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Abstract

Purpose

To validate the diagnostic performance of commercially available, deep learning-based

automatic white matter hyperintensity (WMH) segmentation algorithm for classifying the

grades of the Fazekas scale and differentiating subcortical vascular dementia.

Methods

This retrospective, observational, single-institution study investigated the diagnostic perfor-

mance of a deep learning-based automatic WMH volume segmentation to classify the

grades of the Fazekas scale and differentiate subcortical vascular dementia. The VUNO

Med-DeepBrain was used for the WMH segmentation system. The system for segmentation

of WMH was designed with convolutional neural networks, in which the input image was

comprised of a pre-processed axial FLAIR image, and the output was a segmented WMH

mask and its volume. Patients presented with memory complaint between March 2017 and

June 2018 were included and were split into training (March 2017–March 2018, n = 596)

and internal validation test set (April 2018–June 2018, n = 204).

Results

Optimal cut-off values to categorize WMH volume as normal vs. mild/moderate/severe, nor-

mal/mild vs. moderate/severe, and normal/mild/moderate vs. severe were 3.4 mL, 9.6 mL,

and 17.1 mL, respectively, and the AUC were 0.921, 0.956 and 0.960, respectively. When
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differentiating normal/mild vs. moderate/severe using WMH volume in the test set, sensitiv-

ity, specificity, and accuracy were 96.4%, 89.9%, and 91.7%, respectively. For distinguish-

ing subcortical vascular dementia from others using WMH volume, sensitivity, specificity,

and accuracy were 83.3%, 84.3%, and 84.3%, respectively.

Conclusion

Deep learning-based automatic WMH segmentation may be an accurate and promising

method for classifying the grades of the Fazekas scale and differentiating subcortical vascu-

lar dementia.

Introduction

White matter hyperintensity (WMH) is known to represent accumulated tissue damage of

white matter and is detected on T2-weighted images and Fluid Attenuated Inversion Recovery

(FLAIR) images showing hyperintense signal intensities [1, 2]. It is associated with executive

dysfunction regardless of its location [3], and a potential association exists between WMH and

diverse diseases, including cerebrovascular, as well as other neurological or psychiatric diseases

[4–7]. Cognitive impairment is also associated with WMH [8, 9].

The volume of WMH is thought to represent the size of cerebral small vessel disease bur-

den, and a larger volume of WMH is reported to have an association with poor functional out-

come or treatment response in patients with acute ischemic stroke [10–13]. For volume

estimation, visual assessment has been mainly performed such as the Fazekas scale [14] in clin-

ical practice, which is also easy and quick to perform. However, reliable assessment is difficult

and sufficient experience is needed owing to the inherent heterogeneous nature in size, num-

ber, shape, and location of WMH, which increases with age and cannot be objective [15].

These problems remain in manual segmentation of WMH, which is time-consuming and

labor-intensive.

In recent years, automated methods for measuring the volume of WMH were tried using

various methods of deep learning [16, 17], and convolutional neural networks (CNN) have

become one of the main methods with variable performance [18–22]. Park et al. [22] used a

U-Net model adopting a multi-scale approach that obtains significant features from intermedi-

ate decoder layers to segment WMH. Wu et al. [21] developed a skip connection U-Net that

adds skip connections to standard U-Net and achieved faster convergence speed and improved

segmentation performance. The VUNO Med-DeepBrain is one of the commercially available

segmentation models, which employed a 2D U-Net using only T2-FLAIR MRI for develop-

ment and focused on treating highly unbalanced WMH labels, mainly owing to deep WMH

by applying generalized dice loss [23]. The difficulty of deep WMH underestimation was also

suggested in another article [24] that utilized domain adaptation methods to develop a robust

segmentation model regardless of scanner or sequence types.

Meanwhile, subcortical vascular dementia (or subcortical ischemic vascular dementia) is a

major form of vascular dementia that results from complete or incomplete infarction of cere-

bral subcortical structures due to small artery disease [25]. The main clinical features include

cognitive impairment [26], which is related to disruption of the prefrontal-subcortical circuit

by the accumulation of lacunar infarctions and white matter ischemia [27, 28] and interrup-

tion of cholinergic pathways traversing the subcortical white matter [1, 29]. Cholinergic path-

way comprise neurons regulating synthesis and release of acetylcholine, which is a ubiquitous

PLOS ONE Diagnostic performance of deep learning-based automatic WMH segmentation and subcortical vascular dementia

PLOS ONE | https://doi.org/10.1371/journal.pone.0274562 September 15, 2022 2 / 16

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: Dongsoo Lee, M.S.,

Eunpyeong Hong, M.S., and Jinkyeong Sung, M.

