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Abstract

The polygenic risk score (PRS) can help to identify individuals’ genetic susceptibility for various 

diseases by combining patient genetic profiles and identified single-nucleotide polymorphisms 

(SNPs) from genome-wide association studies. Although multiple diseases will usually afflict 

patients at once or in succession, conventional PRSs fail to consider genetic relationships across 

multiple diseases. Even multi-trait PRSs, which take into account genetic effects for more 

than one disease at a time, fail to consider a sufficient number of phenotypes to accurately 

reflect the state of disease comorbidity in a patient, or are biased in terms of the traits that 

are selected. Thus, we developed novel network-based comorbidity risk scores to quantify 

associations among multiple phenotypes from phenome-wide association studies (PheWAS). We 

first constructed a disease-SNP heterogeneous multi-layered network (DS-Net), which consists of 

a disease network (disease-layer) and SNP network (SNP-layer). The disease-layer describes the 

population-level interactome from PheWAS data. The SNP-layer was constructed according to 

linkage disequilibrium. Both layers were attached to transform the information from a population-

level interactome to individual-level inferences. Then, graph-based semi-supervised learning was 

applied to predict possible comorbidity scores on disease-layer for each subject. The SNP-layer 

serves as receiving individual genotyping data in the scoring process, and the disease-layer serves 

as the propagated output for an individual’s multiple disease comorbidity scores. The possible 

comorbidity scores were combined by logistic regression, and it is denoted as netCRS. The 

DS-Net was constructed from UK Biobank PheWAS data, and the individual genetic profiles were 
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collected from the Penn Medicine Biobank. As a proof-of-concept study, myocardial infarction 

(MI) was selected to compare netCRS with the PRS with pruning and thresholding (PRS-PT). 

The combined model (netCRS + PRS-PT + covariates) achieved an AUC improvement of 6.26% 

compared to the (PRS-PT + covariates) model. In terms of risk stratification, the combined model 

was able to capture the risk of MI up to approximately eight-fold higher than that of the low-risk 

group. The netCRS and PRS-PT complement each other in predicting high-risk groups of patients 

with MI. We expect that using these risk prediction models will allow for the development of 

prevention strategies and reduction of MI morbidity and mortality.
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1. Introduction

The prediction of an individual’s disease risk is an essential part of precision medicine 

and will be required to improve public healthcare and understand risk of developing a 

disease across different populations. One of the most popular methods of disease risk 

prediction is the polygenic risk score (PRS), which estimates a patient’s genetic risk for a 

chosen trait or disease by combining individual genetic profiles with many single-nucleotide 

polymorphisms (SNPs) identified through genome-wide association studies (GWAS).1,2 

Many studies have calculated PRSs for various common diseases, including cardiovascular 

disease, hypertension, and neurological disorders, and they suggest that the PRS might 

be a helpful tool for identifying and categorizing high-genetic risk individuals for those 

diseases.3-6 Nevertheless, a major weakness of the conventional PRS is its focus on a single 

trait for the estimation of genetic risk scores – when predicting the risk scores of an index 

disease of interest, PRS is calculated according solely to the relevant phenotype. In most 

cases, however, multiple diseases will usually afflict a patient at once or in succession. These 

disease complications and comorbidities, referring to the presence of one or more additional 

medical conditions given a primary disease, suggest that effective disease prediction will 

require us to consider multiple phenotypes concurrently.7 In order to estimate the disease 

risk considering the associations among multiple diseases, several studies had attempted 

to perform the association analysis for PRSs with multiple diseases through subsequent 

analysis8,9 or to combine PRSs for multiple traits.10 In these previous studies, a key step 

involves the determination of which diseases related to the index disease are selected for 

estimation of the combined risk score. However, these methods are limited as selection 

bias is introduced when knowledge reveled in clinical practice is used to identify diseases 

highly related to the target phenotype. Even multi-trait PRSs, which take into account 

genetic effects for more than one disease at a time, fail to consider a sufficient number of 

phenotypes to accurately reflect the state of disease comorbidity in a patient, or are biased in 

terms of the traits that are selected.

