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Taxol-mediated augmentation of CD95 ligand-induced
apoptosis of human malignant glioma cells: association
with bcl12 phosphorylation but neither activation of p53
nor GIM cell cycle arrest
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Laboratory of Molecular Neuro-Oncology, Department of Neurology, University of Tubingen, School of Medicine, Hoppe-Seyler-Strasse 3, 72076 Tubingen,
Germany

Summary The anti-tumour alkaloid taxol shows strong cytotoxic and antiproliferative activity in two human malignant glioma cell lines, T98G
and LN-229. CD95 (Fas/APO-1) ligand is a novel cytotoxic cytokine of the tumour necrosis factor (TNF) family that exerts prominent
antiglioma activity. At clinically relevant taxol concentrations of 5-100 nM, taxol and CD95 ligand showed significant synergistic cytotoxicity
and growth inhibition. High concentrations of taxol induced G/M cell cycle arrest in both cell lines. The synergy of taxol and CD95 ligand was
independent of cell cycle effects of taxol as synergy was achieved at much lower taxol concentrations than G/M arrest and as cell cycle
effects of taxol were unaffected by co-exposure to CD95 ligand. Similarly, high concentrations of taxol were required to induce p53 activity in
the p53 wild-type cell line LN-229. This effect was not modulated by CD95 ligand, suggesting that synergy is also independent of p53
activation. However, taxol induced a mobility shift of the bcl-2 protein on immunoblot analysis, indicative of bcl-2 phosphorylation. Bcl-2
phosphorylation on serine was confirmed by immunoprecipitation and phosphoserine immunoblot analysis. Considering (1) that
phosphorylation of bcl-2 interferes with its heterodimerization with bax and (2) the inhibition of CD95-mediated apoptosis by bcl-2, we propose
that taxol sensitizes malignant glioma cells to CD95 ligand by increasing the functional bax/bcl-2 rheostat in favour of bax and thus cell death.
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The median survival of malignant glioma patients receiving
cytoreductive surgery, radiotherapy and adjuvant chemotherapy
does not exceed 1 year. There is thus an urgent need for new
experimental approaches to effective forms of treatment and for
the exploration of novel antineoplastic drugs.

Taxol is a plant-derived cytotoxic agent that has been proposed
to act via a novel mechanism of action: prevention of tubulin
depolymerization, stabilization of microtubules and promotion of
tubulin polymerization (Schiff et al, 1979; Horwitz et al, 1986).
The p53 tumour suppressor gene product mediates growth arrest
and DNA repair or apoptosis in response to genotoxic stimuli. Its
major effects depend on the activation of target genes, such as p21,
associated with growth arrest, and bax, linked to p53-mediated
apoptosis. Actions of taxol documented in vitro include induction
of G/M cell cycle arrest in human leukaemic cells (Horwitz et al,
1986; Rowinsky et al, 1988), induction of p53 activity and expres-
sion of p21 (Blagosklonny et al, 1995), and induction of apoptosis
in breast cancer and myeloid leukaemia cells (Bhalla et al, 1993;
Blagosklonny et al, 1996). Selective disruption of p53 in otherwise
genetically intact fibroblasts enhanced rather than decreased sensi-
tivity to taxol (Wahl et al, 1996). Taxol-mediated antineoplastic
effects on various transplanted tumors in vivo correlate with taxol-
induced apoptosis but not with mitotic cell cycle arrest after treat-
ment with taxol (Milross et al, 1996). More recently, it has been
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proposed that taxol may act to phosphorylate the bcl-2 protein and
thereby attenuate bcl-2 affinity for the bax protein. Bax would
mediate apoptosis when released from bcl-2 heterodimers
(Blagosklonny et al, 1996; Haldar et al, 1996).

TNF-ax, a pleiotropic cytokine mediating inflammatory and
immunological reactions, has been demonstrated to act synergisti-
cally with taxol on ovarian carcinoma cells in vitro (Williams et al,
1992; Berkova and Page, 1995). However, TNF-a also decreases
TNF-a receptor density in macrophages (Ding et al, 1990).

Taxol is used mainly for patients with platin-refractory ovarian
cancer and breast cancer. Based on promising studies on the effects
of taxol on cultured glioma cells (Cahan et al, 1994; Silbergeld et
al, 1995) and glioma xenografts (Riondel et al, 1992), several clin-
ical studies of taxol for human malignant glioma patients have been
conducted (Chamberlain and Kormanik, 1995; Glantz et al, 1995a;
Prados et al, 1996). The disappointing results of these studies are
probably partly due to the poor penetration of taxol into the brain at
doses that are tolerated when given systemically (Glantz et al,
1995b). Although taxol may penetrate pathological vessel walls
within tumour tissue much more efficiently than intact brain vessel
walls (Heimans et al, 1994), it is clearly desirable to expose as
many tumour cells to taxol as long as possibly achievable. Using
local controlled delivery devices, such as taxol polymers, may be
useful in circumventing this problem (Walter et al, 1994). This
local application might also prove useful combined with post-oper-
ative radiotherapy as taxol is a radiosensitizer for glioma cells in
vitro (Tishler et al, 1992). We have been involved in the develop-
ment of a novel approach to malignant glioma that is based on the
targeted induction of apoptosis via activation of the CD95 cytokine
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receptor protein (Weller et al, 1994, 1995a-c; Roth et al, 1997).
The present study was designed to examine possible synergistic
interactions between taxol, TNF-a and CD95 ligand to design an
efficient immunochemotherapy for malignant glioma. Further, we
have examined possible links between synergy, CD95 expression,
cell cycle effects and activation of p53, p21, bax and bcl-2.