D., Ph.D. are employees of VUNO Inc. The authors

report no other conflicts of interest, and the

present study has not been presented elsewhere.

This does not alter our adherence to PLOS ONE

policies on sharing data and materials. The specific

roles of these authors are articulated in the ‘author

contributions’ section.

https://doi.org/10.1371/journal.pone.0274562


neurotransmitter having a central role in neurotransmission and cognition [30]. One of the

diagnostic criteria is severe WMH on T2-weighted and FLAIR images [31].

In this study, we aimed to evaluate the diagnostic performance of a deep learning-based

automatic WMH segmentation algorithm for classifying grades of the Fazekas scale and differ-

entiating subcortical vascular dementia, which has not been evaluated yet.

Materials and methods

Patient inclusion

All data were fully anonymized before access, and the institutional review boards (IRB)

approved this observational study of a single tertiary referral hospital (IRB No. 2020–1352).

The requirement for informed consent was waived given the retrospective design. A comput-

erized search of electronic medical records was performed to identify consecutive patients

attending the outpatient neurologic memory clinic to evaluate memory impairment between

March 2017 and June 2018. To validate a segmentation model, the dataset was split into the

training set (March 2017–March 2018, n = 596) and internal validation test set (April 2018–

June 2018, n = 204). The eligibility criteria included patients who: (a) presented with memory

complaints, (b) underwent brain MRI as part of their initial evaluation, (c) had available elec-

tronic medical records, (d) did not have a previous history of the cerebral infarct, and (e) did

not have other white matter abnormality such as metabolic encephalopathy or postoperative

change. Brain MRI was performed within 1 month of presentation.

Brain MRI protocol

Brain MRI was performed on 3.0 T units (Ingenia, Philips Medical Systems, Best, the Nether-

lands) using a 32-channel sensitivity-encoding head coil. High-resolution anatomical three-

dimensional (3D) volume images were acquired using a 3D gradient-echo T1-weighted

sequence in the sagittal plane. The detailed parameters were as follows: repetition time (TR),

9.6 ms; an echo time (TE), 4.6 ms; a flip angle, 8˚; a field of view (FOV), 224 mm × 224 mm;

slice thickness, 1 mm with no gap; and a matrix size, 224 × 224. Two-dimensional (2D) axial

FLAIR images were obtained as follows: TR, 9000 ms; TE, 125 ms; FOV, 220 mm × 220 mm;

slice thickness, 4 mm with no gap; and a matrix size, 256 × 256.

MRI analysis and reference standards

The FLAIR images were reviewed in consensus by two neuroradiologists with 10 and 31 years

of neuroradiology experience, respectively. They were blinded to all the clinical information.

WMH was categorized as normal, mild, moderate, or severe according to the Fazekas scale in

both the periventricular and deep white matter [3]. Periventricular WMH was graded as fol-

lows: (a) normal, absence; (b) mild, "caps" or pencil-thin lining; (c) moderate, smooth "halo";

and (d) severe, irregular periventricular hyperintensity extending into the deep white matter

[3]. Deep WMH was graded as follows: (a) normal, absence; (b) mild, punctate foci; (c) moder-

ate, beginning confluence of foci; and (d) severe, large confluent areas [3]. In case of discor-

dance, a consensus was made by two neuroradiologists for each periventricular WMH and

deep WMH. In addition, the representative grade of WMH for each case was determined as

maximal grading of either periventricular or deep white matter. Sensitivity was defined as the

proportion of a test positive (mild/moderate/severe, moderate/severe or severe from Deep-

Brain), conditioned on a true positive (mild/moderate/severe, moderate/severe or severe,

based on a consensus by two neuroradiologists). Interobserver agreement between the two

neuroradiologists was determined for all patients.
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The patients who fulfilled the following criteria were diagnosed with subcortical vascular

dementia by clinicians [31]: (a) met the criteria for Vascular dementia by the Diagnostic and

Statistical Manual of Mental Disorders—fourth edition [32]; (b) had at least one focal neuro-

logic sign on the Focal Neurologic Sign Score evaluation [31]; (c) had severe WMH on

T2-weighted and FLAIR images, defined as periventricular WMH with a cap or rim >10 mm

in maximum diameter, deep WMH with extensive or diffusely confluent form�25 mm in

maximum diameter [31]. Patients with images that showed territorial, or watershed infarctions

were excluded. All relevant data are within the manuscript and its Supporting Information

files (S1 Appendix).

