioinformática” (UUSMB), at the Instituto de Biotecnologıá,
UNAM, Cuernavaca, Mor., México. The Sequence Read Archive
(SRA) were loaded in the Bioproject ID PRJNA725963 (https://
www.ncbi.nlm.nih.gov/sra).

Bioinformatics Analysis and Heatmaps of
RNA-Seq Data
Quality Control (QC) of raw reads was performed using
FASTQC software and contamination and adapter removal
was carried out using in-house Perl scripts designed by the
UUSMB. Because adaptor sequence was present at the three-
prime end of some reads, these were further trimmed using
CUTADAPT version 0.9.5 with a minimum overlap of two and a
minimum length of thirty two (38). Reads were then aligned back
to the Homo sapiens genome assembly GRCh38.p13 using
Bowtie2 version 2.3.4.3 (39). Sam and bed files were generated
using SAMtools version 1.9 (40) and BEDTools version 2.27.1
(41). Read counts for each gene were quantified using coverage
Bed in BEDTools2 version 2.27.1 (41). DEG analysis was
performed using R Bioconductor tool NOISeq (42). Pairwise
comparisons among each sample type (Control vs 15 min CDPs-
treatment, Control vs 4 h CDPs treatment, and 15 min vs 4 h
CDPs-treatments, respectively) were performed. To determine
DEGs, a False Discovery Rate (FDR) of adjusted P ≤0.05
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was used. To generate heatmaps of the top DEGs in RNA-Seq
procedure across the samples, the pheatmap v1.0.12 package in R
(43), and the Clustergrammer-web Visualization server were
utilized (44).

Gene Ontology and Pathway Enrichment
Analyses
Functional Gene Ontology (COG) and Pathway enrichment
analysis of the co-modified DEGs were conducted using
bioinformatic tools with automated interpretation of genomic
data, which perform statistical and network analysis on
biological hierarchical vocabularies: the PANTHER
classification (45), KEGG resource (46), Pathway Commons
web-server (47), WikiPathways database (48), and ShinyGO
v0.61 tool (49). COG functional categories falling under
biological processes, with a q-value ≤ 0.05 following
hypergeometric testing were considered significantly over-
represented. In the hierarchy of COG, a gene can be
represented in more than one category because of the
functional versatility of genes, but only once within
each category.

Protein–Protein Interaction Network (PPI)
and Transcription Factor Prediction
The STRING (version 11.0, http://www.string-db.org/) database
web-server application was used to predict whether gene-
encoded proteins interacted with each other. A PPI network
was constructed for the DEGs identified in the current study. The
minimum required interaction score parameters were set at the
medium confidence level (50). In order to perform TF
enrichment analysis, the ChEA3 database web-server
application was implemented on the co-modified DEGs to
obtain differential TFs and a transcription regulatory network
(TF-target network) was constructed (51). ChEA3 covers 1632
site-specific TFs and offers a selection of six primary reference
gene set libraries, generated from various sources of distinct data:
1) GTEx and ARCHS4 libraries containing TF-gene co-
expression RNA-seq data, 2) ENCODE, Literature ChIP-seq
and ReMap containing TF-target associations from ChIP-seq
experiments, and 3) The Mean Rank integration method was
selected and individual enrichment outcomes for each library are
consequently integrated; thus, producing an improved composite
rank of potentially implicated prioritized TFs (51).

RT-qPCR and RT-PCR Analysis
Total RNA treated with DNase (Thermo Fischer Scientific) was
utilized to obtain the first cDNA strand by using Superscript II
Reverse Transcriptase (Thermo Fischer Scientific) and oligo-dT
primer in the reaction volume of 30 ml for 3 mg of RNA material,
according to the manufacturer’s instructions. RT-qPCR was
performed on a LightCycler Nano (Roche, Basel, Switzerland)
and the amplification was carried out using 75 ng cDNA for each
reaction based on the Power SYBR Green PCR Master Mix
(Thermo Fisher Scientific) as fluorescent probe. After an initial
denaturation step of 10 min at 95°C, the product was routinely
examined using a dissociation curve, and the amount of
Frontiers in Oncology | www.frontiersin.org 4
transcript was compared with the relative Ct method with
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as
internal reference control. The 2−DD Cq method was utilized for
analysis of the experimental data of the genes ATRX, BCL6,
EGR3, COL6A1, ANKDR12, and DGR8.

For the mRNA expression of the HMGS1, HMGCR, SREBF1,
IDI1, MSMO1, SQLE, ACAT1, and RHOA genes, semi-
quantitative RT-PCR was carried out using 50 ng cDNA
obtained with ImProm II-Reverse Transcriptase reagent kit
(Promega, Q4100) and amplified using PCR Platinum Super
Mix High Fidelity (Invitrogen). PCR was performed using the
Bio Rad T100TM Thermal Cycler at 94°C for 3 min, followed by
cycles of 15 sec at 94°C, 15 sec at 54°, 60° or 64°C and 15 sec at
72°C; samples were taken at different cycles for DNA
quantitation. The products were examined using amplification
curves, the amounts of transcript were obtained at 20 cycles of
the exponential amplification curve and expressed as relative
units using the Image J software. Oligonucleotides sequences
utilized are shown in Supplementary Table S1.

Determination of Cholesterol and
Metabolites of Mevalonate Pathway
For cholesterol and mevalonate metabolites analysis, cells-free
supernatants of HeLa cultures grown as described above
were used. 10 mL of cell-free supernatants and cells-pellets
were lyophilized and separately extracted with 1 mL methanol.
After filtering the samples were dried and dissolved in 200 µL
ethanol/methanol (1:1). Cholesterol was determined by
spectrophotometry analyzer at 505 nm as described by the
provider using the Cholesterol SL-234-60 determination Kit
(Sekisui Diagnostics). Metabolites of mevalonate pathway were
determined on cell-free supernatant samples by quantitation of
organic acids accumulated, such as 3-hydroxyhex-4-enoic acid
by GC-MS as described by Pitt et al. (52), with some
modifications (52). Briefly, samples extracted with methanol
were injected in GC-MS (GC; Agilent 6850 Series II equipped
with MS-5973); using a Zebron ZB-WAXplus column, 30 m
length, I.D. 0.25 mm, Film 0.25 mm (Phenomenex), sample
injection was performed at a splitless mode at temperature
of 280°C. The oven temperature was programmed to start at
70°C, maintained in isothermal for 3 min, then increased to
250°C at a rate of 10°C/min, and then an isothermal for 8 min.
Compounds were identified by SIM method using the ion
fragmentation profiles described for organic acids such as
trans-3-hydroxyhex-4-enoic (M+ 274: m/z 73, 143, 147, 157,
259); 3,5-dihydroxyhexanoic 1,5 lactone (M+ 202: m/z 73, 101,
145, 187); trans-5-hydroxyhex-2-enoic (M+ 274: m/z 73, 117,
147, 230, 259); 4-hydroxy-6-methyl-2-pyrone (M+ 198: m/z
73, 170, 183, 198); 5-hydroxy-3-ketohexanoic (M+ 319: m/z
73, 117, 147, 275, 304) (52). Quantitation was performed using
the relative values of the peak areas in chromatograms by using
GC-MS equipment.