MATERIALS AND METHODS

Chemicals and cell lines

The human malignant glioma cell line LN-229 was kindly
provided by Dr N de Tribolet (Lausanne, Switzerland). T98G
human glioma cells were obtained from ATCC (Rockville, MD,
USA). TNF-ax was purchased from Boehringer Mannheim
(Germany). p53 antibody pAbl801 was from Oncogene Science
(Uniondale, NY, USA), human bcl-2 antibody from Dakopatts
(Glostrup, Denmark) and phosphoserine antibody from Sigma (St
Louis, MO, USA). p21 and bax antibodies were obtained from
Santacruz (Santacruz, CA, USA). Trypan blue was purchased
from Biochrom KG (Berlin, Germany), taxol (paclitaxel) and
propidium iodide were from Sigma. FITC-UB2 anti-Fas antibody
was from Immunotech (Hamburg, Germany), FITC-mouse IgGl
was from Sigma. The murine neuroblastoma cell line Neuro-2A
was maintained in minimal essential medium (MEM) supple-
mented with 10% fetal calf serum (FCS), 2 mM glutamine, 1%
non-essential amino acids and 1% penicillin/streptomycin. Neuro-
2A cells engineered to produce soluble murine CD95 ligand have
been described elsewhere (Rensing-Ehl et al, 1995). One unit of
cytotoxic activity attributable to CD95 ligand in Neuro-2A super-
natants was defined as the activity required for half-maximal
killing of the CD95 antibody-sensitive glioma cell line LN-18
(Weller et al, 1994). The experiments using CD95 ligand-
containing supernatants were performed using supernatant from
pooled neo vector control Neuro-2A cells as control.

Cell culture and detection of cytotoxicity and growth
inhibition

The human glioma cell lines were cultured in Dulbecco's modified
Eagle medium (DMEM) containing 10% FCS, 1 mm glutamine and
1% penicillin/streptomycin as previously described (Weller et al,
1994, 1995b). Viability and proliferation were assessed by crystal
violet staining or by trypan blue dye exclusion. For cytotoxicity
assays, 5 x 103 glioma cells were plated in 96-well plates, adhered

for 24 h, exposed to taxol or CD95 ligand or TNF-ax, or combina-
tions thereof, for 72 h in complete medium. For growth inhibition
assays, 1.5 x 103 glioma cells were plated in 96-well plates, adhered
for 24 h, exposed to the respective agents, and allowed to recover
for five generation times in fresh agent-free medium. Generation
times were 24 h for LN-229 and 26 h for T98G.

Flow cytometry

For cell cycle analysis, the glioma cells were exposed to taxol or
CD95 ligand or both for 24 h, washed, incubated with trypsin for
3 min at 37°C, harvested, washed and fixed with 70% ice-cold
ethanol. Approximately 106 cells per condition were stained with
propidium iodide (50 tg ml-' in phosphate-buffered saline (PBS),
containing 100 tg ml RNAase A), washed and subjected to flow
cytometric analysis of DNA content using a Becton Dickinson
FACScalibur cytometer. Results are presented as histograms. The
percentage of apoptotic cells after exposure to taxol or CD95 ligand
or both was also assessed by FACS analysis. After treatment, the
cells were harvested by trypsinization, washed with Dulbecco's
PBS and fixed with ice-cold 70% ethanol. The dead cells of each
sample, which had detached from the culture flask, were harvested
from the supernatant by centrifugation and subjected to the same
procedure as the non-detached (viable) cells. One day after fixation
the cells were centrifuged, washed with Dulbecco's PBS and
stained with propidium iodide. The percentage of the sub-G,
fraction consisting of apoptotic nuclei was calculated by CellQuest
software (Becton Dickinson, CA, USA).

Detection of CD95 expression

For flow cytometric analysis of CD95 expression, glioma cells
were detached from the culture dishes, harvested into ice-cold
complete medium containing 10% FCS, centrifuged and
resuspended in FACS buffer (1% bovine serum albumin
(BSA)/PBS/0.01% sodium azide). Subsequently, 10 p1 of FITC-
UB2 anti-Fas antibody was added per sample (106 cells) or, as a
control, FITC-mouse IgG,. After incubation and washing, samples
were resuspended in 300 g1 of PBS containing 1% formaldehyde
and stored light-protected at 40C before analysis by a Becton
Dickinson FACScalibur cytometer. The specific fluorescence
index (SFI) was calculated as the ratio of the mean fluorescence
values obtained with the specific CD95 antibody and the isotype
control antibody (Weller et al, 1995c).

Table 1 EC50 concentrations for cytotoxicity and growth inhibition of LN-229 and T98G human malignant glioma cells after exposure to taxol,
CD95 ligand or TNF-a

Cytotoxicity Growth inhibition

LN-229 T98G LN-229 T98G

Taxol (nM) 38 (2) 12 (1) 82 (3) 16 (2)
CD95 ligand (U ml)-1 31 (±3) 9 (1) 550 (13) 25 (2)
TNF-a (ng ml)-' > 250 > 250 > 250 > 250

For cytotoxicity assays, the glioma cells were exposed for 72 h to taxol or the cytokines and viability was determined by crystal violet staining
immediately thereafter. For growth inhibition assays, the cells were exposed to the agents for 24 h, had their medium replaced by drug-free
medium and were allowed to recover for five generation times before crystal violet staining (n = 3, mean ± s.d.)
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Immunoblot analysis

