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The hippocampus is one of the most phylogenetically preserved structures in
the mammalian brain. Engaged in a host of diverse cognitive processes, there
has been increasing interest in understanding how the hippocampus dynamically
supports these functions. One of the lingering questions is how to reconcile the
seemingly disparate cytoarchitectonic organization, which favors a dorsal-ventral
layering, with the neurofunctional topography, which has strong support for longitudinal
axis (anterior-posterior) and medial-lateral orientation. More recently, meta-analytically
driven (e.g., big data) approaches have been employed, however, the question
remains whether they are sensitive to important task-specific features such as
context, cognitive processes recruited, or the type of stimulus being presented.
Here, we used hierarchical clustering on functional magnetic resonance imaging
(fMRI) data acquired from healthy individuals at 7T using a battery of tasks that
engage the hippocampus to determine whether stimulus or task features influence
cluster profiles in the left and right hippocampus. Our data suggest that resting
state clustering appears to favor the cytoarchitectonic organization, while task-based
clustering favors the neurofunctional clustering. Furthermore, encoding tasks were
more sensitive to stimulus type than were recognition tasks. Interestingly, a face-name
paired associate task had nearly identical clustering profiles for both the encoding
and recognition conditions of the task, which were qualitatively morphometrically
different than simple encoding of words or faces. Finally, corroborating previous
research, the left hippocampus had more stable cluster profiles compared to the right
hippocampus. Together, our data suggest that task-based and resting state cluster
profiles are different and may account for the disparity or inconsistency in results
across studies.
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INTRODUCTION

Arguably one of the most preserved neural structures across
species, the hippocampus has been a prime target for evolution
theorists and cognitive neuroscientists alike. Remarkably,
functional differentiation within the hippocampal formation
has been posited in nearly all species over the past half century,
with theories ranging from hemispheric specialization to more
intricate models of topographical/subfield specialization. Support
for these hypothesized compartmentalizations, especially in the
human functional neuroimaging literature, has been limited
in scope due to the methodological approaches employed
which have largely been either lesion (e.g., case) studies, or
meta-analytically driven (e.g., big data) (Robinson et al., 2015;
Plachti et al., 2019). The former is hindered by generalizability
concerns, while the latter lacks granularity and may not be
sensitive to important task-specific features such as context,
cognitive processes recruited, or the type of stimulus being
presented. As such, an important gap in the literature remains
as to whether these functional parcellations are stable, or if they
may shift depending on such task/stimulus features contributing
to some of the variability seen across studies.

Theories regarding hippocampal specialization date back
to 1901 when Ramon Cajal described the cytoarchitectonic
differences between hippocampal subfields (Cajal, 1901), yet
the precise neurofunctional underpinnings of these anatomical
differences have yet to be elucidated. Converging evidence across
species suggests that the functional topography is generally
accepted to have an anterior-posterior organization (Colombo
et al., 1998; Poppenk et al., 2013; Maruszak and Thuret, 2014;
Kim, 2015; Nakamura and Sauvage, 2015; Robinson et al.,
2016; Hrybouski et al., 2019; Przeździk et al., 2019; Grady,
2020), in direct opposition to the known configuration of the
anatomical subfields (which are more aligned in a dorsal-ventral
fashion) (Vos de Wael et al., 2018). Gene expression studies
show the anatomical dorsal-ventral gradients along the long-
axis of the hippocampus, further supporting an evolutionary
basis for dorsal-ventral cellular structure (Amaral and Witter,
1989; Thompson et al., 2008; Strange et al., 2014). This
apparent discordance has yet to be resolved, in part due to the
methodological and analytic approaches employed.

In addition to the lack of consensus regarding the
neurofunctional organization along the longitudinal axis,
corroborating evidence has suggested that the left and right
hippocampus are distinctly different—with the left hippocampus
having more consistent and stable organization than the right
hippocampus. However, the morphometric nature of the
parcellations has been inconsistent. Important work by Zhong
et al. (2019) offers some insight into this. They demonstrated
that clustering based on static resting state connectivity resulted
in fewer clusters, but that examining dynamic functional
connectivity in resting state data resulted in much more granular
parcellations, with the left hippocampus clustering into 6
parcellations and the right into 5 parcellations. Furthermore,
they demonstrated that state-dependent parcellations changed
the clustering of both the left and right hippocampus. Similarly,
Plachti et al. (2019) performed a comprehensive clustering of the

left and right hippocampus using a multipronged approach. In
their work, they used meta-analytically driven clustering as well
as resting-state to compare across methodological approaches.
While there was some concordance across approaches,
differences emerged as well. This highlights two important
considerations: (1) parcellations are likely sensitive to task
demands (i.e., state-dependency), and (2) analytical choices may
alter parcellations. While we do not address the latter in this
paper, we do seek to address the issue of task demands.