Statistical Analysis
False discovery rate (FDR) filtering and P values ≥ 0.95 were
used to identify the mRNAs expression that were significantly
March 2022 | Volume 12 | Article 790537
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different between untreated and CDPs-exposed HeLa cells. These
differentially expressed mRNAs were identified through fold
change filtering. For correlation analysis, data obtained from
RNAseq were analyzed by correlation analysis of response
variables (treatments) vs data of expression intensity for
each DEG (cases) using the STATISTICA software (Data
Analysis Software System 8.0; Stat Soft Inc). Other data were
statistically analyzed using GraphPad Prism 6.0 software
(GraphPad Software).
RESULTS

RNA-Sequencing Data
Gene expression profiles from HeLa cells were determined at a
dose of 0.1 mg/mL of CDPs for 15 min and 4 h exposure times,
conditions previously established to induce apoptosis and
differential protein expression profiles (24, 29). After removing
reads with adapters, unknown nucleotide sequences, and low-
quality reads of sequencing, a total of 10.3 GB of clean data was
acquired. As shown in Table 1A, the Q20 and Q30 percentages
(accuracy rate of base identification > 99.9% and error rate of
sequencing < 1%) were more than 95.3% and 92.9%, respectively.
A total of 43.3 million of 76 nt clean reads were generated using
sequences from randomly primed cDNA libraries, prepared from
polyA+ fractions of HeLa RNA. Of these sequences, 40.3 million
reads representing more than 93% of the reference human
genome, annotated as exons using Bowtie2 (39), were aligned.
A total of 37.8 million reads, representing more than 87%, were
uniquely mapped. The multiple mapped alignments were only
1,328,907 reads, representing less than 4.5% (Table 1B). The
different expression levels were analyzed, normalizing the
mapped reads in the samples. FPKM (Fragments Per Kilobase of
transcript) was an indicator of gene expression; a fold change >1.49
and FDR < 0.01 were taken as the screening criteria in the process of
gene detection/selection. Analysis of those < 43.3 million randomly
derived sequence reads aligned to the human genome, revealed that
this approach is reliable for studying gene expression changes as a
result of the antiproliferative effects of bacterial CDPs in the HeLa
cell line of human cervical cancer, in a global transcriptome-
wide fashion.

Identification of Global DEGs in HeLa Cells
Exposed to CDPs
The mapped 22,201 genes were statistically filtered using
adjusted P values ≤ 0.05 for all samples and selected with a
minimum detection threshold of 10 counts for each gene in all
samples. The number of genes below these thresholds of
Frontiers in Oncology | www.frontiersin.org 5
detection was 10,127. A scatter plot illustrating different
expression is shown (Figures 1A–C).

Following filtration, a change of ≥1.50 fold was observed in a
total of 13 up-regulated and 4 down-regulated genes in cells
treated with CDPs, compared to untreated cells (Figures 1A, D);
while at 4 h of CDPs exposure, a total of 65 up-regulated and 25
down-regulated genes were observed (Figures 1B, D). Finally,
comparing DEGs between 15 min and 4 h CDP exposure, 34 up-
and 39 down-regulated genes were identified (Figures 1C, D).

Seeking to identify both unique and common genes
differentially expressed and associated with the effect of CDPs
exposure, a Venn diagram was constructed (Figure 1E; full gene
list is showed in Supplementary Table S2). None of the DEGs
were shared among all the subgroups compared. Three DEGs
were shared among the comparison of control vs 15 min and
control vs 4 h CDPs exposure; only one DEG was shared among
the comparison of control vs 15 min, and 15 min vs 4 h; and 23
DEGs were shared among the comparison of 15 min vs 4 h, and
control vs 4 h, which suggests that more complex biological
events occurred after 4 h of CDPs exposure. In addition,
clustering showed two well-defined DEG groups: one cluster
associated with up-regulated genes with a short time of CDPs
exposure (15 min) and a second group strongly associated with
up-regulated genes at a longer time of CDPs exposure (4 h). Also,
a smaller number of DEGs with a down-expression profile was
observed (Figure 1D). Thus, a total of ~151 DEGs in the global
comparison changed in expression level, representing the genes
which were used in subsequent analyses (Supplementary Table
S3 and Supplementary Figure S1).

Functional Enrichment Analysis of DEGs in
HeLa Cells Exposed to CDPs
Analysis of gene expression patterns using RNA-Seq revealed
several biological processes and biological pathways that could be
targeted when HeLa cells are exposed to bacterial CDPs. Gene
Ontology analysis of the 151 DEGs using bioinformatics
platforms, including the PANTHER classification System
(http://www.pantherdb.org), ShinyGO v0.61 GO terms (http://
bioinformatics.sdstate.edu/go/), Reactome FIVIz (https://
reactome.org/tools/reactome-fiviz), STRING-db v.10
(https://string-db.org), Pathway Commons tool (https://www.
pathwaycommons.org), and the KEGG pathway mapping
(https://www.genome.jp/kegg/mapper.html), clustered the
DEGs into two major categories: biological processes and
biological pathways.

The present study identified 15 biological processes
(Figure 2A; P ≤ 0.05), including cellular component
organization or biogenesis (21-14.9%), cellular processes (61-
TABLE 1A | Summary of sequencing data.

Sample Clean reads Clean bases (bp) GC content Q20 bases Q30 bases % ≥ Q20 % ≥ Q30

Control 7,861,906 597,504,856 51.01% 569,419,437 554,944,825 95.29% 92.87%
CDPs-15 min 11,983,679 910,758,920 52.43% 868,918,019 845,476,240 95.41% 92.83%
CDPs-4 h 23,493,492 1,785,505,392 50.89% 1,702,792,904 1,663,564,682 95.36% 93.17%
March 2022 |
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44%), localization (15-10.6%), biological regulation (44-31.2%),
response to stimulus (19-13.5%), signaling (16-11.3%),
developmental processes (12-8,5%), rhythmic processes (1-
0.70%), multicellular organismal processes (10-7.1%),
locomotion (2-1.4%), biological adhesion (1-0.7%), metabolic
processes (35-24.8%), growth (1-0.7%), cell population
proliferation (2-1.4%), and immune system processes (1-0.7%),
although there exist others. The biological pathways (Figure 2B;
P ≤ 0.05) included insulin/IGF/MAP kinase cascade (1-1.8%),
P38/MAPK (2-3.5%), interleukins (1-1.8%), EGF receptor (2-
3.5%), PI3K kinase(1-1.8%), PDGF (2-3.5%), Notch (2-3.5%),
Cadherin (1-1.8%), P53 (1-1.8%), Gonadotropin-releasing
hormone receptor pathway (5-8.8%), Hedgehog (2-3.5%),
TGF-beta (1-1.8%), FGF (1-1.8%), FAS signaling pathways (1-
1.8%), Gonadotropin-releasing hormone receptor pathway (5-
Frontiers in Oncology | www.frontiersin.org 6
8.8%), Angiogenesis (2-3.5%), Cholesterol biosynthesis (2-3.5%),
as well as other pathways that are involved in inflammation (2-
3.5%), oxidative stress response (4-7.2%), apoptosis (2-3.6%),
cytoskeleton (1-1.8%), and T and B cell growth/activation
(2-3.6%).