Immunoblot studies for the detection of p53, p2l, bcl-2 and bax
protein expression were performed according to standard proce-
dures as previously described (Weller et al, 1994). Briefly, glioma
cell cultures treated as indicated were rinsed with cold PBS and
harvested into cold PBS containing phenylmethylsulphonyl
fluoride (10 gg ml-') with a cell scraper. The cells were
centrifuged and resuspended in lysis buffer (0.12 M sodium chlo-
ride, 0.01 M Tris HCI, 0.005 M EDTA, 0.5% Triton, 2 ,ug ml-' apro-
tinin, 100 gg mi-' phenylmethylsulphonyl fluoride) for 10 min on
ice. The lysates were centrifuged for 10 min in a microfuge at
13 000 r.p.m. Soluble supernatant protein (20 jig per lane) was sepa-
rated on 10% (p53) or 15% (p21, bax, bcl-2) polyacrylamide gels
and blotted onto nitrocellulose by standard procedures. The
membranes were washed, incubated with primary antibody
(2 jig ml-'), washed, incubated with secondary antibody (alkaline
phosphatase conjugate) and stained with nitroblue tetrazolium chlo-
ride and 5-bromo-4-chloro-3-indolyl phosphate in 0.1 M Tris HCI
containing 50 mm magnesium chloride and 10 mm sodium chloride.

Immunoprecipitation

Approximately 106 human glioma cells were washed with ice-cold
PBS, harvested into PBS containing phenylmethylsulphonyl
fluoride (10 jig ml-l) and lysed in lysis buffer for 10 min on ice (see
above). Cell nuclei and debris were removed by centrifugation at
13 000 r.p.m. for 10 min. After pre-clearing the lysates with mouse
IgG and protein G-Sepharose for 30 min and centrifugation, the
lysates were incubated with bcl-2 antibodies overnight. Immuno-
precipitates were then captured with protein G-Sepharose for
60 min. After washing the immunoprecipitates in lysis buffer, the
samples were separated on a 15% polyacrylamide gel, blotted onto
nitrocellulose, washed, incubated with biotinylated phosphoserine
antibody and stained with nitroblue tetrazolium chloride and 5-
bromo-4-chloro-3-indolyl phosphate in 0.1 M Tris HCI containing
50 mm magnesium chloride and 10 mm sodium chloride.

Analysis of synergy

Synergy was evaluated (1) by the fractional product method of
Webb (1963), which allows an evaluation of synergy at a defined
level of effect, and (2) by the isobologram method (Berenbaum,
1981), which reveals synergy over a broad range of concentrations.
In the fractional product method, the (additive) effect of two inde-
pendently acting agents is defined as the product of the unaffected
fractions after treatment with either agent alone: f (1,2) =

fu(l) x f (2). This formula allows the calculation of the predicted
(additive) effect of co-treatment, based on the assumption that two
agents do not interact or cooperate in inducing their effects. If the
unaffected fraction, i.e. the relative percentage of surviving cells
compared with untreated control cells, is below the calculated
product fu(1,2) after co-treatment with two drugs, then synergy is
assumed. Results are considered significant if by Student's t-test P-
values are less than 0.05. Synergy was also calculated using the
isobole analysis of Berenbaum (1981). The cells are exposed to
different concentrations of each drug alone and of the two agents in
combination. After treatment the relative survival compared with
an untreated control is assessed by a viability assay. The next step
is to plot the measured data as concentration effect curves. The
EC50 values of co-treatment are determined for each curve and
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Figure 1 Synergy of taxol and CD95 ligand, but not taxol and TNF-a: the
fractional product method. The glioma cells were co-exposed for 24 h to taxol
and CD95 ligand (A-D) or taxol and TNF-a (E-H) and allowed to recover for
five generation times in fresh agent-free medium. The first bar in each panel
shows the growth-inhibitory effect of CD95 ligand (A-D) or TNF-a (E-H)
alone. The second bar shows the growth inhibitory effect of taxol alone. The
third (open) bar shows the predicted independent (additive) effect of co-
treatment (see Materials and methods). The fourth, black bar shows the
observed effect of co-treatment. If the observed effect exceeds the predicted
effect significantly, synergy is assumed (n = 3, mean and s.d., *P < 0.05,
Student's t-test, observed effect compared with predicted effect)
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T98G
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Figure 2 Synergy of taxol and CD95 ligand: isobologram analysis. LN-229
and T98G cells were exposed to taxol, CD95 ligand or both for 72 h. Viability
was assessed by crystal violet assay. Data are expressed as outlined in
Materials and methods and are representative of three experiments with
similar results. According to the isobole method of Berenbaum (1981), the
straight line connecting the ECQ0 values of two agents with monotherapy
represents additivity (independence). Curves below this line indicate synergy:
curves above this line indicate antagonism

Table 2 Flow cytometric analysis of CD95 expression after exposure to
taxol

Control Taxol (50 nM) Taxol (500 nM) Taxol (1000 nM)

LN-229 2.08 1.83 2.11 2.19
T98G 1.82 1.69 1.49 1.49

LN-229 or T98G human malignant glioma cells were exposed to various
concentrations of taxol for 24 h. CD95 expression was detected by flow
cytometry as outlined in Materials and methods. Data are shown as SFI
values, which represent the ratio of mean fluorescence values of CD95
antibody to isotype control antibody (see text).

divided by the EC values for each drug in the absence of the other
drug. The resulting data constitute the isobologram. The straight
line connecting the EC values of the two agents when applied
alone represents additivity (independence). Points below this line
indicate synergy: points above this line indicate antagonism.