Parcellation of the hippocampus as a function of task features
is not a new concept. Prince et al. (2005) demonstrated strong
evidence for an anterior-posterior parcellation that corresponded
to an encoding-retrieval gradient. Similarly, Duncan et al. (2014)
demonstrated functional connectivity differentiation between
encoding and retrieval processes within specific hippocampal
subfields, such that functional connectivity between area CA1 and
the ventral tegmental area (the primary dopaminergic afferent)
predicted long-term memory for associations. Furthermore,
functional connectivity between area CA1 and the dentate
gyrus/CA3 region was not only indicative of retrieval success,
but was also stronger during the retrieval task compared
to the encoding task. These results support the fundamental
argument that the hippocampus maintains a neurofunctional
topographical organization, but it does not address the question
of whether other neurocognitive processes utilize these sub-
regions, as all of the aforementioned studies used a single
paradigm that was parametrically manipulated to examine
one specific aspect of memory formation. Most studies of
hippocampal sub-specialization limit their investigations to a
single behavioral domain or a single paradigm that compares
specific neurocognitive processes (i.e., encoding vs. retrieval)
(Giovanello et al., 2009; Nadel et al., 2012; Duarte et al., 2014;
Nakamura and Sauvage, 2015; Przeździk et al., 2019). This led
to a series of studies that used meta-analytic techniques to
better characterize the functional and anatomical subfields of the
hippocampus (Chase et al., 2015; Persson and Söderlund, 2015;
Robinson et al., 2015, 2016; Plachti et al., 2019). While these
approaches are robust, they may lack granularity. For example,
Hrybouski et al. (2019) examined encoding and retrieval of
various types of stimuli. They found that encoding elicited similar
activation across all hippocampal subfields, but that retrieval was
dependent on the task/stimulus. Meta-analytic approaches may
lack the specificity to identify such nuanced differences. Thus, it is
important for studies to examine hippocampal functioning using
both task and resting state conditions.

To examine hippocampal neurofunctional topography using
similar analytical approaches that have been implemented in
meta-analytic studies, we employed a hierarchical clustering
algorithm to a series of hippocampally engaging tasks collected
using ultra high-resolution (i.e., submillimeter), high-field
(7T) functional magnetic resonance imaging (fMRI) data.
In short, the main idea of hierarchical clustering, as applied
to fMRI data, is that voxels that are more related to nearby
voxels than to voxels more distant (in terms of Euclidean
distance) are subsequently clustered together. Individual
voxel timeseries in the left and right hippocampal formation
were extracted across a number of tasks designed to engage
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the hippocampus, as well as during a resting state scan.
We believe that this approach could lead to transformative
knowledge about the role of the human hippocampus
in various neurocognitive processes, while also providing
evidence for neural indices of healthy hippocampal function.
Understanding the topography of the hippocampus could yield
transformative insights into neurocognitive processes, as well as
disease pathology.

MATERIALS AND METHODS

Participants
Participants were recruited from the Auburn University
community as part of a study examining hippocampal function.
The study was approved by the Auburn University Institutional
Review Board. All participants provided informed consent.
A total of 35 participants were recruited, with usable data
from 31 participants (1 participant discontinued because
of claustrophobia, 1 participant withdrew due to cramps,
1 participant did not follow instructions, and the scanner
experienced technical difficulties for one participant’s visit) (26
right-handed, 12 males, age = 21.13± 1.43 years). All participants
reported no diagnosed psychological or neurological disorder.
This was a within-subject design whereby all participants
completed all tasks. Because some participants had unusable
data for some scans, we report on only the usable data for
each condition. Twenty participants (64.5%) had usable
data for all tasks, with an additional 7 (22.6%) having data
for 3 of the 4 tasks presented. Thus, there was significant
participant overlap for the tasks reported herein. For each
task, we report demographics of the subset from the initial
31 participants.