One effective way to comprehensively explore the genetic associations among multiple 

diseases is to consider a network representation, such as the disease-disease network 

(DDN). Given a set of diseases, the DDN represents diseases as nodes, and disease-
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disease associations as edges. DDNs can explore potential comorbidity relationships among 

phenotypes based on shared genetic components. Different genetic components will yield 

different types of networks, such as gene11, protein12, pathway13, and SNP-based DDN.14 In 

this study, the SNP-based DDN is used to incorporate the conventional PRS approach, where 

edges represent the number of shared SNPs between diseases according to results from a 

phenome-wide association study (PheWAS). The SNP-based DDN using PheWAS results 

is depicted in the center panel of Figure 1. Considering D2 as an index disease of interest 

(marked in red), we can see that it is directly connected with four diseases (D1, D3, D4, and 

D6). Three diseases (D5, D7, and D8) share no edges with D2. Directly connected diseases 

share at least one common SNP with D2. Indirectly connected diseases share no genetic 

associations with D2, but they are connected through the other nodes – for instance, D2 and 

D7 are connected in through the sequence of diseases with D2~D6~D7. Overall population-

level relationships between diseases can be observed through the underlying structure of 

the DDN, regardless of whether or not a pair of diseases share genetic components. In 

developing risk prediction models which consider the relationships across a multitude of 

diseases, a DDN can provide intuitive, unbiased evidence about the selection of related 

diseases as well as the strength of associations between diseases. However, although the 

population-level interactome between phenotypes can be observed through a DDN, it is not 

easy to apply these disease-disease associations in a patient-specific manner. Indeed, it is 

difficult to obtain information pertinent to the individual because the nodes and edges in 

DDN are aggregated and summarized from PheWAS data.

To circumvent this challenge, we propose a novel framework of network-based individual 

comorbidity risk scores (netCRS) to predict individual-level disease comorbidity risk 

through population-level interactome networks. The goals of netCRS are as follows: (a) 

To improve the prediction ability of PRS, we present a novel risk score that estimates 

multiple disease comorbidities according to their shared genetic components. The netCRS 

estimates the combined comorbidity scores for multiple phenotypes in the SNP-based DDN 

when provided with an individual genetic profile. In PRS, marginal effect size estimates of 

SNPs obtained from a GWAS are used as weights for weighted sum scores of risk alleles 

carried by an individual for a single trait. On the other hand, in netCRS, disease-specific 

effect size estimates of SNPs from PheWAS are used as edge weights of the network for 

multiple traits. (b) To obtain individual-level inference from population-level interactome, 

we construct a novel disease-SNP heterogeneous multi-layered network using EHR-linked 

biobank-scale PheWAS summary statistics. Using this multi-layered network, we introduce 

a scoring method to infer individual information from population-level networks through 

layer-wise label propagation.

Figure 1 describes the overall conceptual framework of netCRS. The center panel depicts 

a disease-SNP heterogeneous multi-layered network (denoted as DS-Net). The DS-Net 

is a multi-layered graph, consisting of a SNP-SNP correlation network (SNP-layer), 

disease-disease network (disease-layer) and SNP-disease associations (coupling graphs). 

Briefly, the SNP-layer (colored solid circles/lines) is constructed according to a linkage 

disequilibrium matrix, and the disease-layer (colorless solid circles/lines) is constructed 

according to the shared genetic components between phenotypes. The coupling graphs for 

inter-layers (colored dashed lines) between the SNP- and disease-layer are derived using 
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disease-SNP associations obtained from PheWAS summary statistics. Given the DS-Net and 

index disease of interest, we first predict individual comorbidity scores using graph-based 

semi-supervised learning (SSL). Graph-based SSL predicts scores on the disease-layer by 

propagating label information when the individual genetic profile is labeled on the SNP 

layer. In the left panel of Figure 1, individual genotype data is used to provide query or seed 

label information to the SNP-layer for the scoring algorithm. Each patient’s genetic data are 

initially labeled on the SNP-layer, and then the label information is propagated through the 

multi-layered network. Predicted risk scores are obtained for each disease node (blue bar). 

Each bar depicts a possible comorbidity score for each disease that an individual patient 

can have. The predicted comorbidity scores are subsequently aggregated into combined 

comorbidity scores using a meta-classifier (the right panel of Figure 1). Here, we use 

logistic regression for our meta-learner, and the combined comorbidity score is denoted as 

netCRS( ), where the parentheses specify the index disease of interest. More details of the 

proposed methods are explained in the following sections.