Networks and KEGG Pathways Analysis of
DEGs Associated to Cancers in HeLa Cells
Exposed to CDPs
The annotation results of the gene KEGG identified a total of 35
distinct functional clusters in the global DEG analysis and
nineteen cancer-related functional clusters, each one consisting
of a set of highly connected nodes (Figure 3A). Except for
pathways in apoptosis and transcriptional dysregulation in
cancer, the top 8 signaling pathways annotated with a
A B

D E

C

FIGURE 1 | RNA-Seq profiling of HeLa cells exposed to CDPs. (A-C) Scatter plots showing the correlation of gene abundance. Red lines delimit points that represent
genes up-regulated and down-regulated by at least 1.5-fold at P ≥ 0.95, while black dots inside red lines indicate transcripts that did not change significantly. Red words
indicate the number of DEGs; ↑ up-regulated, ↓ down-regulated. (D) A summary of total, up- and down-regulated genes between treatments is shown. (E) Venn diagram
shows the DEGs in each treatment and the overlapping in two or three CDPs treatments.
TABLE 1B | Summary of comparative analysis.

Sample Control CDPs-15 min CDPs-4 h Total

Total reads 7,861,906 11,983,679 23,493,492 43,339,077 (93%)
Mapped reads 7,175,942 (91.27%) 10,929,757 (91.21%) 21,565,316 (91.79%) 40,356979 (91%)
Unique mapped reads 6,872,404 (87.40%) 10,408,923 (86.86%) 20,583,259 (87.61%) 37,864,585 (87%)
Multiple map reads 382,876 (4.87%) 533,079 (4.45%) 945,498 (4.02%) 1,328,907 (4.5%)
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significant number of DEGs were: mTOR, Hippo, FoxO, CSC,
Wnt, MAPK, apoptosis, and Hedgehog signaling pathways
(Figure 3A). To seek potential interactions between DEGs
according to CDPs exposure, the ShinyGO v0.61 and STRING
tools were employed. Active interaction sources, including text
mining, experiments, databases, and co-expression, as well as
species limited to Homo sapiens and an interaction score > 0.4,
were applied to construct the networks. The STRING network
shows the 14 networks of the cancer related DEGs associated
with CDPs exposure on HeLa cells (Figure 3B).

In the STRING networks, the main clusters corresponded to
the network C1 which is associates to the DEGs, FOS, FOSB,
BTG2, EGR3, GADD45A, SGK1, and MAFF and interacts with
the C6, C10, C11, and C12 clusters, containing DEGs such as
DUSP1, DDIT3, BCL2, CTGF, and ATRX. A classification and
frequency analysis of each DEG associated with cancer networks
in some of the more frequent cancer types such as breast, gastric,
and colorectal cancers, are shown (Figures 3C, D).

To deepen in the identification of pathways and DEGs related
to cancer, a heat map showed 41 main DEGs in HeLa cells
Frontiers in Oncology | www.frontiersin.org 7
exposed to CDPs (Figure 4A), as well as the different cancer-
associated pathways (Figure 4B, Table 2). In this context, in
HeLa cell line the following signaling pathways are impacted by
bacterial CDPs: PI3K-Akt, mTOR, FoxO, Wnt, MAPK, P53,
TGF-b , Notch, and apoptosis FasL/Bcl2-dependent
(Supplementary Figure S2). In addition, outside those
mentioned, a group of transcription factors, which
dysregulation has been widely associated with cancer
phenotype was identified, including DEGs such as BCL6,
DDIT3, GADD45A, HMGA2, and ID2 (Figure 4B).

Networks and KEGG Pathways Analysis of
Differentially Expressed Transcription
Factors (DETFs) in HeLa Cells Exposed
to CDPs
To further evidence the connection of transcriptome changes,
biological processes and pathways, the list of the global co-
modified DEGs from the two CDPs treatments were subjected
to analysis of the expression of transcription factors (TFs) and
functional enrichment analyses, using an established
A

B

FIGURE 2 | Classification of the 151 main DEGs according to the Gene Ontology (COG) principles. (A) Classification of biological processes shows the 15 most
significantly enriched COG terms for DEGs. (B) Classification of canonical pathways showing the 35 most significantly enriched COG terms for DEGs. The X-axis is
the COG category classification; the left of the Y-axis is the number of genes. Chart tooltips are read as: category name (gene numbers, percentage).
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A B

DC

FIGURE 3 | Network and functional enrichment analysis of cancer related DEGs. (A) KEGG network shows the relationship between enriched pathways. Darker nodes are
more significantly enriched gene sets. Bigger nodes represent larger gene sets. Thicker edges represent more overlapped genes. (B) STRING network shows fourteen
cancer related DEGs. Each cluster represents a set of highly connected nodes and is illustrated in a discrete color. (C) Functional category classification shows the most
representative DEGs and pathways related to cancer from (A, B). (D) Network of the relationship between enriched cancer types.
A B

FIGURE 4 | Identification of cancer-related genes and pathways. (A) Heat maps of the 53 cancer-related DEGs common in the three comparative transcriptomes.
(B) Distribution of cancer-related transcripts in signaling pathways. Up arrows and down arrows indicate the overlap of up-regulated and down-regulated genes,
respectively. Total DEGs were analyzed by Gene Ontology (COG) annotation and the Kyoto Encyclopedia of Genes and Genomes (KEGG). All genes were pooled to
build the differential pathways, which helped to reveal the signaling pathways and key regulatory genes in DEGs.
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computational ChEA3 TF tool that offers a better understanding
of gene regulatory networks. Supplementary Table S4 provides a
complete list of all 1632 site-specific TFs covered by ChEA3 TF,
which prioritization was based on their integrated Mean Rank
score, along the overlapping genes found affected by CDPs
exposure for each TF entry.

TF analysis revealed that from the 1632 TFs identified, 151
DEGs have TF/target–gene associations and the more enriched
genes are related with a neoplastic phenotype (Supplementary
Figures S1, S2). The top 55 prioritized DEGs (of which most are
DETFs) according to their ranking score are shown (Figure 5A,
Table 3). The heatmap network revealed the main DETFs in
CDPs-exposed HeLa cells, showing high frequency, and
significant differences, in expression levels (Figure 5B).
Documented information about major biological functions in
the context of cancer and the acquired ranks for each individual
library are also shown (Table 2). Crucial cancer-related processes
are observed including the cell cycle, control of apoptosis, DNA-
damage response, proliferation, transcriptional dysregulation of
oncogenes, and tumor suppressors TFs-regulated. In addition to
widely studied cancer-related DETFs, some also corresponded to
non-coding RNA transcripts (Table 3, Supplementary
Table S4).