Functional Magnetic Resonance Imaging
We examined submillimeter fMRI datasets collected at Auburn
University on a selection of tasks that had similar neurocognitive
constituents to the neurofunctional topography identified in
prior meta-analytic studies (Robinson et al., 2015; Plachti
et al., 2019), including a face-name paired associate task,
and encoding/recognition of words, faces, and scenes. It is
important to note that these tasks were not tailored to
this analysis, rather they were part of an on-going study
examining hippocampal engagement and thus they were not
designed for validation of the previously defined meta-analytic
models. However, the cognitive processes were similar to the
behavioral paradigms associated with some of the hippocampal
segments. All tasks utilized the same EPI sequence parameters,
which were optimized for the hippocampus, but included
most of the brain (37 slices acquired parallel to the AC-
PC line, 0.85 mm × 0.85 mm × 1.5 mm voxels, TR/TE:
3,000/28 ms, 70◦ flip angle, base/phase resolution 234/100,
A > P phase encode direction, iPAT GRAPPA acceleration
factor = 3, interleaved acquisition). Data were acquired on
the Auburn University Siemens 7T MAGNETOM outfitted
with a 32-channel head coil by Nova Medical (Wilmington,
MA). Stimuli were presented using a back projection Avotec

presentation and response system. A whole-brain high-resolution
3D MPRAGE image (256 slices, 0.63 mm × 0.63 mm× 0.60
mm, TR/TE: 2,200/2.8, 7◦ flip angle, base/phase resolution
384/100%, collected in an ascending fashion) was also acquired
for registration purposes.

Neurocognitive Tasks
All tasks were performed in a single experimental
session. The tasks were presented in the following order:
encoding of faces/words/scenes, a task unrelated to
the current manuscript, the face-name paired associate
task, the resting state scan, and then the recognition of
faces/words/scenes task.

Face-Name Paired Associate Task
The face-name paired associate task has been one of the
most reliable tasks known to elicit hippocampal activation
(Tsukiura and Cabeza, 2008; Glahn et al., 2010; Tsukiura
et al., 2010). For this task, participants were asked to view a
series of faces, each paired with a name (i.e., the “encoding”
phase). Following a brief rest period, they were shown a
face, and asked to select the name of the face (i.e., the
“recognition” phase). Face-name pairings were presented in
blocks (6 blocks of encoding/6 blocks of recognition, total
acquisition time = 10:06), with 5 pairings per block (stimuli
were presented for 5,000 ms, with a 1,000 ms interstimulus
interval). Each block was followed by a rest period (30 s).
An instruction screen appeared for 6,000 ms prior to the
recognition phase (30 s). A rest period followed the recognition
phase (as well as an instruction screen about the upcoming
encoding block), and a new set of face-name pairings was
presented (Figure 1A). During the retrieval phase, participants
were asked to respond to which initial at the bottom of
the screen corresponded to the face’s associated name via a
button box. All participants performed a practice run before
entering the scanner. Participants made a decision on a total
of 30 face-name pairings, with block analyses performed, rather
than individual trial analyses. Data from 22 right-handed
participants [14 females/8 males; age (M ± SD) = 21.32 ± 1.49
years] were analyzed.

Encoding and Recognition of Faces, Scenes, and Words
For this paradigm, a simple block design was implemented in
which participants try to remember 10 faces, 10 words, and 10
visual scenes. Each stimulus was presented for 3,000 ms and
participants were asked to view the stimuli, and to try their best
to remember the images. Between blocks, there was a 6,000 ms
delay, before the next block started. After a full run (1 block of
faces, 1 block of words, and 1 block of pictures) was presented,
there was a 30 s delay, and then the procedure was repeated
for a total of 3 times (Figure 1B). The total task time was 6:09
(6:06 with an extra TR at the end of the scan). In the recognition
portion (which was performed at the end of the scanning session,
approximately 45 min after the encoding portion of the study),
the design was identical, except blocks were mixed with novel
and familiar stimuli. Participants were asked to make a decision
via button push as to whether or not they had seen the stimulus
before. As such, participants had to make a decision for 30 faces,
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FIGURE 1 | FMRI tasks. (A) For the face-name paired associate task, participants were presented with 5 faces. Each face was presented for 5 s with a 1 s
interstimulus interval. This constituted an “encoding” block. A 30 s rest period followed the encoding block. Then, participants were given a 6 s instruction slide
indicating that they would now need to recall the names of the faces. Participants were then given each of the faces, with initials underneath them. The participant
had to select the correct initial using a button box. Faces and distractor initials were randomized. An encoding and retrieval block together constituted a run, and we
completed 6 runs for a total of 30 face-name pairings. (B) For the encoding and recognition tasks, participants were presented with 10 scenic pictures (each picture
was presented for 3 s), followed by a 6 s rest. Participants were then shown 10 faces, with a 6 s rest, followed by 10 words. This constituted a run. There was a 30 s
rest between runs. Faces, words, and pictures were the same for all 3 of the runs. The recognition task followed the same format, but was presented at the end of
the scan, approximately 45 min later. For the recognition task, participants were asked to push the left button if they had seen the face, word, or picture previously, or
the right button if it was novel (40% of the stimuli were novel). For both tasks, clustering was performed using block analyses.