Deep learning-based WMH segmentation algorithm

The VUNO Med-DeepBrain (version 1.0.1, VUNO Inc., Seoul, South Korea), which has been

commercially available in South Korea since June 2019 and Europe since June 2020, was used

for the deep learning-based segmentation system. Deep learning algorithms can provide the

segmentation of detailed regions of the T1-weighted brain MRI and WMH regions of the

FLAIR image. The software extracts the segmented 104 brain regions masked image whose

space, direction, orientation information equal to the original 3D T1 MR Image. The total

white matter volume is calculated using space information and the number of the pixel of the

total segmented white matter region.

The system for segmentation of WMH was designed with CNN, in which the input image

was comprised of a pre-processed FLAIR image, and the output was a segmented WMH mask

and its volume (Fig 1). Brain parenchyma were extracted from the FLAIR images using the in-

house brain extraction tool with a rigid transformation for template matching and a 3D UNet

deep learning model. The UNet architecture is an end-to-end CNN that conducts high-perfor-

mance biomedical image segmentation [33]. The UNet architecture contains two modules:

encoder and decoder. The encoder modules are a classic stack of CNN and max pooling layers

that analyze the context that represents the implicit features of the input image. Whereas the

decoder modules are a symmetric stack of transposed CNN that perform localization. The

UNet applies a skip connection between the encoder modules’ feature and decoder modules’

feature for improved localization performance. UNet is widely used, primary in medical image

segmentation, because of its high performance. The 3D UNet architecture consists of 4

encoder blocks and 3 decoder blocks using 3D convolution blocks (3D-conv block), 3D up

convolution blocks (3D-upconv block) and a 1x1 3D convolution layer. The 3D-conv block

sequentially includes 3D convolution– 3D batch normalization–Rectified Linear Unit (ReLU)

activation– 3D convolution– 3D batch normalization–ReLU activation. First 3D-conv block

has padding 3 and kernel size 5 for the convolution layers, otherwise has padding 1 and kernel

size 3. For the encoder, we perform 3D-conv block calculation and then conduct a 3D max-

pooling layer (kernel size 2, stride 2) to re-duce an image dimension. For the decoder, we act

3D-upconv block (3D convolution Transpose– 3D batch normalization–ReLU activation) and

then perform the 3D-conv block. Finally, the 1x1 3D convolution layer is applied to produce

an output mask. This model has [8, 16, 32, 64] channels for the encoder blocks [8, 16, 32],

channels for the de-coder blocks, and a final layer has a one channel. A WMH segmentation

model has a similar architecture to the 3D UNet, however, there are some differences. This

model is based on 2D layers (2D convolution, 2D convolution Transpose, 2D batch normaliza-

tion, 2D max-pooling layers) and consists of 5 encoder blocks and 4 decoder blocks. It has [16,

32, 64, 128, 256] channels for the encoder blocks [128, 64, 16, 32], channels for the decoder

blocks. The WMH segmentation model was developed for effective segmentation for large

masks such as periventricular WMH and small masks such as deep WMH [33]. The pre-
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processed image passed through the CNN to generate a segmentation mask. The overall pro-

cessing time is 2 minutes per case. Fig 2 shows three examples of a pre-processed FLAIR image

and a mask of segmented WMH, with total WMH volume of each case classified according to

Fazekas. This deep learning-based segmentation system was trained using ADAM optimizer

with learning rate 1e-4, 32 batch size, 100 epochs, generalized dice loss function. Elastic defor-

mation, mirror transformation was used for the image augmentation technique. The data

regarding the segmentation model (DeepBrain), which is presented in this study, are owned

by VUNO Inc.