Statistical correspondence analysis of the 151 principal DEGs
in the HeLa cells exposed to CDPs (using the numerical values of
mRNA reads obtained from the RNA-Seq), clearly grouped the
DEGs into three correlation groups: i) a group of 31 DEGs with
modified expression in correlation with the CDPs exposure in a
short time period (15 min); ii) a second group of 95 DEGs
associated with the CDPs exposure at the longer exposure time
Frontiers in Oncology | www.frontiersin.org 9
period (4 h); and finally, iii) a third group of DEGs that more
closely resembled the control (HeLa cells without treatment)
(Supplementary Figure S2). The group of 95 DEGs associated
with CDPs exposure was analyzed in detail by the same
correspondence analysis (green circle in Supplementary
Figure S2), whose cross information with the ranking score on
database and heatmap network showing high frequency, and
significant differences in expression levels (Figures 5A, B, Table
3), revealed the main DEGs correlating with the effect of CDPs-
exposed HeLa cells. These DEGs were i.e., YOD1, RASAL2,
MSMO1, MAFF, BCL2, DUSP8, DDIT3, IDI1, GADD45A,
HMGCR, LRRR2, EGR3, BCL6, ATRX, FOSB, FOS, SGK1,
GAS1, FZD4, FRAT2, SMAD6, BTG2, and COL6A1 (for more
details of DEGs implication and function, see Supplementary
Table S5). Therefore, these DEGs could be considered as the top
CDPs-associated targets on HeLa cells.

To verify the mRNA expression in HeLa cells in the RNA-Seq
approach, we randomly selected six target genes (ATRX, BCL6,
EGR3, FOS, COL6A1, and ANKDR12), which expression was
modified in the top DEG-enriched ranking score, to verify their
relative mRNA expression in HeLa cells through RT-qPCR
(Figure 6). The ATRX, BCL6, and EGR3 genes belonging to
TFs showed moderate increases in mRNA level at 15 min of
CDPs exposure, but the mRNA levels clearly increased at 4 h of
CDPs exposure, in agreement with the RNA-Seq profile
(Figure 6). The COL6A1, ANKDR12, and DGCR8 transcripts
showed a less clear expression behavior, but it correlated with the
RNA-Seq profile, that showed decreased levels of expression in
the CDPs-exposed samples. Thus, the RT-qPCR expression
analysis supported and validated the RNA-Seq.
A B

FIGURE 5 | ChEA3 analysis of transcription factors. (A) The interactive cluster-gram shows the overlapping of the top 50 query targeted genes from this study,
among the top 30 gene library results. (B) Heat map of the top DEGs with modified expression in the transcriptome of HeLa exposed to CDPs at t= 0 (Control),
15 min and 4 h.
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CDPs Impacted the Mevalonate and
Cholesterol Pathways
The network interactions between the clusters and functional
categories, identified DEGs categorized in the terpenoid
backbone biosynthesis (Figures 3C, D). In this STRING
network, the main clusters observed contained DETFs such as
FOS, FOSB, MAFF, BTG2, SGK1, GADD45A, GSTA2, EGR3,
DDIT3, BCL2, DUSP1, and DUSP8, interacting with the DEGs
TRIB1 and subsequently with the HMGCR, MOSMO1, and IDI1
(Figure 7A); interestingly, the last genes are part of the
mevalonate/cholesterol pathways. The transcriptome and
bioinformatic analyses of specific pathway components shown
here, revealed that six pivotal genes in the mevalonate/
cholesterol pathways experienced significant changes after
CDPs exposure. These key mevalonate genes showing altered
expression encodes for: 3-hydroxy-3-methylglutaryl coenzyme A
synthase (HMGCS1), 3-hydroxy-3-methylglutaryl CoA
reductase (HMGCR), isopentenyl-diphosphate-delta-isomerase
1 (IDI1), methylsterol monooxygenase 1 (MSMO1), very-long-
chain enoyl-CoA reductase (TECR), and leucine-rich repeat
serine/threonine-protein kinase 2 (LRRK2) (Figures 7B, C).
Overall, these findings suggest that the mevalonate/cholesterol
pathway regulation was modified in HeLa cells by the bacterial
CDPs-exposure.

To evaluate the participation of the cholesterol synthesis
pathway in the antiproliferative mechanism of the CDPs in
HeLa cells, cholesterol amounts were determined in cells
exposed to bacterial CDPs. In the CDPs-treated HeLa cultures,
the amounts of cholesterol in both, cellular pellets and cell-free
supernatants decreased significantly, at similar levels to those
obtained with mervastatin-treated cells (Figure 8A), confirming
the blockage of cholesterol synthesis as an antiproliferative
mechanism. Deepening in the mechanism involved, we
Frontiers in Oncology | www.frontiersin.org 10
determined the expression of genes of the mevalonate and
cholesterol pathways in HeLa cells exposed to CDPs by RT-
PCR assays. Findings showed that the genes HMGCS1, HMGCR,
and IDI1 from the mevalonate pathway, increased their
transcription levels in CDPs-treated HeLa cells (Figure 7D), in
agreement with the transcriptome results (Figure 7C). In
addition, the expression of the genes SQLE (encoding for
squalene epoxidase), MSMO1 (encoding for sterol-C4-methyl
oxidase) , SOAT1/ACAT1 (encoding for cholesterol
acyltransferase), and SREBF1 (encoding for sterol regulatory
element-1 transcription factor), belonging to the sterols synthesis
pathway, also increased by the CDPs treatment (Figure 7D). The
differences in the expression levels were more clearly observed at
short CDPs exposure time (15 min), but was also observed at 4 h
CDPs-exposure. As a control, the RhoA gene that is up-regulated
when the HMGCR is inhibited by statins was used (53), showing
unmodified expression by CDPs-exposure.

In agreement with the up-regulation of genes of the
mevalonate/cholesterol pathways observed in cancer patients
also as metabolites accumulation in the urinary organic acids
profiles occurred in patients with mitochondrial HMGCS
deficiency (52). In our study, the cultures of HeLa cells exposed
to bacterial CDPs showed an increase in metabolites
corresponding to organic acids of the mevalonate pathway
(Figure 8B). The metabolites identified by mass fragmentation
profiles [as reported by Pitt et al. (52); seeMaterial and Methods]
were: trans-3-hydroxyhex-4-enoic, 3,5-dihydroxyhexanoic 1,5
lactone, trans-5-hydroxyhex-2-enoic, 4-hydroxy-6-methyl-2-
pyrone, and 5-hydroxy-3-ketohexanoic, corresponded to
intermediary compounds of the mevalonate pathway. The
maximum accumulation of organic acids of the mevalonate
metabolism was found after a long time-period of CDPs
exposure (4 h). These findings were further confirmed when
FIGURE 6 | Validation of RNA-Seq data by qRT-PCR. The relative expression levels of cancer-related transcripts through RT-qPCR assays for HeLa cells exposed
to CDPs at 15 min and 4 h are shown. Data were analyzed by the 2–DDCt method using GAPDH as a reference gene. The results are presented as expression-fold
changes. Each column represents the means ± SEM from three biological samples by triplicate each. Bars represent means ± SE of three independent assays. One-
way analysis of variance (ANOVA) was carried out, with a Bonferroni post-hoc test; statistical significance (P ≤ 0.05) of differences between treatments is indicated
with lowercase letters.
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mervastatin (statin) was used as inhibitor of the HMGCR enzyme
and with the combination of statin and CDPs addition; in this case
the mevalonate metabolites accumulation was synergistic
(Figure 8C). Conversely, cholesterol determination in both,
cellular pellets and cell-free supernatants of CDPs-treated HeLa
cultures, decreased significantly as with mervastatin-treated
cells (Figure 8A).
DISCUSSION