30 words, and 30 visual scenes. For this task, data from 28 right-
handed participants (19 females/9 males; age = 21.27 ± 1.46
years) were analyzed. Words and faces were all of neutral affect.

Resting-State
We performed high-resolution resting state fMRI (rs-fMRI)
in thirty-one healthy individuals (26 right-handed, 12 males,
age = 21.13 ± 1.43 years) using the same EPI sequence described
above (100 time points, total acquisition time 5:00). Participants
were asked to lay still with their eyes closed, without thinking
about anything in particular.

Functional Magnetic Resonance Imaging Analysis
Prior to implementing the clustering analyses described below,
functional neuroimaging data were preprocessed using FSL
neuroimaging analysis software (FMRI Expert Analysis Tool;
Smith et al., 2004; Jenkinson et al., 2012; FMRIB, 2021).
Specifically, non-brain material was removed from the data, slice
timing and motion correction procedures were implemented, and
a high-pass temporal filter was applied. Data were smoothed
with a 1 mm FWHM Gaussian kernel, to preserve resolution.
Functional images were registered to their high-resolution
anatomical volume, and standardized to Montreal Neurological
Institute (MNI) space.

Defining Human Hippocampal Region of
Interests
We used the Harvard-Oxford Structural Probability Atlas
distributed with the FSL neuroimaging analysis software package1

(Smith et al., 2004; Jenkinson et al., 2012) to define right

1http://www.fmrib.ox.ac.uk/fsl/fslview/atlas-descriptions.html#ho

and left human hippocampal Region of Interests (ROIs) for
inclusion in our analyses. Each ROI was thresholded at 75%
probability, yielding a conservative anatomical representation
(i.e., hippocampal voxels had to be present in at least 28 of
the 37 participants that comprised the atlas). We performed
clustering analyses within the hippocampal formation (left and
right, separately) to determine neurofunctional segmentations
using real data.

Clustering
Clustering is an unsupervised learning method with a goal of
grouping objects into some number of clusters so that objects
within a cluster are similar to each other, and objects of different
clusters are dissimilar. Here, we implemented hierarchical
clustering which does not require a priori specification of the
number of clusters. Hierarchical clustering has been employed
regularly in the analysis of both anatomical and functional
MRI data (Cordes et al., 2002; Liao et al., 2008; Wang
and Li, 2013; Shams et al., 2015; Siless et al., 2018; Zhao
et al., 2018a,b). Here, we applied hierarchical clustering on the
entire time series obtained from individual voxels within the
hippocampus, independently for task or resting state scans. The
entire clustering analysis pipeline was implemented using custom
written code in MATLAB.

Notation
Let Z = {Z1, · · · , Zj, · · · , ZN} represent a set of N data objects.
In our case, ZN is the fMRI time series in N voxels extracted
from the hippocampus. Therefore, Z is a matrix containing all
voxel time series in the hippocampus. Clustering is eventually
performed on Z. Therefore, in order for the clustering to
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represent a partition at the group level (and not at the individual
subject level), we concatenate time series obtained across M
different subjects and use the concatenated time series inZ. In this
case, each Zj in Z would be given by Zj =

(
Zj1, Zj2, · · · , Zjp

)
∈

Rp, where p equals the length of the concatenated time series and
R is the vector space spanned by Z. Assuming the data is then
partitioned into K clusters, each cluster is a set of indexes from
{1, · · · , N}, and each object Zj belongs to exactly one cluster.

Hierarchical Clustering (Agglomerative)
The main idea of hierarchical clustering (Dasgupta and Long,
2005; Cheng et al., 2006) is that objects that are more related
to nearby objects than to objects farther away, in terms of
Euclidean distance, are clustered together. A brief description
of the procedure is described as follows: (1) assign each object
Zj in a cluster of its own, (2) calculate the distance between
any two clusters and merge the closest pair of clusters, and (3)
repeat steps 2 and 3 until all Zj are in one big cluster. The
results of hierarchical clustering are usually depicted by a tree-
like structure, known as the dendrogram (see Figure 2). The root
of the dendrogram represents the entire data, each leaf represents
one object, and the height of the dendrogram represents the
distance between each pair of clusters. Different data partitions
can be obtained by cutting the dendrogram at different levels.
Note that the distance between two clusters can be measured
in a variety of ways, referred to as linkage methods. The single
linkage calculates the shortest distance between two clusters, the
complete linkage calculates the longest distance, and the average
linkage calculates the average (Andreopoulos et al., 2009). The
single linkage can handle non-elliptical shapes of clusters, but
can be affected by noise and outliers. The complete linkage
is less sensitive to noise and outliers but tends to break large
clusters. The average linkage is a compromise between single-
linkage and complete-linkage. Thus, the average linkage method
was employed in this work.