Statistical analyses

The primary outcome was the diagnostic performance of automatic WMH volume and vol-

ume ratio for classifying the grades of Fazekas scale with its optimal cut-off values. WMH vol-

ume ratio was defined as automatic WMH volume/total white matter volume × 100. One-way

analysis of variance was done among groups with different Fazekas scales in both training and

test sets. The interobserver agreement of the Fazekas scale for each periventricular WMH and

deep WMH between two neuroradiologists was calculated using weighted Kappa. Optimal

cut-off values for determining the Fazekas scale were obtained from receiver operating

Fig 1. A schematic diagram of the deep learning-based WMH segmentation algorithm. The deep learning-based WMH segmentation algorithm is

consisting of two independent processes. First, brain extraction is conducted with two rigid transformation and in-house brain extraction algorithm using

3D U-Net. Second, in-house convolutional neural networks segment WMH from the preprocessed brain parenchyma image.

https://doi.org/10.1371/journal.pone.0274562.g001
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characteristic (ROC) curves, with the sensitivity, specificity, and area under each curve (AUC)

calculated using the Youden index [34], defined as sensitivity + specificity– 1 (values ranged

from -1 to +1). The secondary outcome was the diagnostic performance of automatic WMH

volume and volume ratio for differentiating subcortical vascular dementia with its optimal

cut-off values. All statistical analyses were performed using MedCalc version 18.6 (MedCalc

Software, Ostend, Belgium), with P values< 0.05 defined as statistically significant. Mean-

while, we obtained a Dice similarity coefficient score using our test set by manual segmenta-

tion to evaluate the competence of the model.

Results

Patient demographics

Between March 2017 and June 2018, 830 patients attended the outpatient clinic for memory

complaints. Patients with previous cerebral infarct (n = 16), white matter abnormality (n = 3),

no FLAIR examination (n = 3), poor image quality (n = 3), meningioma (n = 2), trauma

(n = 1), normal pressure hydrocephalus (n = 1), and Creutzfeldt-Jakob disease (n = 1) were

excluded, leaving the remaining 800 consecutive patients who were included in this analysis

(Fig 3). The mean age ± standard deviation (SD) of the training and test sets was 69.1

years ± 10.4 and 69.4 years ± 10.8, respectively; 350 and 129 patients were women in the train-

ing and test sets, respectively. The demographic characteristics of patients in training and test

set based on the Fazekas scale are shown in Table 1. In the training set (n = 596), there were

90, 311, 139, and 56 patients categorized as normal, mild, moderate, and severe. Moderate and

severe categories accounted for 32.7% (195 of 596). In the test set (n = 204), there were 33, 115,

33, and 23 patients categorized as normal, mild, moderate, and severe, respectively. Moderate

and severe categories constituted 27.5% (56 of 204).

Among the 596 patients in the training set, 28 (4.7%) were diagnosed with subcortical vas-

cular dementia. The mean age ± SD was 76.7 years ± 6.3, and 15 patients were women. The

mean duration of education in years ± SD was 9.4 ± 5.2, the mean MMSE score ± SD was

18.7 ± 5.3, and the mean Clinical Dementia Rating (CDR) was 0.9 ± 0.3. The mean total white

matter volume ± SD was 392.0 mL ± 56.0. Among the 204 patients in the test set, 6 (2.9%)

were diagnosed with subcortical vascular dementia. The mean age ± SD was 77.3 years ± 7.0,

and 6 patients were women. The mean duration of education in years ± SD was 5.8 ± 3.0, the

mean MMSE score ± SD was 18.2 ± 4.4, and the mean CDR was 1.0 ± 0.5. The mean total

white matter volume ± SD was 380.0 mL ± 29.7.

Optimal cut-off values for classifying Fazekas scale

The optimal cut-off values for classifying the grades of Fazekas scale using WMH volume and

volume ratio are described in Table 2. The mean WMH volume of the four previously

described categories were 2.3 mL, 6.6 mL, 18.2 mL, and 37.3 mL, respectively (Fig 4). In the

training set (n = 596), optimal cut-off values of WMH volume for differentiating normal vs.

mild/moderate/severe, normal/mild vs. moderate/severe, and normal/mild/moderate vs.

severe were 3.4 mL, 9.6 mL and 17.1 mL, respectively, and AUCs were 0.921 (95% CI: 0.896–

0.941), 0.956 (95% CI: 0.936–0.971), and 0.960 (95% CI: 0.941–0.975), respectively.