Treatment with drugs is the most common therapy for many
types of cancer. Hence, it is important to unravel the molecular
Frontiers in Oncology | www.frontiersin.org 11
mechanisms of drug action. Drugs directly kill cancer cells
by stopping the proliferation and by inducing a cellular
response. Substances such as natural cyclodipeptides (2,5-
diketopiperazines) that directly impact cell proliferation have a
high potential for cancer treatment. The bacterium P. aeruginosa
PAO1 produces preferentially the cyclodipeptides cyclo
(L-Pro- L-Tyr), cyclo (L-Pro- LPhe), and cyclo (L-Pro- L-Val),
whose ability to arrest the cell cycle at the G0-G1, transition has
already been implicated in the inhibition of the proliferation of
human HeLa cell line. The mechanism of bacterial CDPs on
inhibition of proliferation of the HeLa cells model involves the
inhibition of phosphorylation of protein-kinases, such as Akt-
Ser473, mTOR-Ser2448, and p70S6K-Thr389, mediated by the
A

B D

C

FIGURE 7 | DEGs expression of the mevalonate and cholesterol pathways in HeLa cells exposed to CDPs. (A, B) Close up of STRING network, showing the top
prioritized DEGs of the mevalonate and cholesterol pathways. Each cluster represents a set of highly connected nodes and is illustrated in a discrete color. (C) Heat
map of mevalonate and cholesterol-pathway-associated DEGs of transcriptome. (D) Relative expression of mRNA levels of genes from the mevalonate and
cholesterol pathways determined through RT-PCR of CDPs-exposed HeLa cells at 15 min and 4 h. The products were examined using amplification curves. The
amounts of transcript were obtained at 20 cycles of the exponential amplification curve and expressed as relative units using the Image J software. Data represent
the means ± SEM from three replicates each. One-way analysis of variance (ANOVA) was carried out, with Bonferroni post-hoc test; statistical significance (P ≤ 0.05)
of differences between treatments is indicated with lowercase letters.
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mTORC1 and mTORC2 complexes (24). Thus, our aim was to
obtain more robust evidences of the antiproliferative/cytotoxic
effects of P. aeruginosa PAO1 CDPs in a human cervical cancer
cell line through a transcriptome comparative analyses.

General Analysis of Transcriptomic Study
In the cancer context, evidences indicate that cancer progression
is related to dysregulation in the expression of a plethora of
molecules, including TFs, representing approximately 20% of
known oncogenes associated with the development and
maintenance of cancer (54). The roles of transcriptional
regulators, including transcription factors (TFs) and RNA
molecules such as miRNA are strongly associated with cancer
development and invasiveness (55, 56). Given the importance of
gene expression during the development of cancers; several
global gene expression profiles using RNA-Seq can provide
Frontiers in Oncology | www.frontiersin.org 12
insights into the regulatory genes and critical pathways
involved in these diseases. Also it provides useful information
about how the products of individual genes, or their
combinations, could efficiently kill cancerous cells, as well as to
identify molecular signatures and pathways, which allow the
design of novel therapeutics to target a specific cancer type
(57–59).

Our RNA-sequencing data identified 151 genes that were
differentially expressed by effect of the CDPs-exposure, including
141 up-regulated and 10 down-regulated genes. The function of
these DEGs was annotated and enriched by databases, such as
the ChEA3 TF tool, ShinyGO, Common Pathways, and KEGG.
The top 151 DEG-enriched were further investigated by
bioinformatics analysis in the KEGG database in order to
study in deep the molecular elements associated with the
cytotoxic effect caused by the CDPs exposure on HeLa cell
A

B

D

C

FIGURE 8 | Content of cholesterol and intermediary metabolites of the mevalonate pathway in HeLa cells exposed to CDPs. (A) Determination of total cholesterol
amounts in HeLa cells and cell-free supernatants of cultures of HeLa cells exposed for 4 h to CDPs and statins (mervastatin), determined by spectrophotometry at
505 nm. (B, C) Organic acids of the mevalonate pathway were determined by GC-MS analysis using cell-free supernatants of cultures of HeLa cells exposed for 4 h
to CDPs and statins (mervastatin). Compounds are shown at the respective retention time as follows: trans-3-hydroxyhex-4-enoic (12.0 min), 3,5-dihydroxyhexanoic
1,5 lactone (13.7 min), trans-5-hydroxyhex-2-enoic (15.2 min), 4-hydroxy-6-methyl-2-pyrone (16.8 min), and 5-hydroxy-3-ketohexanoic (18.0 min). Compound
identification was carried out as described by (52). Data represent the means ± SE of three independent assays. A one-way ANOVA with a Bonferroni post-hoc test
was used to compare treatment times with respect to the control (time 0). Significant differences (P < 0.05) vs control is denoted with an asterisk or lowercase
letters. (D) Mevalonate and cholesterol pathways showing the genes with modified expression by the exposure of HeLa cells to CDPs are highlighted in yellow.
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cultures (Table 2). Transcriptomic analysis of HeLa cells
confirmed that exposure to CDPs leads to a significant
modification of the gene expression profile, being particularly
visible in genes involved in protein-kinase signal transduction
pathways, some of them previously identified by proteomic
studies (24). Importantly, in our transcriptomic study were
also identified several genes encoding cancer-associated
transcription factors that participate in processes such as
epigenetics, DNA splicing, and damage response, as well as in
regulation of miRNAs, circRNAs, and lncRNA, suggesting that
modulation of these genes could contribute to the overall
molecular mechanisms associated with the cytotoxic effect of
the bacterial CDPs in the HeLa cell line.
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Additionally, the computational analysis of TF enrichment
presented here, according to the ChEA3 database and based on
co-modified DEGs, revealed a prioritized list of transcription
regulators potentially involved in a wide range of cellular
processes related to transformation and malignant cell
progression (Table 3). These TF included e.g., ATRX, BCL6,
EGR3, COL6A1, ANKDR12, HMGA2, which are key members of
AP-1 transcription factor such as FOS, FOSB, and MAFF. Thus,
our findings show that the expression of transcripts in HeLa cell
cultures were significantly modified by CDPs-exposure. With
regards to functional Gene Ontology and pathways analyses, an
interesting result was the prevalence of protein-kinases
belonging to cancer-related signaling transduction pathways.
TABLE 2 | Identification of cancer-related genes and pathways in CDPs-treated HeLa cells.