FIGURE 2 | Dendrogram derived from hierarchical clustering. The final
clustering result is obtained by cutting the tree at the defined level. In the
figure above, when the tree is cut at the level shown, we get the features in
teal color in one cluster and those in red color in another cluster.

Input Parameter Optimization
Because there are several user-specified input parameters which
can significantly affect clustering results, such as the cutting
height of the dendrogram, we optimized these parameters using
the Calinski-Harabasz (CH) index (Calinski and Harabasz, 1974).
Let Ck represent the center of clusters k, where 1 ≤ k ≤ K, and
C represent the center of entire data set, then the CH index is
defined as:

CH(K) =
B(K)/(K − 1)

W(K)/(N − K)
(1)

Where the between-cluster variation B (K) is computed by,

B(K) =

K∑
k = 1

||Ck − C||2 (2)

And the within-cluster variation W (K) is computed by:

W(K) =

K∑
k = 1

∑
Zj∈cluster−k

∣∣∣∣Zj − Ck
∣∣∣∣2 (3)

Based on the definition of clustering, we want to minimize
W(K) and maximize B(K). Thus, the optimal parameters are
determined by maximizing the CH index. The optimal number
of clusters can be identified, simultaneously. Specifically for
hierarchical clustering, we started with a relatively high cutting
height for the dendrogram. In each iteration, the cutting height
was reduced by 1% and the CH index was computed and recorded
based on the current data partition. The iteration continued until
the cutting height was smaller than a specified baseline (e.g.,
the average height of the dendrogram). The optimal height was
determined as the one with the largest CH index.

Visualization of Results
After obtaining clustering results, the identified clusters were
mapped back to the image space and overlaid on the anatomical
image for visualization of the hippocampal parcellations.
Clustering similarities between group and individual results were
assessed by using Torres’ method (Torres et al., 2009). Let
C = {C1, C2, · · · , Cm} and D = {D1, D2, · · · , Dn} represent
two clustering results. The similarity matrix for C and D is an
m × n matrix defined as:

SC,D =


S11 ..

Si1 ..

Sm1

S1j ..

K
Sij ..

Smj ..

S1n

Sin

Smn

 (4)

Where Sij = p/q, which is Jaccard’s Similarity Coefficient with p
being the size of intersection and q being the size of the union of
cluster sets Ci and Dj. The similarity of clustering C and D is then
defined as:

Sim (C, D) =

∑
i ≤ m, j ≤ n Sij

max(m, n)
(5)

From Eqs. (4) and (5), it can be seen that 0 ≤ Sim (C, D) ≤ 1,
and Sim (C, D) = 1 when two clustering results are identical.
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Thus, this “similarity index” represents the convergence, or
correlation, between the individual’s cluster map to the group
map, and may be considered an index of stability.

Similarity Indices
We conducted repeated measures analysis of variance (ANOVA)
to determine hemispheric and task differences in cluster stability.
Because similarity measured how each individual’s cluster profile
mapped onto the group-level clustering, a higher similarity index
was considered to be a measure of cluster stability, as it represents
less inter-subject variance with the group-level cluster solution.
For example, if participants, on average, demonstrated a high
similarity index, it would indicate that the cluster solution for
each individual participant was close to the overall group map.
Thus, a high similarity index would indicate that the clusters were
stable across participants. We also report the similarity index for
hierarchical clustering across all tasks.

RESULTS

Similarity Indices
Hierarchical Clustering Stability
Collapsing across tasks (including rest), hierarchical clustering
resulted in an average similarity index of 0.60, with a standard
deviation of 0.06 and a range of 0.46–0.70 (Figure 3A).

Hemisphere Stability
We expected the left hippocampus to have higher similarity
indices based on previous research which has shown that the right
hippocampus has less stable cluster solutions (Robinson et al.,
2015; Plachti et al., 2019). Consistent with previous literature, the
left hippocampal similarity indices, collapsed across conditions,
were higher (0.64 ± 0.07) than the right (0.55 ± 0.07)
[F(1, 30) = 50.630, p < 0.001, partial η2 = 0.628] (Figure 3B).