RESULTS

Sensitivity of LN-229 and T98G human malignant
glioma cells to taxol, CD95 ligand and TNF-a

The purpose of the present study was to examine a possible
synergy of taxol-induced cytotoxicity with CD95 ligand-induced
apoptosis. In the first set of experiments, we established concen-
tration-response curves of sensitivity to taxol. CD95 ligand and
TNF-a for LN-229 and T98G human malignant glioma cells in
acute cytotoxicity and growth inhibition assays. For acute cyto-
toxicity assays, we exposed the glioma cells to these agents for
72 h and assessed viability by crystal violet staining or trypan blue
exclusion. For growth inhibition assays. we exposed the cells for
24 h, washed them and allowed them to recover for five generation
imes, i.e. 5-7 days. before crystal violet staining. EC>, concentra-
dons were determined by linear regression (Table I).
Taxol exhibited strong acute cytotoxic effects. The EC,

concentrations in the crystal violet assay were 12 ± I nm for T98G
and 38 ± 2 nm for LN-229 cells. The data obtained with the crystal
fviolet assay were corroborated by trypan blue exclusion assays, as
formally the crystal violet assay cannot differentiate cytotoxicity
from growth inhibition. These two assays yield very similar results

Cancer Research Campaign 1998
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Figure 3 Cell cycle analysis of human malignant glioma cells exposed to
taxol. LN-229 or T98G cells were untreated or exposed to taxol at 50 or

500 nm for 24 h in complete medium before cell cycle analysis (see Materials
and methods). The first peak represents cells in GJG, phase, the second
peak cells in G/M

in the 72 h continuous exposure paradigm (data not shown).
Glioma cells exposed to taxol showed classical signs of apoptosis.

including membrane blebbing. condensation and segregation of
chromatin into sharply delineated masses with apoptotic body
formation, and condensation of the cytoplasm. Interestingly. we

did not confirnm the previously reported threshold for taxol
cytotoxicity that had been interpreted as being indicative of a

saturatable microtubular target (Helson et al. 1993: Silbergeld et

al. 1995). Although a minor percentage of cells was still alive after
a 24 h exposure. even to the highest concentrations of taxol exanm-

ined. prolonged exposure to taxol was sufficient to kill 100C/( of
the cells at 72 h. as confirmed by trypan blue exclusion. The
growth inhibition assays also revealed prominent antiproliferative
activity of taxol at nanomolar concentrations (Table 1).

We have previously reported that LN-229 and T98G cells are

largely resistant to the proapoptotic effects of agonistic CD95 anti-

bodies unless co-treated with inhibitors of RNA and protein
synthesis. such as actinomycin D or cycloheximide (Weller et al,
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Control Taxol CD95 ligand Taxol +
Increase in (50 nM) (8 U ml-1) CD95 ligand
sub-G fraction _ 1.5-fold 1.7-fold 5.1-fold
compared with
untreated control

Figure 4 Quantification of synergistic cytotoxicity by flow cytometry. T98G cells were exposed to taxol, CD95 ligand or both for 24 h. The cells were stained
with propidium iodide and the sub-G1 fraction of each sample was analysed by flow cytometry (see Materials and methods)
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Figure 5 p53, p21, bax and bcl-2 expression in glioma cells exposed to taxol and CD95 ligand. LN-229 (upper panel) or T98G (lower panel) cells were either
untreated or exposed to taxol at 50, 500 or 1000 nm, in the absence (A-D) or presence (E-H) of CD95 ligand (80 U ml-' for LN-229, 8 U ml-' for T98G) for 24 h.
Supematant from neo vector control cells lacking CD95 ligand was used as control (A-D). Soluble protein lysates were prepared as described and 20 igg per
lane was subjected to SDS-PAGE and immunoblot analysis (Weller et al, 1994; see Materials and methods)
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Figure 6 Bcl-2 phosphorylation on serine after exposure of glioma cells to
taxol. LN-229 glioma cells were exposed to 50 nM taxol for 24 h (A, C) or
untreated (B, D). As outlined in Materials and methods, bcl-2 was
immunoprecipitated and the precipitates subsequently subjected to SDS-
PAGE and immunoblot analysis for phosphoserine residues. As control, the
lysates of treated (C) and untreated (D) cells were immunoprecipitated with
mouse IgG isotype control antibody and subjected to the same immunoblot
procedure as the bcl-2 immunoprecipitates (A, B)

1994). Using the natural CD95 ligand derived from CD95 ligand-
expressing murine neuroblastoma cells (Rensing-Ehl et al, 1995),
efficient killing was achieved in the absence of such agents, LN-
229 being more resistant to CD95-mediated apoptosis, as previ-
ously reported (Weller et al, 1994). Exposure to high concentrations
of CD95 ligand, e.g. 800 U ml-' induced prominent cytotoxicity
within 24 h, i.e. 32% in LN-229 and 83% in T98G cells.
Accordingly, lower concentrations of CD95 ligand were selected
for the synergy studies.
As previously reported (Zuber et al, 1988) and confirmed in our

previous studies (Weller et al, 1994), relevant concentrations
(<250 ng ml-') of TNF-a were neither cytotoxic nor growth
inhibitory to human glioma cells in the absence of inhibitors of
RNA and protein synthesis (Table 1).