Fig 2. Three pairs of a pre-processed FLAIR image and a mask of segmented WMH with total WMH volume of each

case in different Fazekas categories (a-c) (WMH volume: a, 4.11 mL; b, 20.59 mL; c, 47.69 mL, the ratio of WMH

volume / total white matter volume: a, 1.09%; b, 5.18%; c, 9.94%). The last pair is the images of a subcortical vascular

dementia patient (c). FLAIR, fluid-attenuated inversion recovery.

https://doi.org/10.1371/journal.pone.0274562.g002
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The mean WMH volume ratio of the four categories were 0.5%, 1.6%, 4.6%, and 9.4%,

respectively (Fig 4). In the training set (n = 596), optimal cut-off values of WMH volume ratio

for differentiating normal vs. mild/moderate/severe, normal/mild vs. moderate/severe, and

normal/mild/moderate vs. severe were 0.7%, 2.5%, and 4.6%, respectively, and AUCs were

0.924 (95% CI: 0.900–0.944), 0.960 (95% CI: 0.941–0.975), and 0.960 (95% CI: 0.941–0.974),

respectively. ROC curves are available in the supplementary section (S1–S6 Figs).

In terms of interobserver agreement between the two neuroradiologists for classifying Faze-

kas scale of periventricular and deep WMH, the weighted Kappa values were 0.815 (95% CI:

0.785–0.846) and 0.852 (95% CI: 0.825–0.879), respectively.

Diagnostic performance for classifying Fazekas scale

The diagnostic performance of WMH volume and volume ratio for classifying the grades of

the Fazekas scale with the cut-off values are described in Table 2. When differentiating nor-

mal/mild vs. moderate/severe using WMH volume in the test set (n = 204), sensitivity,

Fig 3. Flow diagram showing the selection process of patients and their Fazekas scale. FLAIR, fluid-attenuated inversion recovery; MRI,

magnetic resonance imaging.

https://doi.org/10.1371/journal.pone.0274562.g003
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specificity, and accuracy were 96.4% (54/56, 95% CI: 87.7%–99.6%), 89.9% (133/148, 95% CI:

83.8%–94.2%), and 91.7% (187/204, 95% CI: 87.0%–95.1%), respectively. When differentiating

normal/mild/moderate vs. severe using WMH volume in the test set (n = 204), sensitivity,

specificity, and accuracy were 87.0% (20/23, 95% CI: 66.4%–97.2%), 90.6% (164/181, 95% CI:

85.4%–94.4%), and 90.2% (184/204, 95% CI: 85.3%–93.9%), respectively.

When differentiating normal/mild vs. moderate/severe using WMH volume ratio in the

test set (n = 204), sensitivity, specificity, and accuracy were 92.9% (52/56, 95% CI: 82.7%–

98.0%), 92.6% (137/148, 95% CI: 87.1%–96.2%), and 92.6% (189/204, 95% CI: 88.2%–95.8%),

respectively. When differentiating normal/mild/moderate vs. severe using WMH volume ratio

in the test set (n = 204), sensitivity, specificity, and accuracy were 87.0% (20/23, 95% CI:

66.4%–97.2%), 91.7% (166/181, 95% CI: 86.7%–95.3%), and 91.2% (186/204, 95% CI: 86.4%–

94.7%), respectively.

Table 1. Characteristics of patients based on the Fazekas scale.

Fazekas scale

Training set All patients (n = 596) Normal (n = 90) Mild (n = 311) Moderate (n = 139) Severe (n = 56) P values

Age (year) 69.1 ± 10.4 57.2 ± 11.8 68.3 ± 8.9 75.1 ± 6.6 76.0 ± 6.8 < 0.001

No. of male patients 246 55 118 46 27

No. of female patients 350 35 193 93 29

Education (year) 10.2 ± 5.1 12.7 ± 4.5 10.3 ± 4.9 9.0 ± 5.3 8.8 ± 5.4 < 0.001

MMSE score 24.7 ± 5.2 27.3 ± 3.4 25.3 ± 5.0 23.3 ± 5.1 21.4 ± 6.0 < 0.001

CDR 0.6 ± 0.4 0.4 ± 0.3 0.5 ± 0.4 0.7 ± 0.4 0.7 ± 0.4 < 0.001

WMH volume (mL) 11.7 ± 13.3 2.2 ± 1.7 7.0 ± 9.3 18.3 ± 9.9 36.5 ± 13.1 < 0.001

WMH volume/total white matter volume ×100 (%) 2.9 ± 3.4 0.5 ± 0.4 1.7 ± 2.4 4.6 ± 2.5 9.2 ± 3.7 < 0.001