Pathway DEGs CDPs-modified

Pathways associated to cancer APC; circRNA APC regulator of WNT signaling pathway
BCL2; BCL2 apoptosis regulator
FOS; Fos proto-oncogene, AP-1
FRAT2; FRAT regulator of WNT signaling pathway
FZD4; frizzled class receptor
GADD45A; growth arrest and DNA damage inducible alpha
GSTA2; glutathione S-transferase alpha
HES1; Hes family bHLH transcription factor

Apoptosis BCL2; BCL2 apoptosis regulator
DDIT3; DNA damage inducible transcript
FOS; Fos proto-oncogene, AP-1 transcription factor subunit
GADD45A; growth arrest and DNA damage inducible alpha
LMNB1; lamin B1

Transcriptional misregulation in cancer BCL6; BCL6 transcription repressor
DDIT3; DNA damage inducible transcript
GADD45A; growth arrest and DNA damage inducible alpha
HMGA2; high mobility group AT-hook
ID2; inhibitor of DNA binding

MAPK signaling pathway DDIT3; DNA damage inducible transcript 3
DUSP1; dual specificity phosphatase
DUSP8; dual specificity phosphatase
FOS; Fos proto-oncogene, AP-1 transcription factor subunit; growth arrest and DNA damage inducible alpha

mTOR signaling pathway FNIP2; folliculin interacting protein
FZD4; frizzled class receptor
SGK1; serum/glucocorticoid regulated kinase

FoxO signaling pathway BCL6; BCL6 transcription repressor
GADD45A; growth arrest and DNA damage inducible alpha
SGK1; serum/glucocorticoid regulated kinase

Wnt signaling pathway APC; circRNA APC regulator of WNT signaling pathway
FRAT2; FRAT regulator of WNT signaling pathway
FZD4; frizzled class receptor
HLTF; Helicase-like transcription factor
MYH7B, myosin/7B
WDR37, WD repeat-containing protein

PI3K-Akt signaling pathway BCL2; BCL2 apoptosis regulator
COL6A1; collagen type VI alpha 1 chain
SGK1; serum/glucocorticoid regulated kinase

p53 signaling pathway BCL2; BCL2 apoptosis regulator
GADD45A; growth arrest and DNA damage inducible alpha
GORAB; golgin, RAB6 interacting

TGF-beta signaling pathway ID2; inhibitor of DNA binding
SMAD6; SMAD family member

Notch signaling pathway HES1; Hes family bHLH transcription factor
LFNG;LFNG O-fucosylpeptide 3-beta-N-acetyl-glucosaminyl-transferase
According to the KEGG database, one gene may be involved in several pathways or interact with several other genes. All DEGs were pooled to build the differential pathways, which helped
us to reveal the signaling pathways and key regulatory genes in differentially expressed genes (DEGs).
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We identified three uniquely up-regulated genes of the PI3K/
Akt/mTOR signaling pathway, including FNIP2, SGK1, and
BCL2; and the up-regulated genes of the Wnt pathway,
including APC, HLTF, MYH7B, and WDR37. Meanwhile in
Frontiers in Oncology | www.frontiersin.org 14
the MAPK signaling pathway, four exclusive genes were up-
regulated, DDIT3, DUSP1, DUSP8, and GADD45A (Figure 3).

The heatmap and STRING network showed five DETFs that
have been described as biomarkers for cancer, including BCL6,
TABLE 3 | Classifications of the 53 DETFs according to the ChEA3 TF analysis.

GO Biological Process

N genes High level GO category Genes

22 Regulation of molecular function TBC1D2 ID2 GADD45A TRIB1 BCL2 FZD4 DDIT3 FNIP2 RASAL2 LFNG HMGCR HES1
CCN2 GEM MIDN DUSP8 MTRNR2L10 TXNIP SMCR8 DHFR SGK1 FOS

21 Regulation of response to stimulus LFNG GADD45A BCL2 TRIB1 DDIT3 CCN2 SMAD6 HMGCR HES1 CREBRF FZD4 YOD1
DUSP8 RTN4RL1 MTRNR2L10 CHAC1 SMCR8 GAS1 DHFR FOS BANP

20 Response to stress BCL2 DDIT3 YOD1 GADD45A CCN2 FOS FNIP2 HMGCR ID2 SGK1 CHAC1 CREBRF
FZD4 RTN4RL1 TXNIP SMAD6 ASCL2 TRIB1 DHFR MAFF

19 Regulation of signaling LFNG GADD45A BCL2 TRIB1 DDIT3 CCN2 SMAD6 HMGCR HES1 CREBRF MIDN
SYNPO FZD4 DUSP8 MTRNR2L10 CHAC1 SMCR8 GAS1 BANP

18 Regulation of multicellular organismal process HES1 ID2 RFLNB ASCL2 MAFF ATOH8 DDIT3 LFNG HMGCR CCN2 SMAD6 FOS BCL2
TRIB1 FZD4 RTN4RL1 SGK1 LINGO1

17 Regulation of developmental process HES1 ID2 RFLNB ASCL2 MAFF CCN2 ATOH8 DDIT3 LFNG HMGCR FOS BCL2 TRIB1
FZD4 RTN4RL1 SMAD6 LINGO1

14 Regulation of biological quality SAMD4A BCL2 DDIT3 HMGCR SEC24A ID2 CCN2 PKNOX1 MIDN SYNPO FZD4 SGIP1
SGK1 MAFF

13 Anatomical structure morphogenesis AMOTL2 HES1 SGK1 FZD4 RFLNB LFNG ID2 CCN2 SMAD6 PKNOX1 ATOH8 BCL2
LINGO1

13 Regulation of localization AMOTL2 BCL2 HMGCR SEC24A SGIP1 GEM MIDN DDIT3 YOD1 ATOH8 TRIB1 GAS1 SGK1
12 Cell proliferation BCL2 HMGCR HES1 ID2 CCN2 ATOH8 ASCL2 TXNIP SMAD6 TRIB1 FRAT2 SGK1
12 Response to external stimulus SMAD6 BCL2 HMGCR ID2 FOSB FOS TRIB1 DDIT3 RTN4RL1 TXNIP GADD45A SGIP1
12 Macromolecule localization TBC1D2 ARL5B HMGCR SEC24A SGIP1 MIDN BCL2 BANP FZD4 DDIT3 YOD1 TXNIP
11 Cellular component biogenesis SGIP1 SYNPO FNIP2 HMGCR SEC24A CCN2 SMAD6 DDIT3 HES1 BCL2 SMCR8
11 Cellular localization TBC1D2 ARL5B SEC24A HMGCR BCL2 BANP DDIT3 YOD1 TXNIP GEM GAS1

GO Molecular Function
Enrichment
FDR

Genes
in list

Total
genes

Functional Category Genes

0.022039758 6 250 Microtubule binding CCDC88A KIF20B CENPE APC TTBK2 LRRK2
0.022039758 3 33 Receptor antagonist activity MTRNR2L10 MTRNR2L1 MTRNR2L6
0.023281805 3 43 Receptor inhibitor activity MTRNR2L10 MTRNR2L1 MTRNR2L6
0.036692194 9 816 RNA polymerase II regulatory region

sequence-specific DNA binding
BCL6 FOSB FOS DDIT3 EGR3 MAFF HLTF FOXP2 RORB

0.036692194 7 542 RNA polymerase II proximal promoter
sequence-specific DNA binding

FOSB FOS DDIT3 MAFF HLTF FOXP2 RORB

0.036692194 15 1673 DNA-binding transcription factor
activity, RNA polymerase II-specific

BCL6 EGR3 MAFF DDIT3 HLTF FOSB FOXP2 BTG2 FOS RORB ZFY ATRX CREBL2
ZNF236 ZNF534

0.036692194 7 556 Proximal promoter sequence-specific
DNA binding

FOSB FOS DDIT3 MAFF HLTF FOXP2 RORB

0.036692194 9 823 RNA polymerase II regulatory region
DNA binding

BCL6 FOSB FOS DDIT3 EGR3 MAFF HLTF FOXP2 RORB

0.036692194 10 1029 Double-stranded DNA binding CDC6 BCL6 FOSB FOS DDIT3 EGR3 MAFF HLTF FOXP2 RORB
0.036692194 15 1793 DNA-binding transcription factor activity BCL6 ZNF236 EGR3 MAFF DDIT3 FOXP2 FOS HLTF CREBL2 FOSB BTG2 RORB ZFY