2. netCRS: Network-based individual Comorbidity Risk Scoring

2.1. Disease-SNP Heterogeneous Network using UK Biobank summary statistics

We constructed the reference network using UK BioBank (UKBB) PheWAS summary 

statistics. The DS-Net is a multi-layered weighted graph, G = (V, W, S), where V represents 

the set of nodes, W represents the set of edges, and S represents the set of layers. The 

multi-layered network G is decomposed into two distinct single graphs with corresponding 

layers S = {SDisease, SSNP}. The similarity matrix W for multi-layered network can be 

expressed in block-wise matrix as follows:

W =
W Disease C

CT W SNP
(1)

The block diagonal matrix (WDisease and WSNP) represents a similarity matrix for each 

single network of the disease-layer and SNP-layer respectively, and the block-off diagonal 

matrix C represents the coupling graphs for the connections between inter-layers.

2.1.1. Disease-Layer (Disease-Disease network)—The disease-layer GDisease = 

(VDisease, WDisease) is a sub-network of the DS-Net G, where the nodes VDisease denotes the 

set of dseases, and WDisease de notes the similarity between the sequences of SNPs that pairs 

of diseases commonly share. The disease-layer is constructed according to shared genetic 

components, with the hypothesis that two different phenotypes are associated if they share 

significant SNPs from the PheWAS summary results. Given m diseases and k SNPs, we first 

generate m disease-SNP as sociation vectors from each PheWAS result. Each disease vector 

v is represented as a k-dimensional SNP vector with binary attributes, each of which stands 

for statistically significant (‘1’) or not (‘0’) for the association with a specific SNP that has 

passed the p-value thresholds in the PheWAS results.14 Then, similarity between pairs of 

diseases is measured by cosine similarity wij for two diseases vi and vj.
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wijDisease = vi ⋅ vj
‖vi‖ ⋅ ‖vj‖

(2)

2.1.2. SNP-layers (SNP-SNP correlation network)—SNP-layer GSNP = (VSNP, 

WSNP) is a sub-network of the disease-SNP heterogeneous network G when S = {SSNP}. 

The node VSNP denotes the representative SNPs after genetic pre-processing, and WSNP 

denotes the pairwise genetic correlations between distinct SNPs. We generate the pairwise 

linkage-disequilibrium (LD) matrices of genotype correlation between nearby SNPs using 

quality-controlled genotyped data of UKBB samples. The r2 between pairs of SNPs is 

obtained using PLINK 1.90 with LD calculation (--r2, --1d-window 10 SNPs, --ld-window-

kb 1000kb, and --ld-window-r2 0.0). The similarity matrix WSNP is composed of correlation 

values ranging from 0 to 1.

2.1.3. Coupling graphs (SNP-Disease associations)—The coupling graphs C = 

{cik∣ i ∈ VDisease, k ∈ VSNP} imply connections between diseases and SNPs across different 

layers of the network. Coupling edges are derived from the disease-SNP association vectors 

(described in section 2.1.1). Edge weights take value of z-scores, equivalent to the beta-

coefficients (βik) divided by standard errors (SEik) from the significant association between 

phenotype i and SNP k from PheWAS results. These weights are rescaled to lie within a 

range of 0 to 1.

Combining the disease-layer, SNP-layer, and coupling graphs yields the proposed DS-Net. 

The constructed network can provide insights into the population-level interactome between 

diseases and SNPs.

2.2. Individual comorbidity risk scoring algorithms

Given an index disease of interest, we can predict individuals’ disease comorbidity risk 

scores using the DS-Net. Since the network describes a biobank-scale population-level 

interactome, we take individual genetic information from another biobank to calculate risk 

scores for individual patients. In this analysis, the summary-level data from UKBB were 

used for the network construction, and the individual-level genetic data were collected from 

the Penn Medicine BioBank (PMBB). More details are explained in the Section 3.

Let us define disease comorbidity risk scoring f :V ℝ as a function that quantifies the 

degree of commitment of the diseases associated with SNPs on the network. To implement 

this scoring function in a DS-Net, we employ graph-based SSL with transductive learning 

settings.15 As shown in Figure 1, individual genotypes are used for initial label information 

in the DS-Net. We set the genotype CC (homozygous non-reference) as 0, genotype CT 

(heterozygous) as 0.5, and genotype TT (homozygous reference) as 1 for initial labels 

of label propagation. Once the labels for the SNP-layer are provided, graph-based SSL 

propagates the label information through all edges in the heterogeneous multi-layered 

network simultaneously. Since we are interested only in the comorbidity risk of multiple 

diseases, the propagated disease scores fDisease on the disease-layer VDisease are used as 
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the predicted comorbidity feature vectors. To aggregate these scores, we employ logistic 

regression as the meta-classifier.