Test set All patients (n = 204) Normal (n = 33) Mild (n = 115) Moderate (n = 33) Severe (n = 23) P values

Age (year) 69.4 ± 10.8 57.0 ± 12.8 70.0 ± 8.7 76.2 ± 6.2 74.7 ± 8.0 < 0.001

No. of male patients 75 9 46 14 6

No. of female patients 129 24 69 19 17

Education (year) 10.0 ± 4.9 11.8 ± 5.0 10.7 ± 4.8 7.7 ± 4.0 8.5 ± 5.1 0.002

MMSE score 25.3 ± 5.1 28.7 ± 2.6 25.4 ± 4.9 24.3 ± 4.8 21.4 ± 6.2 < 0.001

CDR 0.4 ± 0.4 0.1 ± 0.2 0.4 ± 0.4 0.5 ± 0.5 0.7 ± 0.4 < 0.001

WMH volume (mL) 10.7 ± 13.6 1.8 ± 1.2 5.5 ± 3.3 17.7 ± 6.3 39.3 ± 20.5 < 0.001

WMH volume/total white matter volume ×100 (%) 2.7 ± 3.4 0.4 ± 0.3 1.3 ± 0.8 4.5 ± 1.8 9.9 ± 5.1 < 0.001

Note—Unless otherwise specified, data are mean data ± standard deviation.

MMSE, Mini-Mental State Examination; CDR, Clinical Dementia Rating; WMH, white matter hyperintensity

https://doi.org/10.1371/journal.pone.0274562.t001

Table 2. Diagnostic performance of WMH volume for differentiating Fazekas scale with its cut-off values.

Fazekas scale Cut-off Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI)

WMH volume (mL)

Normal vs. mild/moderate/severe 3.4 mL 79.5% (72.7%–85.3%) 90.9% (75.7%–98.1%) 81.4% (75.3%–86.5%)

Normal/mild vs. moderate/severe 9.6 mL 96.4% (87.7%–99.6%) 89.9% (83.8%–94.2%) 91.7% (87.0%–95.1%)

Normal/mild/moderate vs. severe 17.1 mL 87.0% (66.4%–97.2%) 90.6% (85.4%–94.4%) 90.2% (85.3%–93.9%)

WMH volume/total white matter volume ×100 (%)

Normal vs. mild/moderate/severe 0.7% 83.6% (77.2%–88.8%) 84.9% (68.1%–94.9%) 83.8% (78.0%–88.6%)

Normal/mild vs. moderate/severe 2.5% 92.9% (82.7%–98.0%) 92.6% (87.1%–96.2%) 92.6% (88.2%–95.8%)

Normal/mild/moderate vs. severe 4.6% 87.0% (66.4%–97.2%) 91.7% (86.7%–95.3%) 91.2% (86.4%–94.7%)

CI, confidence interval; WMH, white matter hyperintensity

https://doi.org/10.1371/journal.pone.0274562.t002
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Fig 4. WMH volume (a) and WMH volume ratio (b) for Fazekas categories.

https://doi.org/10.1371/journal.pone.0274562.g004
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Optimal cut-off values for differentiating subcortical vascular dementia

Among 596 patients of training set, 4.7% (28/596) has diagnosed as subcortical vascular

dementia with (n = 13) or without combined Alzheimer’s disease (n = 15). For distinguishing

subcortical vascular dementia from others using WMH volume, optimal cut-off value was 17.0

mL and AUC was 0.931 (95% CI: 0.907–0.950). For distinguishing subcortical vascular demen-

tia from others using WMH volume ratio, optimal cut-off value was 3.4 and AUC was 0.934

(95% CI: 0.911–0.953).

Diagnostic performance for differentiating subcortical vascular dementia

Among the 204 patients of the test set, 2.9% (6/204) were diagnosed as subcortical vascular

dementia with (n = 4) or without combined Alzheimer’s disease (n = 2). For distinguishing

subcortical vascular dementia from others using WMH volume, sensitivity, specificity, and

accuracy were 83.3% (5/6, 95% CI: 35.9%–99.6%), 84.3% (167/198, 95% CI: 78.5%–89.1%),

and 84.3% (172/204, 95% CI: 78.6%–89.0%), respectively. For distinguishing subcortical vascu-

lar dementia from others using WMH volume ratio, sensitivity, specificity, and accuracy were

100.0% (6/6, 95% CI: 54.1%–100.0%), 79.8% (158/198, 95% CI: 73.5%–85.2%), and 80.4%

(164/204, 95% CI: 74.3%–85.6%), respectively.