ATRX ZNF534
0.036692194 4 171 Helicase activity HLTF ATRX HFM1 CHD9
0.036692194 15 1929 Drug binding PPIG PPIAL4A DHFR HLTF ATRX TRPM7 CDC6 CLK4 TTBK2 KIF20B CENPE HFM1

DCLK2 CHD9 LRRK2
0.036692194 6 339 Tubulin binding CCDC88A KIF20B CENPE APC LRRK2 TTBK2
0.036692194 2 21 Cyclosporin A binding PPIG PPIAL4A
0.036692194 11 1189 Sequence-specific DNA binding CDC6 BCL6 FOSB FOS DDIT3 EGR3 MAFF FOXP2 BCL2 HLTF RORB
0.036692194 2 17 Microtubule plus-end binding APC TTBK2
0.036692194 10 920 Sequence-specific double-stranded

DNA binding
CDC6 BCL6 FOSB FOS DDIT3 EGR3 MAFF HLTF FOXP2 RORB

0.037282737 9 875 Transcription regulatory region
sequence-specific DNA binding

BCL6 FOSB FOS DDIT3 EGR3 MAFF HLTF FOXP2 RORB

0.040840296 6 441 DNA-binding transcription activator
activity, RNA polymerase II-specific

MAFF DDIT3 HLTF FOSB FOS RORB

0.049765976 5 330 Ubiquitin protein ligase binding HLTF APC SLF1 BCL2 YOD1
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DDIT3, GADD45A, HMGA2, and ID2 (Figure 4), which genes
are members of the aforementioned pathways and are also
involved in the control of cell growth, proliferation, and cell
death. In relation to the regulation of cell death via apoptosis, the
anti-apoptotic B-cell lymphoma-2 (BCL-2) (54) and the B cell
lymphoma 6 (BCL6), a transcriptional suppressor of BCL2 (60),
the dual-specificity phosphatase 1 (DUSP1), also identified as
MAPK phosphatase-1, a well-known inhibitor of the MAPK
pathway (61), were also significantly up-regulated in response
to CDPs.

It is well documented that the regulation of gene expression
responds quickly to cellular signals. Primary response genes
(PRGs) are expressed following a wide range of external
stimuli, to modify the mechanisms of regulation involved in
cell proliferation. The PRGs are classically grouped in two types:
immediate early response genes (IEGs), and delayed primary
response genes (DPRGs). The mRNA of IEGs can appear in cells
within 5 to 60 min after the stimulus, whereas the DPRGs are
induced later, around 4 h after the stimulus (62). Typical PRGs
are TFs, such as EGR3 and FOS, which are components of
intracellular signal transduction pathways (e.g., MAPK
phosphatases such as DUSP1and DUSP8) (63, 64). The HeLa
cell line is a convenient model to explain how bacterial CDPs can
act as a relatively brief stimulus (15 min), but also as a long-term
signal (4 h) to alter gene expression through IEGs and DPRGs
responses. In the current study, 18 genes (12%) corresponded to
IEGs, while 133 genes (88%) were of the type DPRGs. This shows
that hierarchically transcriptional programs and various
signaling pathways were modulated. We also found three key
representative genes to be up-regulated which are involved in the
apoptotic signaling pathway in response to endoplasmic
reticulum stress, including the DNA damage-inducible
transcript 3 (DDIT3, known as CHOP) (65), the growth arrest
and DNA-damage-inducible beta (GADD45B) (66), and the
Glutathione-Specific Gamma-Glutamyl-cyclo-transferase,
encoded by the CHAC1 gene, an inducer of glutathione
depletion - which is an important factor for apoptosis
initiation and execution (67). Prolonged ER stress can lead to
apoptosis through the activation of DDIT3/CHOP (68, 69).

The major signaling pathways affected by CDPs (Figures 4,
5), also commonly activated in many physiological responses, are
growth factor receptor tyrosine kinases (RTKs; e.g., the
epidermal growth factor receptor, EGFR), small GTPases (e.g.,
RASL11A), serine/threonine kinases (e.g., STK36, DCLK and
SGK1), cytoplasmic tyrosine kinases (e.g., TTBK2), lipid kinases
(e.g., phosphoinositide 3-kinases, PI3Ks), as well as nuclear
receptors (e.g., the estrogen receptor, ER), and components of
developmental signaling pathways, such as Wnt (e.g., FZD4 and
APC), TGF-b (e.g., ID2 and SMAD6), bone morphogenetic
protein, G protein-coupled receptor (e.g., GPR176, CCDC88A/
GIRDIN), Hedgehog (e.g., GAS1), PI3K/Akt/mTOR (e.g.,
SGK1), Hippo (e.g., CCN2), and Notch (e.g., HES1 and
LFNG), as they could all modulate downstream signaling
pathways, including transcription factors (e.g., HMGA2, FOS
and EGR3), chromatin remodelers (e.g., ATRX), and cell cycle
motors (e.g., CCNF cyclin).
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In addition to the identification of the widely described DEGs
and DETFs associated with several types of cancer and
transduction signaling pathways, we also found a group of
DEGs, including circRNAs, lncRNA, RNAs regulated by
miRNAs, and TFs which are related to fundamental processes
such as epigenetics, splicing, and DNA-damage response
(Supplementary Table S4). From the main DEGs, some were
assigned as RNAs, miRNAs-regulated and those associated with
cancer and neurodegenerative diseases, i.e., FAM135A,
MTRNR2L2, PSD3, HMGA2, LIN7A, and MYH7B; as well as
circRNAs i.e., ANKRD12 (recruitment of histone deacetylases),
APC (involved in tumorigenesis), and PSD3 (associated with
obesity, type 2 diabetes, and cholesterologenesis), and
MTRNR2L10; from the lncRNA type, KTN1 (an anti-sense
RNA involved in tumorigenesis and EMT). The TFs most
commonly identified are related to fundamental processes of
DNA modifications, which have been associated with cancer,
chromatin remodeling, neurodegenerative diseases, and
epigenetics, i.e., ATRX, ASCL2, ATOH8, BCL6, BTG2,
C11orf65, CCDC148, CCDC88A, CDC6, CENPE, CEP170-2,
CHD9, CLK4, CWC22, DGCR8, FOXP2, HFM1, HIST1H4K,
HLTF, ID2, KIF20B, KBTBD8, LMX1B, LINGO1, MAFF,
NAA16, PHF1, PPIG, RFX1-2, SLF1, STK36, YOD1, ZFY, and
ZNF236 (Tables 2, 3).

Our current and past findings also suggest that, in addition to
some of the mentioned pathways, which are inhibited by
bacterial CDPs, such as the AMPK and PI3K/Akt/mTOR
signaling transduction networks (24), aimed at inhibiting the
pathways that lead to cancer by altering a large number of
cellular processes that lead to the orderly death of cancer cells.
The data presented here will not only serve to guide future
hypothesis-driven investigations aimed at identifying molecular
targets for bacterial CDPs, but could also to be used to develop
exposure biomarkers and/or to evaluate the therapeutic potential
of CDPs.