Synergistic cytotoxicity and growth inhibition after
co-exposure to taxol and CD95 ligand

Next, we asked whether cytotoxicity and growth inhibition
induced by co-treatment with taxol and either CD95 ligand or
TNF-a are synergistic, independent (additive) or antagonistic
compared with the effects of exposure to either agent alone. The
cells were treated with taxol or the cytokines, or their combination,
either for 72 h or for 24 h with a recovery of five generation times.
According to the fractional product method, there was synergy
between taxol and CD95 ligand both in the growth inhibition assay
(Figure 1) and in the cytotoxicity assay (data not shown) for both
cell lines. In contrast, there was no such effect with the combina-
tion of taxol and TNF-a. This approach assumes synergy if the
observed effect of co-treatment significantly exceeds the predicted
(additive) effect. Synergy of taxol and CD95 ligand was also
demonstrated by isobologram analysis (Figure 2). Here, the cells
were exposed to broad concentration ranges of taxol, CD95 ligand
or a combination of both for 72 h. Median effect concentrations
were determined (EC50) and depicted graphically as isobolograms,
as outlined in Materials and methods. The discrepancy between
the predicted and the observed effect allows visualization of the
synergy. Synergy according to isobologram analysis was also
confirmed in the growth inhibition paradigm (data not shown).

Taxol does not enhance CD95 cell surface expression
in human glioma cells

One possible mechanism of synergy between CD95 ligand and
taxol is drug-induced augmentation of CD95 expression in the
glioma cells, which would result in enhanced CD95-dependent
signalling. Therefore, we examined CD95 expression in LN-229
and T98G glioma cells by flow cytometry after exposure to
increasing concentrations of taxol for 24 h. Table 2 provides SFI
values for CD95 expression (see Materials and methods). A SFI of
1.0 indicates that there is no difference in binding of CD95 anti-
body compared with an isotype control antibody. Untreated LN-
229 and T98G human glioma cells were CD95 positive (SFI > 1.0)
as previously reported (Weller et al, 1995c). Flow cytometry
histograms revealed a rather homogeneous expression of CD95
(data not shown). This base line expression of CD95 was not
enhanced by taxol. In fact, CD95 expression was unaffected in
LN-229 cells and decreased rather than enhanced in T98G cells
exposed to taxol.

Independence of synergy from taxol-induced cell cycle
arrest

To address the mechanism underlying synergy of taxol and CD95
ligand, we compared the effects of taxol (0, 50, 500 or 1000 nM)
and taxol plus CD95 ligand (8 or 80 U ml-') on the cell cycle
distribution of LN-229 and T98G cells. High concentrations of
taxol (500 nM) induced a cell cycle block in G2/M phase, whereas
lower nanomolar concentrations had no such effect (Figure 3). In
contrast, these lower concentrations were rather effective in
inducing synergistic glioma cell killing and growth inhibition
when co-administered with CD95 ligand (Figures 1, 2 and 4). This
was further confirmed by flow cytometry, which was used to
detect apoptotic cells as the sub-G, fraction that encompasses
apoptotic cell nuclei and larger cellular remnants. The sub-G frac-
tions of T98G cells after a 24-h treatment with taxol only or CD95
ligand only were 1.5-fold or 1.7-fold higher than the sub-G, frac-
tion of untreated control cells (Figure 4). However, the sub-G,
fraction of glioma cells co-exposed to taxol and CD95 ligand was
5.1-fold increased. Absolute percentages of the sub-GI fraction
were 4.1% in untreated cells, 6.0% with 50 nM taxol, 7.1% with
8 U ml' CD95 ligand and 21.2% for 50 nM taxol plus 8 U ml'
CD95 ligand.

p53 and p53 target gene expression after exposure of
human glioma cells to taxol and CD95 ligand: taxol-
induced phosphorylation of the bcl-2 protein

LN-229 has wild-type p53 activity, whereas T98G is mutant for
p53 (Van Meir et al, 1994; Weller et al, 1997). While the p53 wild-
type cell line LN-229 was more resistant to taxol than the p53
mutant cell line T98G, this difference was not striking (Table 1).
We examined changes in p53 expression and expression of two
p53 target genes, p21 and bax, after exposure to taxol and asked
whether such changes were modulated during synergistic augmen-
tation of taxol toxicity by CD95 ligand (Figure 5). Excessive
concentrations of taxol (1000 nM) were required to induce p53
expression in LN-229 cells (upper panel, lane D). This p53 induc-
tion was not modulated by co-exposure to CD95 ligand (lane H).
In contrast, no change in p53 expression was observed in T98G
cells, as expected for a p53 mutant cell line. Note that most p53
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mutations result in accumulation of p53 protein because of a
prolonged half-life of the mutant protein, as is shown here for
T98G. The p21 protein is thought to be responsible for p53- and
drug-induced growth arrest in GJG1. Interestingly, there was no
induction of p21 in either cell line, even though p53 was induced
in LN-229 cells. Camptothecin (5 gM) was used as a positive
control to illustrate that p21 can be induced in these glioma cell
lines (p21 blots, right outer lanes). These data fit nicely with the
flow cytometry findings, which clearly indicated a G2/M, but not