Task Stability
There was a main effect of task [F(3.387, 57.575) = 14.286, p< 0.001,
partial η2 = 0.457]. Because sphericity was violated, repeated
measures ANOVA results are reported with Greenhouse-Geisser
epsilon, the most conservative adjustment to the degrees of
freedom. Post-hoc pairwise comparisons (Bonferroni corrected)
indicated that encoding faces (0.53± 0.08) had a lower similarity
index compared to recognizing faces (0.67 ± 0.11, p = 0.001),
pictures (0.60 ± 0.10, p = 0.029), and words (0.63 ± 0.10,
p = 0.004). Encoding pictures (0.59 ± 0.08) had a lower index
compared to recognizing faces (p = 0.003). Encoding words
(0.53 ± 0.068) had a significantly lower index than recognizing
faces (p< 0.001), pictures (p = 0.042), and words (p = 0.006). Face
recognition had a significantly higher similarity index compared
to all other task conditions (p ≤ 0.040 for all conditions) but was
not significantly different from rest (p = 0.471). Word recognition
had a significantly higher similarity index compared to both face-
name paired associate tasks (encoding: 0.53 ± 0.08, p = 0.013;
recall: 0.55± 0.06, p = 0.021) (Figure 3C and Table 1).

TABLE 1 | Similarity index descriptive statistics, by task,
condition, and hemisphere.

Similarity index descriptive statistics

Task Hemisphere n Minimum Maximum Mean SD

Encode faces Left 27 0.33 0.74 0.59 0.09

Encode faces Right 27 0.25 0.60 0.50 0.08

Encode pictures Left 27 0.50 0.91 0.70 0.14

Encode pictures Right 27 0.35 0.58 0.49 0.06

Encode words Left 27 0.40 0.81 0.59 0.09

Encode words Right 27 0.25 0.59 0.48 0.08

Face-name Paired
associate encode

Left 21 0.25 0.63 0.53 0.09

Face-name paired
associate encode

Right 21 0.33 0.66 0.54 0.09

Face-name paired
associate recall

Left 21 0.42 0.68 0.55 0.06

Face-name paired
associate recall

Right 21 0.33 0.68 0.55 0.09

Recognize faces Left 25 0.50 0.91 0.72 0.14

Recognize faces Right 25 0.50 0.86 0.66 0.13

Recognize pictures Left 25 0.50 0.91 0.73 0.13

Recognize pictures Right 25 0.29 0.62 0.50 0.09

Recognize words Left 25 0.50 0.88 0.73 0.12

Recognize words Right 25 0.34 0.67 0.55 0.10

Resting state Left 31 0.55 0.81 0.63 0.05

Resting state Right 31 0.49 0.67 0.59 0.04

Valid n (listwise) 18

Some task data for individual participants did not yield stable cluster solutions, and
are not included in the similarity indices (n = 1 for encoding, n = 1 for face-name
paired associates task, n = 3 for recognition).

Cluster Results
All hierarchical clustering maps are available via
https://github.com/jennyrobinson/hipp-neurofunc-clusters.git.

Tasks vs. Rest
Across all tasks, functional parcellations were largely along
the longitudinal axis with some medial-lateral configurations,
consistent with recent investigations (Chase et al., 2015; Robinson
et al., 2015, 2016; Zhong et al., 2019; Cheng et al., 2020). However,
resting-state functional parcellations were oriented more along
the short-axis (dorsal-ventral), similar to the cytoarchitectonic
atlases (Amunts et al., 2005; Eickhoff et al., 2007; Plachti et al.,
2019). Regardless of whether clustering was performed on task
or non-task data, the left parcellations were consistently fewer
and more stable compared to the right, as noted by the similarity
indices (Figure 4).

Encoding
Across conditions, encoding appeared to be affected by stimulus
type. For example, face encoding resulted in 3 clusters in the left
hippocampus and 4 in the right, whereas picture encoding only
resulted in 2 clusters in the left and 4 in the right. Encoding words
had a similar clustering to encoding faces. Face-name paired
associate coding, which requires components of both word and
face encoding, plus the association of the information, elicited
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a different morphometric clustering with the left hippocampus
splitting into 4 clusters, and the right into 3. Interestingly,
the encoding and recall of face-name information had nearly
identical clustering. These data point toward different clustering
profiles as a result of both stimulus type and process (simple
encoding vs. paired-associations) (Figure 4).