Implication of the Mevalonate and Sterol
Pathway in the CDPs Cytotoxic Effect on
HeLa Cells
Several studies have reported that cholesterol plays a critical role
in the progression of numerous types of cancer (35, 70, 71).
Disruption of fatty acids and cholesterol biosynthesis can also
induce ER-stress (68). In agreement with this, increased activity
of the mevalonate pathway has been implicated in cancers and
aberrant protein prenylation which occurs when the pathway is
highly up-regulated (72–74). In this sense, in breast cancer,
mutations in P53 up-regulate components of the mevalonate
pathway through the sterol regulatory element-binding protein
(SREBP) family of transcription factors, increasing the flux in the
mevalonate pathway of these mutants (75).

In our study, transcriptomics analysis and bioinformatics
examination of DEGs revealed that six key genes in the
mevalonate and cholesterol pathways were up-expressed in
HeLa cells treated with CDPs (Figures 5, 7), these were:
HMGCR, HMGCS1, IDI1, TECR, MSMO1, and the transcription
regulator LRRK2 (Figure 7C), suggesting a targeting of the CDPs
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on these pathways, in addition to aim protein kinases as the
molecular mechanism of inhibition of cell proliferation.
Deepening in the transcriptome data base, it was found that the
treatment of CDPs at 4 h of exposure increase significantly the
SREBF1 transcript counts from 4.2 in the control to 14.2 counts
of expression in the CDPs exposure. In agreement to the
transcriptomic analysis, mRNA quantitation by RT-PCR assays
showed that the genes HMGS1, HMGCR, IDI1, SQLE, MSMO1,
SREBF1, and SOAT1, were over-expressed in HeLa cells following
CDP exposure (Figure 7D). Therefore, our findings indicate that
the enzymes HMGCR, HMGCS1, IDI1, MSMO1, TECR, and
SQLE of these pathways could be candidates for the modulation
by bacterial CDPs, probably by the control of the gene expression
through the TFs LRRK2 and SREBF1, or perhaps through
protein-kinases that hierarchically control critical molecular
interconnections between AMPK and PI3K/Akt/mTOR
signaling. In this sense, it has been demonstrated through
microarrays and the RT-qPCR gene expression analysis, that
cell treatments with HMGCR inhibitors, differentially induces the
expression ofHMGCR, HMGCS1 and IDI1 genes in breast cancer
cell lines (76). Also, the increase of the HMGCR activity in cancer
proliferating cells provokes an increase in the content and
consumption of cholesterol (77, 78). Interestingly, AMPK
pathway has been reported to phosphorylate and suppress the
activity of the sterol regulatory element binding proteins (SREBP-
1c and -2), transcriptional factors that control the expression of
enzymes of the mevalonate pathway (79). AMPK was also
described as a direct regulator of the phosphorylation of
HMGCR, causing a decrease in enzymatic activity (80).

Cholesterol is the precursor of steroid hormones, bile acids,
and oxysterols, but also modifies proteins that are covalently
attached to Hedgehog proteins and to smoothened, signaling
pathways that play critical roles in embryonic development and
tumorigenesis. On the other hand, blocking the mevalonate
pathway through inhibition of HMGCR cause apoptosis by
P38 activation and suppressing activation of the Akt and Erk
pathways by reducing the metabolic products downstream of the
HMG-CoA reductase reaction (36). Thus, mechanistically, drug
inhibition of HMGCR can decrease cholesterol synthesis, thereby
attenuating cell proliferation, suppressing tumor progression,
and inducing cell senescence by negatively regulating growth-
promoting signals, including RAS, PI3K/AKT, RAF/MEK/
ERK1/2, Hippo, and Wnt/b-catenin signaling cascades (81–83).
In addition, HMCS2 deficiency causes the accumulation of
organic acids, which can be detected in the urine of patients
with metabolic disorders associated with hypoglycemia and
increased accumulation of fatty acids metabolites (52).
Furthermore, increased activity of the mevalonate pathway has
been linked to cancers and aberrant protein prenylation which
occurs when the pathway is highly up-regulated (72–74).

Interestingly, our findings showed that both, genes of
mevalonate and cholesterol pathways (HMGS1, HMGCR, IDI1,
SQLE,MSMO1, SREBF1, and SOAT1), are positively regulated by
bacterial CDPs on HeLa cell cultures (Figure 7). Accordingly,
intermediary metabolites of the mevalonate pathway were
accumulated in the supernatants of the HeLa culture media,
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but conversely, the cholesterol content significantly decreased in
both cells and supernatants (Figure 8A). The decreased amounts
of cholesterol observed in HeLa cells treated with CDPs showed a
similar behavior than the statins treatment, indicating that the
deficiency in cholesterol induces its autosynthesis and those of
the mevalonate precursors, causing their accumulation as a result
of the allosteric regulation of the HMGCR (limiting enzyme of
the cholesterol biosynthesis) (Figure 8D). The HMGCR
induction, positively promotes the gene expression of the
biosynthetic genes involved in both, the mevalonate and
cholesterol synthesis pathways. Thus, the results showed here
suggest that the mechanism of antiproliferation/cytotoxicity in
the HeLa cells by the bacterial CDPs involves the inhibition of
the HMGCR enzyme in a mechanism similar to that of the
statins, probably by a mechanism dependent of inhibition of
enzymatic activity by phosphorylation.

Some meta-analysis studies suggest that the mechanism of
antiproliferation by statins is beneficial for cell survival and
cancer-specific cell survival; however, the effect could be
pleiotropic, affecting other mechanisms such as protein
prenylation, tumor cell proliferation and migration, inhibiting
Ras signaling, inducing apoptosis through inhibition of Akt
phosphorylation, and consequently mTOR down-regulation at
other cellular level (84). Thus, cholesterol represents a precursor
for the hormones estrogens and androgens, involved in the
modulation of cell proliferation, migration, invasion and
apoptosis in different cancers (78). Here, we found that
although the genes of the mevalonate pathway were up-
regulated by CDPs-exposure, the cholesterol amounts were
significantly diminished in the cultures, confirming the
importance of cholesterol and its precursors in cell cancer
proliferation, invasiveness, and apoptosis.
CONCLUSIONS

The transcriptomic study in the HeLa cell line supports the anti-
proliferative/cytotoxic effects of the CDPs shown previously,
providing new knowledge on the molecular mechanisms,
deepening in the elucidation of the signal pathways involved in
the anti-neoplastic effects of the bacterial CDPs using the HeLa
cell line as a model of human cervical cancer. The findings
suggest that as part of the cytotoxic effects of the bacterial CDPs
on HeLa cells, these compounds transduce the signal through the
PI3K-Akt-mTOR pathway to multiple transcription factors. This
study also demonstrates the impact of CDPs on the expression of
genes of the mevalonate/cholesterol pathways, which are
essential for cell proliferation, finding a correlation between
gene expression and accumulation of metabolites of the
mevalonate pathway, but decreasing the amounts of
cholesterol. This fact suggests a blockage of sterols synthesis as
an additional mechanism of death induction by CDPs in the
HeLa cell line. Our study also highlights the potential of CDPs as
anti-neoplastic drugs, genes that could be used as therapeutic
targets and/or biomarkers for the treatment and monitoring of
this type of cervical cancer.
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