GIG1, arrest after glioma cell exposure to taxol (Figure 3).
Further, we assessed expression of the bax protein, a key medi-

ator of p53-induced apoptosis as well as p53-independent cell
death, which is antagonized by the prototype anti-apoptotic
protein bcl-2. Again, there was no modulation of bax expression
by either taxol alone or taxol plus CD95 ligand, suggesting that (1)
taxol-induced p53 activity is insufficient for significant transcrip-
tional effects on major target genes and that (2) enhanced bax
expression mediates neither taxol- nor CD95 ligand-induced apop-
tosis. However, susceptibility to apoptosis may depend more on
the relative expression levels of functional antagonists, such as bax
and bcl-2 or bcl-x, than on their absolute levels. To inhibit the
proapoptotic effects of bax homodimers, bcl-2 forms heterodimers
with bax (Oltvai et al, 1993). Recently, it has also been shown that
taxol induces phosphorylation of bcl-2 and that phosphorylated
bcl-2 fails to prevent apoptosis because of its inability to bind Bax
(Haldar et al, 1995, 1996). In line with these data, we observed a
mobility shift of the bcl-2 protein in glioma cells exposed to taxol
(Figure 5), which is suggestive of phosphorylation (Haldar et al,
1995). Immunoprecipitation of bcl-2 and subsequent immunoblot
analysis of phosphoserine revealed that the observed change in
mobility of bcl-2 was due to phosphorylation on serine (Figure 6).
In contrast to p53 activation and G2/M cell cycle arrest, bcl-2
phosphorylation was seen even with low concentrations of taxol
(50 nM), which are sufficient for synergy with CD9S ligand-
induced cytotoxicity. CD95 ligand administered alone had no such
effect and did not modulate the effect of taxol on bcl-2 migration
patterns upon co-treatment. In fact, even excessive, highly
cytotoxic concentrations of CD95 ligand did not induce specific
changes in the candidate regulatory proteins for apoptosis exam-
ined here (data not shown).

DISCUSSION

Human malignant glioma cells are rather resistant to multiple
proapoptotic stimuli, including irradiation and most cytotoxic
drugs. The mechanisms underlying this failure to respond to
therapy may include loss of p53 and enhanced expression of anti-
apoptotic gene products, such as bcl-2, but are incompletely under-
stood (Weller, 1995). We have previously reported that glioma
cells are not resistant to apoptosis induced by agonistic antibodies
that activate the CD95 cytokine receptor protein (Weller et al,
1994). Moreover, we have noted that these cells are even more
sensitive to apoptosis induced by the endogenous CD95 ligand, a
cytokine homologous to TNF-a (Roth et al, 1997). The main
problem with CD95 ligand-based immunotherapy of malignant
gliomas is probably prevention of systemic toxicity as agonistic
antibodies to CD95 induce liver failure within a few hours when
applied systemically (Ogasawara et al, 1993). However, a local
CD95-based approach to malignant glioma appears to be feasible.
Thus, growth of an intraperitoneal lymphoma can be controlled by

intraperitoneal CD95 ligand applied locally (Rensing-Ehl et al,
1995), and intra-articular application of CD95 antibodies can
control arthritis (Fujisawa et al, 1996), both in the absence of
systemic toxicity. Further, circulation of CD95 ligand is not
inevitably lethal (Sato et al, 1996). As systemic toxicity depends
on the dose of CD95 ligand applied and as maximal glioma cell
killing is to be achieved, we have been particularly interested in
immunochemotherapy based on co-treatment of glioma cells with
CD95 ligand and cancer chemotherapeutic drugs (Roth et al,
1997). The current focus is on taxol for several reasons: (1) taxol
has previously been reported (Cahan et al, 1994; Silbergeld et al,
1995) and confirmed here to have strong anti-glioma effects in
vitro; (2) taxol limits growth of glioma xenografts in mice (Riondel
et al, 1992); and (3) taxol has already been adapted for local
controlled release therapy of malignant gliomas and shown to be
effective in a rat glioma model (Walter et al, 1994).
The present study shows that the combination of taxol and

CD95 ligand results in synergistic cytotoxicity and growth inhibi-
tion of human malignant glioma cells. Of note, no such effect is
seen with TNF-a, a cytokine previously reported to cooperate with
taxol in inducing cytotoxicity of ovarian carcinoma cells
(Williams et al, 1992; Berkova and Page, 1995). Synergy was not
due to an enhanced expression of CD95 in taxol-treated glioma
cells (Table 2). Neither G2/M arrest nor induced expression of p53
or p21 was required for taxol toxicity of the glioma cells (Figures
3 and 5). Further, neither cell cycle effects nor constitutive or
induced expression of these gene products appeared to be involved
in the mechanisms underlying synergy of taxol and CD95 ligand,
because synergy was obtained at concentrations of taxol that were
insufficient to induce G2/M arrest or p53 expression. In contrast,
positive interactions of taxol and irradiation appear to involve
enhanced expression of p53 and p21 (Tishler and Lamppu, 1996).
The failure of taxol to induce p21 expression in the glioma cells
examined here is consistent with a G2/M arrest as p21 is a mediator
of G/G, arrest (Waldmann et al, 1995). Yet, taxol effects are prob-
ably cell type-specific as p21 was strongly induced in prostate and
breast carcinoma cell lines (Blagosklonny et al, 1996).
We confirm that taxol induces phosphorylation of bcl-2 (Haldar,