Recognition and Recall
Recognition in the left hippocampus was nearly identical for
faces, pictures, and words, each with high similarity indices
suggesting that cluster results were consistent across participants.
However, the right hippocampus exhibited different clustering
morphometries depending on the stimulus, with faces having a
simple 2 cluster solution with a high similarity index compared
to recognition of pictures or words which had 4 and 3 cluster
solutions, respectively. Additionally, face-name paired associate
recall exhibited a medial-lateral cluster orientation in comparison
to the recognition tasks (Figure 4).

DISCUSSION

Advancing our understanding of the neurofunctional
characteristics of the hippocampus could have a transformative
impact in neuroscience as well as psychiatry and neurology.
Mounting evidence suggests that different hippocampal subfields
may be implicated in the etiology of certain neurological and
psychiatric conditions (Huang et al., 2013; Haukvik et al., 2015;
Treadway et al., in press). In this study, we present evidence
for task-specific influences on intrahippocampal clustering.
Additionally, we characterize unique morphometric clusters
between resting state and task conditions. Our findings suggest
that these functional clusters also differ as a consequence of task
phase, stimulus type, stimulus features, state, and hemispheric
asymmetries, highlighting the dynamic functional characteristics
of the hippocampus.

Examining the neurofunctional profiles obtained from the
hierarchical clustering analysis, we observed an interesting
pattern—during encoding, stimulus context appeared to have
important implications for intrahippocampal clustering (i.e.,

clustering profiles were different depending on whether the
participant was encoding a face vs. encoding a word). However,
during recognition, the left hippocampus remained largely the
same, regardless of whether there was a face, picture, or word.
Conversely, Hrybouski et al. (2019) observed a different pattern;
in their study, encoding (regardless of memory type) equally
activated all subregions of the hippocampus, while a posterior to
anterior gradient in activation was only observed across subfields
for all types of memory during retrieval. However, Hrybouski
et al. (2019) utilized the “designs” subtest of the Wechsler
Memory scale, in which participants must recall the shape of a
grid of abstract symbols. In the present study, participants viewed
faces, pictures, and words, which represents a more ecologically
valid stimulus set. There may be a familiarity effect reflected in
differential activation, particularly during the encoding phase,
that is unique to memory tasks with more familiar or common
stimuli. Alternatively, differences may reflect differences in the
application of the clustering methods. For example, here we
examined within-hippocampus connectivity patterns as opposed
to clustering based on each voxels connectivity to the rest of
the brain. These differences in activation patterns highlight the
need to study the neurofunctional properties of the hippocampus
using a wide variety of stimulus presentations, and using both
intrahippocampal connectivity patterns as well as whole-brain
connectivity patterns.

These data provide preliminary support for topographical
organization, but they also highlight the need for refinements
that take into account more than stimulus features. For example,
in examining encoding of faces vs. encoding of pictures in a
traditional general linear modeling analyses, we saw different
patterns of activation (not shown here), providing motivation for
exploring task parameters for which the hippocampus may have
preferential responding (i.e., it is possible that there is a stimulus
type × process interaction, necessitating the study of these
constructs independently). Furthermore, other evidence suggests
that inter-individual variation in hippocampal organization
predicts recollection ability better than characterization based
on functional parcellation. Individual differences in hippocampal
organization are related to success and failure in memory
encoding tasks, suggesting an important need to emphasize

FIGURE 3 | Similarity indices for (A) hierarchical clustering across all participants, hemispheres, and tasks; (B) hierarchical clustering within the left and right
hemispheres, collapsed across task; (C) hierarchical clustering within tasks, collapsed across hemisphere.
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FIGURE 4 | Hierarchical clustering results for left and right hippocampi across tasks and conditions. Human hippocampus subfields are also presented for reference.
For encoding, the left anterior hippocampal cluster, depicted in red, appears to align with CA1, while in the right hippocampus, the anterior-most cluster may also
encompass portions of CA2 (yellow) in addition to CA1. Clustering in the right hippocampus during the FNPA task appears to alright with CA1 (red), and CA1/CA2
(green) and CA3/DG (blue). FNPA, face-name paired associate task; DG, dentate gyrus.

individual differences in hippocampal studies. It also lends
further support to evidence positing a functional significance
to the gradient-based organization of the hippocampus as well
(Przeździk et al., 2019).