Discussion

The current study investigated the diagnostic performance of a deep learning-based automatic

WMH volume segmentation to classify the grades of the Fazekas scale and differentiate sub-

cortical vascular dementia. In this study, optimal cut-off values for determining WMH volume

as normal vs. mild/moderate/severe, normal/mild vs. moderate/severe and normal/mild/mod-

erate vs. severe were 3.4 mL, 9.6 mL and 17.1 mL, and AUCs were 0.921 (95% CI: 0.896–

0.941), 0.956 (95% CI: 0.936–0.971), and 0.960 (95% CI: 0.941–0.975). The WMH volume ratio

showed similar results. When differentiating normal/mild vs. moderate/severe using WMH

volume in the test set, sensitivity, specificity, and accuracy were 96.4%, 89.9%, and 91.7%,

respectively. For differentiating subcortical vascular dementia using WMH volume and vol-

ume ratio, optimal cut-off values were 17.0 mL and 3.4 with AUCs being 0.931 (95% CI:

0.907–0.950) and 0.934 (95% CI: 0.911–0.953), respectively. In the test set for evaluating diag-

nostic performance of differentiating subcortical vascular dementia using WMH volume, sen-

sitivity was 83.3% (5/6, 95% CI: 35.9%–99.6%), 84.3% (167/198, 95% CI: 78.5%–89.1%), and

accuracy was 84.3% (172/204, 95% CI: 78.6%–89.0%). Therefore, the deep learning-based

automatic WMH segmentation algorithm may be an accurate and promising method for clas-

sifying the grades of the Fazekas scale and differentiating subcortical vascular dementia.

The advantage of using the Fazekas scale is the easy perception of WMH burden because it

is the most prevalent method for grading WMH lesions. However, it is a qualitative method

and limited to accurately evaluating WMH volume using only 4 grades. Numerous attempts

have been done for quantitative measurement of WMH using deep learning [16]. There was a

MICCAI WMH segmentation challenge [35] in which the winner used a 2D U-Net model that

applied an ensemble method and achieved a 0.80 dice similarity coefficient. DeepBrain, which

also employed a 2D U-Net, focused on treating highly unbalanced WMH labels by applying

generalized dice loss, and our model used only T2-FLAIR MRI for developing a WMH seg-

mentation model. DeepBrain showed relatively high performance by achieving a 0.746 dice

similarity coefficient score (median value) for our test set. However, direct comparison with

the winner of the challenge model was not possible because the external test set of the competi-

tion has not been released.
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We speculated that if suitable volume cut-off values can be evaluated with acceptable diag-

nostic performance based on a well-developed automatic volumetry, an automated and reli-

able Fazekas scale can be determined. We expect this would help the better perception of

WMH burden in both quantitative and qualitative ways; moreover, it would facilitate follow-

up of the burden of WMH. One study investigated the diagnostic performance of the auto-

matic WMH segmentation method in distinguishing high Fazekas grades (score = 2 or 3) and

low Fazekas grades (score = 0 or 1) using the Lesion Segmentation Tool software [36]. The

AUC value from that study was 0.93, whereas our results showed that AUC was 0.981 (95% CI:

0.951–0.995), with the cut-off being 9.6 mL for differentiating normal/mild vs. moderate/

severe. However, our study provided additional diagnostic performance with optimal cut-off

values for classifying normal and severe Fazekas grades. We also evaluated the WMH volume

ratio. Moreover, our study noted the diagnostic performance of WMH in differentiating sub-

cortical vascular dementia from other subtypes of dementia, which had not been evaluated

previously.

Subcortical vascular dementia is a type of vascular dementia which is the second most com-

mon cause of dementia following Alzheimer’s disease (AD) [37]. Two-thirds of patients with

subcortical vascular dementia have pathologic features of AD, and one-third of patients with

AD have vascular pathology, which implies that subcortical vascular dementia and AD may

overlap pathologically [38–41]. However, the existence of pure subcortical vascular dementia

was discovered based on the amyloid imaging, which represents significant extent of subcorti-

cal white matter ischemic changes without evidence of amyloid plaque deposition in the brain

[42]. Apart from mixed type with AD, pure subcortical vascular dementia demonstrates less

difficulties in verbal/visual memory-related tasks but more problem in executive functions [25,

43–46]. However, the diagnosis of subcortical vascular dementia was not made on the basis of

the amyloid imaging in our study because it is not routinely performed in clinical practice.