1995). In contrast to p53 induction and G2/M cell cycle effects, the
phosphorylation of bcl-2 protein was seen at low taxol concentra-
tions that were sufficient to induce synergistic cytotoxicity of
taxol and CD95 ligand. Phosphorylation of bcl-2 inhibits its
heterodimerization with bax. Thus, although bax was not induced
by taxol (Figure 5), the free levels of bax are likely to increase
after taxol treatment because less bcl-2 is available for complex
formation with bax (Blagosklonny et al, 1996; Haldar et al, 1996).
The fact that enhanced levels of free bax in LN-229 and T98G
cells are associated with increased susceptibility to CD95 ligand is
in perfect agreement with our previous observation that ectopic
expression of bcl-2 in these cells attenuates the cytotoxic effects of
agonistic CD95 antibodies (Weller et al, 1995b) and natural CD95
ligand (Roth et al, 1997).
CD95 ligand-based proapoptotic immunotherapy of malignant

glioma is a promising novel option for the management of malig-
nant gliomas (Weller et al, 1994, 1995a-c), which appears to
circumvent the inherent resistance of these neoplasms to several
other stimuli for apoptotic cell death. Here, we have demonstrated
synergy ofCD95 ligand and taxol against human malignant glioma
cells in vitro. Synergy was obtained at concentrations of taxol
(50-100 nM) that are achieved in plasma 24 h after intravenous
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taxol (Glantz et al, 1995b). For reasons outlined above, both CD95
ligand and taxol are likely to be maximally effective when admin-
istered using a locoregionary approach. The present results call for
an evaluation of local CD95 ligand plus taxol in an animal model
of glioma.

ACKNOWLEDGEMENT

This study was supported by the Deutsche Forschungsgemeinschaft
(We 1502/3-1).

REFERENCES

Berenbaum MC (1981) Criteria for analyzing interactions between biologically
active agents. Adv Cancer Res 35: 269-335

Berkova N and Page M (1995) Addition of hTNF-alpha potentiates cytotoxicity of
Taxol in human ovarian cancer lines. Anticancer Res 15: 863-866

Bhalla K, Ibrado AM, Tourkina E, Tang C, Maloney ME and Huang Y (1993) Taxol
induces intemucleosomal DNA fragmentation associated with programmed cell
death in human myeloid leukemia cells. Leukemia 7: 563-568

Blagosklonny MV, Schulte TW, Nguyen P, Mimnaugh EG, Trepel J and Neckers L
(1995) Taxol induction of p21 waf 1 and p53 requires c-raf-1. Cancer Res 55:
4623-4626

Blagosklonny MV, Schulte T, Nguyen P, Trepel J and Neckers LM (1996) Taxol-
induced apoptosis and phosphorylation of Bcl-2 protein involves c-Raf-l and
represents a novel c-Raf- 1 signal transduction pathway. Cancer Res 56:
1851-1854

Cahan MA, Walter KA, Colvin OM and Brem H (1994) Cytotoxicity of taxol in
vitro against human and rat malignant brain tumors. Cancer Chemother
Pharmacol 33: 441-444

Chamberlain MC and Kormanik P (1995) Salvage chemotherapy with paclitaxel for
recurrent primary brain tumors. J Clin Oncol 13: 2066-2071

Ding AH, Porteu F, Sanchez E and Nathan CF (1990) Shared actions of endotoxin
and taxol on TNF receptors and TNF release. Science 248: 370-372

Fujisawa K, Asahara H, Okamoto K, Aono H, Hasunuma T, Kobata T, Iwakura Y,
Yonehara S, Sumida T and Nishioka K (1996) Therapeutic effect of the anti-fas
antibody on arthritis in HTLV-I tax transgenic mice. J Clin Invest 98: 271-278

Glantz MJ, Choy H, Kearns CM, Akerley W and Egorin MJ (1995a) Weekly,
outpatient paclitaxel and concurrent cranial irradiation in adults with brain
tumors: preliminary results and promising directions. Semin Oncol
22(suppl. 12): 26-32

Glantz MJ, Choy H, Kearns CM, Mills PC, Wahlberg LU, Zuhowski EG, Calabresi
P and Egorin MJ (1995b) Paclitaxel disposition in plasma and central nervous
systems of humans and rats with brain tumors. J Natl Cancer Inst 87:
1077-1081

Haldar S, Jena N and Croce CM (1995) Inactivation of Bcl-2 by phosphorylation.
Proc Natl Acad Sci USA 92: 4507-4511

Haldar S, Chintapalli J and Croce CM (1996) Taxol induces bcl-2 phosphorylation
and death of prostate cancer cells. Cancer Res 56: 1253-1255

Heimans JJ, Vermorken JB, Wolbers JG, Eeltink CM, Meijer OWM, Taphoorn MJB
and Beijnen JH (1994) Paclitaxel (taxol) concentrations in brain tumor tissue.
Ann Oncol5: 951-953

Helson L, Helson C, Malik S, Ainsworth S and Mangiardi J (1993) A saturation
threshold for taxol cytotoxicity in human glial and neuroblastoma cells.
Anticancer Drug 4: 487-490

Horwitz SB, Lothstein L, Manfredi J, Mellado W, Parness J, Roy SN, Schiff PB,
Sorbara L and Zeheb R (1986) Taxol: mechanisms of action and resistance.
Ann NYAcad Sci 466: 733-744

Milross CG, Mason KA, Hunter NR, Chung WK, Peters LJ and Milas L (1996)
Relationship of mitotic arrest and apoptosis to antitumor effect of paclitaxel.
J Natl Cancer Inst 88: 1308-1314

Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T,
Kitamura Y, Itoh N, Suda T and Nagata S (1993) Lethal effect of the anti-Fas
antibody in mice. Nature 364: 806-809

Oltvai ZN, Milliman CL and Korsmneyer SJ (1993) Bcl-2 heterodimerizes in vivo
with a conserved homolog, Bax, that accelerates programmed cell death. Cell
74: 609-619

Prados MD, Schold SC, Spence AM, Berger MS, McAllister LD, Mehta MP, Gilbert
R, Fulton D, Kuhn J, Lambom K, Rector DJ and Chang SM (1996) Phase II
study of paclitaxel in patients with recurrent malignant glioma. J Clin Oncol
14: 2316-2321