Additionally, very few studies address the issue of
lateralization when discussing the long-axis anterior-
posterior gradient, despite strong evolutionary and functional
neuroimaging evidence suggesting that the right and left
hippocampus are likely to have functional differences (Gagliardo
et al., 2005; Klur et al., 2009; Churchwell and Kesner, 2011;
Persson et al., 2013; Hami et al., 2014). For example, Klur
et al. (2009) noted lateralization differences in the rat via gene
expression profiling and reversible inactivation (via lidocaine),
such that the left hippocampus demonstrated preferences
toward information transfer, and the right hippocampus favored
spatial navigation storage and retrieval processes. Similarly,
Freeman et al. (2004) identified hemispheric differences in
non-human primates. These lateralization differences appear
to be preserved (i.e., dissociable roles of the hippocampus have
been hypothesized across species; Ekstrom et al., 2003; Freeman
et al., 2004; Gagliardo et al., 2005; Klur et al., 2009; Persson et al.,
2013; Copara et al., 2014; Hami et al., 2014; Herold et al., 2014;
Jonckers et al., 2015), and have been linked to gender differences
in humans (Persson et al., 2013). Most have theorized that the
right hippocampus is primarily engaged in spatial processing
(i.e., 3D spatial navigation, or remembering an object location),
while the left is more attuned to verbal information (Greve
et al., 2011; Duarte et al., 2014). This phylogenetic preservation
suggests that the topography of the hippocampus serves an
important functional role and elucidating the geography may

inform the development of transformative computational
models of how the brain works under hippocampal-dependent
cognitive and emotive processes. This investigation observed
high similarity in clustering solutions in the left hippocampus
during recognition and recall for faces, pictures, and words,
while faces had a 2-cluster solution in the right hippocampus and
pictures and words had 4 and 3 cluster solutions, respectively.
However, during encoding, 3 clusters were observed in the
left hippocampus and 4 in the right hippocampus for faces
but picture encoding only resulted in 2 clusters in the left and
4 in the right. These results indicate that stimulus type and
task phase may interact with hemispheric asymmetries in the
neurofunctional characteristics of the hippocampus.

Recent work by Zhong et al. (2019) examining dynamic
hippocampal-cortical functional connectivity provided
evidence for state-dependent functional segmentation of
the hippocampus. Our work corroborates the notion that state
matters and extends it by also providing evidence that stimulus
features may also impact clustering profiles. With respect to
state-dependent functional clustering of the hippocampus, our
data indicate that resting state aligns well with dorsal/ventral
orientation of functional parcellations—in line with the
well-known cytoarchitectonic organization. On the other
hand, we find that certain features of the stimulus/task used
tend to produce clustering profiles along the medial-lateral
orientation, which is also likely at least partially influenced
by anatomical considerations, given that the lateral segments
of the hippocampus can be attributed to CA1-3 and the
more medial portions to the subiculum (Plachti et al., 2019;
Kharabian Masouleh et al., 2020). Importantly, our work
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examined intrahippocampal connectivity patterns, which offers
new insight into the neurofunctional organization of the
hippocampus and can serves to complement what is known about
hippocampal-cortical clustering.

This research highlights the need for several lines of future
inquiry. First, these results should be replicated on larger
samples. Second, we examined static clustering profiles given
the length of our tasks, but additional research should examine
dynamic functional connectivity which has been shown to
parcellate the left and right hippocampus differently than its
static counterpart (Zhong et al., 2019; Deshpande and Jia,
2020). This would require longer tasks that would be adequately
powered to examine dynamic shifts in connectivity profiles.
This would also require that more trials be conducted for each
task to accurately delineate the contributions of process and
stimulus context. Additionally, behavioral/memory performance
should be accounted for and used in future analyses to
determine whether functional patterns associated with successful
encoding/retrieval parcellate differently. Finally, future studies
should parametrically manipulate both cognitive process and
affective state as well as stimulus type to better characterize
and define the neurofunctional topography of the left and right
hippocampus, as these appear to be important factors. Doing so
may allow us to better understand hippocampal dysfunction in
neurological and psychiatric disorders.

Here, we present a possible theoretical resolution to the
discordance between functional and anatomical hippocampal
subfields, especially given that anatomically, the hippocampus
has withstood evolutionary pressures. Specifically, we
suggest that cognitive processing and stimulus features may
influence how the hippocampus activates, with non-specific
processing (i.e., resting state) eliciting more dorsal-ventral
clustering, and task-dependent processing segmenting along

the longitudinal and medial-lateral axes as the hippocampus
“shifts” to specific processing demands. Furthermore, we
highlight the importance of considering neurofunctional
clustering using intrahippocampal connectivity patterns,
afforded by the improved resolution possible at higher
field strengths.
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