Rather, clinical and radiologic criteria were used by clinicians as previously described [31].

Our study has several limitations. First, because it was a retrospective in design, absence of

bias in patient selection could not be guaranteed. Second, the study was performed in a single

center. However, it was conducted with a large cohort of 800 consecutive patients. Further

multi-centered prospective studies will be required. Third, the cut-off values may depend on

the scanner and the algorithms used for the automatic WMH. Fourth, our study MRI protocol

used 2D FLAIR images with 4 mm section thickness, thus, there might be a variation for

obtaining volume measurement. Further study using 3D FLAIR images might be needed.

Fifth, we could not evaluate the competence of the already developed and commercially avail-

able segmentation model. However, Dice similarity coefficient score was 0.714 ± 0.149

(mean ± SD) with the median of 0.746 using our test set.

Conclusions

In conclusion, the deep learning-based automatic WMH segmentation algorithm may be an

accurate and promising method for classifying the grades of the Fazekas scale and differentiat-

ing subcortical vascular dementia.
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S1 Fig. ROC curve for normal vs. mild/moderate/severe using an optimal cut-off of WMH.

(TIF)
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S2 Fig. ROC curve for normal/mild vs. moderate/severe using an optimal cut-off of WMH.

(TIF)

S3 Fig. ROC for normal/mild/moderate vs. severe using an optimal cut-off of WMH.

(TIF)

S4 Fig. ROC for normal vs. mild/moderate/severe using an optimal cut-off of WMH vol-

ume ratio.

(TIF)

S5 Fig. ROC for normal/mild vs. moderate/severe using an optimal cut-off of WMH vol-

ume ratio.

(TIF)

S6 Fig. ROC for normal/mild/moderate vs. severe using an optimal cut-off of WMH vol-

ume ratio.

(TIF)
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29. Wallin A, Sjögren M, Blennow K, Davidsson P. Decreased cerebrospinal fluid acetylcholinesterase in

patients with subcortical ischemic vascular dementia. Dement Geriatr Cogn Disord. 2003; 16(4): 200–

207. https://doi.org/10.1159/000072803 PMID: 14512714

30. Chen Z-R, Huang J-B, Yang S-L, Hong F-F. Role of Cholinergic Signaling in Alzheimer&rsquo;s Dis-

ease. Molecules. 2022; 27(6): 1816.

31. Choi SH, Kim S, Han SH, Na DL, Kim DK, Cheong HK, et al. Neurologic signs in relation to cognitive

function in subcortical ischemic vascular dementia: a CREDOS (Clinical Research Center for Dementia

of South Korea) study. Neurological sciences: official journal of the Italian Neurological Society and of

the Italian Society of Clinical Neurophysiology. 2012; 33(4): 839–846. https://doi.org/10.1007/s10072-

011-0845-4 PMID: 22068220

32. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 4th edn

(DSM-IV) ed: American Psychiatric Association, Washington DC; 1994.

33. Ronneberger O, Fischer P, Brox T, editors. U-net: Convolutional networks for biomedical image seg-

mentation. International Conference on Medical image computing and computer-assisted intervention;

2015: Springer.

34. Youden WJ. Index for rating diagnostic tests. Cancer. 1950; 3(1): 32–35. https://doi.org/10.1002/1097-

0142(1950)3:1<32::aid-cncr2820030106>3.0.co;2-3 PMID: 15405679

35. Kuijf HJ, Biesbroek JM, De Bresser J, Heinen R, Andermatt S, Bento M, et al. Standardized Assess-

ment of Automatic Segmentation of White Matter Hyperintensities and Results of the WMH Segmenta-

tion Challenge. IEEE Trans Med Imaging. 2019; 38(11): 2556–2568. https://doi.org/10.1109/TMI.2019.

2905770 PMID: 30908194

36. Cedres N, Ferreira D, Machado A, Shams S, Sacuiu S, Waern M, et al. Predicting Fazekas scores from

automatic segmentations of white matter signal abnormalities. Aging. 2020; 12(1): 894–901. https://doi.

org/10.18632/aging.102662 PMID: 31927535
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