Rensing-Ehl A, Frei K, Flury R, Matiba B, Mariani SM, Weller M, Aebischer P,
Krammer PH and Fontana A (1995) Loco-regional Fas/APO-1 (CD95) ligand-
mediated tumor cell killing in vivo. Eur J Immunol 25: 2253-2258

Riondel J, Jacrot M, Fessi H, Puisieux F and Potier (1992) Effects of free and
liposome-encapsulated taxol on two brain tumors xenografted into nude mice.
In Vivo 6: 23-27

Roth W, Fontana A, Trepel M, Reed JC, Dichgans J and WellerM (1997)
Immunochemotherapy of malignant glioma: synergistic activity of CD95
ligand and chemotherapeutics. Cancer Immunol Immunother 44: 55-63

Rowinsky EK, Donehower RC, Jones RJ and Tucker RW (1988) Microtubule
changes and cytotoxicity in leukemic cell lines treated with taxol. Cancer Res
48: 4093-4100

Sato K, Kimura F, Nakamura Y, Murakami H, Yoshida M, Tanaka M, Nagata S,
Kanatani Y, Wakimoto N, Nagata N and Motoyoshi K (1996) An aggressive
nasal lymphoma accompanied by high levels of soluble Fas ligand. Br J
Haematol 94: 379-382

Schiff PB, Fant J and Horwitz SB (1979) Promotion of microtubule assembly in
vitro by taxol. Nature 277: 665-667

Silbergeld DL, Chicoine MR and Madsen CL (1995) In vitro assessment of Taxol
for human glioblastoma: chemosensitivity and cellular locomotion. Anticancer
Drug 6: 270-276

Tishler RB and Lamppu DM (1996) The interaction of taxol and vinblastine with
radiation induction of p53 and p2 I wal/"cipl. Br J Cancer 74(suppl. 27): S82-S85

Tishler RB, Geard CR, Hall EJ and Schiff PB (1992) Taxol sensitizes human
astrocytoma cells to radiation. Cancer Res 52: 3495-3497

Van Meir EG, Kikuchi T, Tada M, Li H, Diserens AC, Wojcik BE, Huang HJS,
Friedmann T, De Tribolet N and Cavenee WK (1994) Analysis of the p53 gene
and its expression in human glioblastoma cells. Cancer Res 54: 649-652

Wahl AF, Donaldson KL, Fairchild C, Lee FYF, Foster SA, Demers GW and
Galloway DA (1996) Loss of normal p53 function confers sensitization to
Taxol by increasing G2/M arrest and apoptosis. Nature Med 2: 72-79

Waldman T, Kinzler KW and Vogelstein B (1995) p21 is necessary for the pS3-
mediated GI arrest in human cancer cells. Cancer Res 55: 5187-5190

Walter KA, Cahan MA, Gur A, Tyler B, Hilton J, Colvin OM, Burger PC, Domb A
and Brem H (1994) Interstitial taxol delivered from a biodegradable polymer
implant against experimental malignant glioma. Cancer Res 54: 2207-2212

Webb JL (1963) Effect of more than one inhibitor. In Enzyme and Metabolic
Inhibilors, Vol. 1, pp. 66-79, 487-512. Academic Press: New York

Weller M (1996) Genetic regulation and therapeutic modulation of apoptosis in
human malignant glioma. Cell Physiol Biochem 6: 376-380

Weller M and Fontana A (1995) The failure of current immunotherapy for malignant
glioma. Tumor-derived TGF-J, T cell apoptosis, and the immune privilege of
the brain. Brain Res Rev 21: 128-151

Weller M, Frei K, Groscurth P, Krammer PH, Yonekawa Y and Fontana A (1994)
Anti-Fas/APO- 1 antibody-mediated apoptosis of cultured human glioma cells.
Induction and modulation of sensitivity by cytokines. J Clin Invest 94:
954-964

Weller M, Frei K, Malipiero U, Groscurth P, Yonekawa Y, Krammer P and Fontana
A (1995a) Fas/APO- I -mediated apoptosis of human malignant glioma.
Neurology 45(suppl. 4): A401, 859S

Weller M, Malipiero U, Aguzzi A, Reed JC and Fontana A (1995b). Protooncogene
bcl-2 gene transfer abrogates Fas/APO-1 antibody-mediated apoptosis of
human malignant glioma cells and confers resistance to chemotherapeutic
drugs and therapeutic irradiation. J Clin Invest 95: 2633-2643

Weller M, Malipiero U, Rensing-Ehl A, Barr P and Fontana A (1995c) Fas/APO- 1
gene transfer for human malignant glioma. Cancer Res 55: 2936-2944

Weller M, Trepel M, Grimmel C, Schabet M, Bremen D, Krajewski S and Reed JC
(1997) Hypericin-induced apoptosis of human malignant glioma cells is light
dependent, independent of bcl-2 expression and does not require wild type p53.
Neurol Res 19: 459-470

Williams S, Mutch DG, Xu L and Collins JL (1992) Divergent effects of taxol on
tumor necrosis factor-alpha-mediated cytolysis of ovarian carcinoma cells.
Am J Obstet Gynecol 167: 1870-1876

Zuber P, Accolla RS, Carrel S, Diserens AC and De Tribolet N (1988) Effects of
recombinant human tumor necrosis factor-alpha-a on the surface phenotype
and the growth of human malignant glioma cell lines. Int J Cancer 42:
780-786

@ Cancer Research Campaign 1998 British Journal of Cancer (1998) 77(3), 404-411