The following section describes the formulation of the proposed network-based comorbidity 

scoring algorithm. Assume that we have genotype data for m individuals and that we know 

the diagnosis outcomes of the index disease. Then, i-th patient’s genotype data mi has 

k-dimensional SNP vectors with values of 0, 0.5, and 1 as described above. The outcomes 

of the index disease for all patients z is an m-dimensional vector with value ‘1’ if the patient 

has been diagnosed with the index disease or ‘0’ otherwise. To apply the individual data 

to graph-based SSL, we set the initial label set of vector y and predicted scores f. The 

initialization and learning process is performed iteratively patient-by-patient. Let y = (y1, 

… , yn, yn+1, … , yn+k)T = (yDisease, ySNP)T denote the set of initial labels and f = (f1, … , 

fn, fn+1, … , fn+k)T = (fDisease, fSNP)T den ote the set of predicted scores, where n is the total 

number of diseases and k is the total number of SNPs in the network. In the problem setting 

of disease comorbidity scores, we set the yDisease to the zero vector and ySNP to mi. The label 

information is propagated to all connected nodes along with edges in WSNP, C, and WDisease 

on graph G. Graph-based SSL provides the real-valued scores f with two assumptions: (a) 

smoothness function (predicted scores fi and fj should not be different if two nodes vi and vj 

are adjacent), (b) loss function (predicted scores fi should be close to the given label of yi). 

We can obtain predicted score f by minimizing the following quadratic function:

min
f

(f − y)T(f − y) + μfTLf (3)

where L is the graph Laplacian defined as L = D − W, D = diag(di) is diagonal degree 

matrix, di = Σjwij, and μ is user-specific parameter that provides a trade-off between the loss 

function (first term of Eq. (3)) and smoothness function (second term of Eq. (3)). The closed 

form of solution f becomes

f = (I + μL)−1y (4)

The predicted scores f on Eq. (4) can be re-expressed in a block-wise representation by using 

Eq. (1).12

yDisease
ySNP

=
I + μ(DDisease − W Disease) −μC

−μCT I + μ(DSNP − W SNP)
fDisease

fSNP
(5)

Since the nodes in the SNP-layer are all labeled and nodes in the disease-layer are all 

unlabeled, Eq. (5) is simplified by substituting fSNP as ySNP and yDisease as 0. The predicted 

scores on the disease-layer are thus obtained as

fDisease = μ{I + μ(DDisease − W Disease)}−1C ⋅ ySNP (6)
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This process is iteratively repeated for each individual patient, and 

F∗ = {fDisease
(1) , …, fDisease

(m) } represents the m-dimensional comorbidity score vector. To 

aggregate these vectors, we employ logistic regression as a meta-classifier with z ~ 

βTfDisease + ϵ. We can then obtain the combined possible comorbidity risk scores as 

netCRS( ) = βTF∗ for the individual. A step-by-step process for scoring is summarized with 

pseudo-code in Supplementary Figure 1.

3. Results

In this study, we selected myocardial infarction (PheCode: 411.2) as the index disease of 

interest. It is commonly known as a heart attack and occurs when blood flow reduces or 

stops to a part of the heart. Myocardial infarction (MI) is the main undesirable outcome of 

coronary artery disease. Coronary artery disease, often caused by coronary atherosclerosis, 

is a common chronic condition characterized by a substantial and complex polygenic 

contribution to disease risk, with a heritability between 40% and 60%. We describe a 

Mi-specific DS-Net and present comorbidity scores of MI for the individual, netCRS 
(myocardial infarction, MI).

3.1. Experimental Setting

3.1.1. Data for model development and validation set—To build the Mi-specific 

DS-Net and calculate netCRS(MI), a total of 1,403 PheCode-based UK biobank PheWAS 

summary statistics were obtained from https://www.leelabsg.org/resources.16 To construct 

the myocardial infarction-specific DS-Net, 135 diseases were selected with the following 

criteria: (a) The diseases were included in the disease-layer if phenotypes had a minimum 

number of cases larger than 1000, and (b) the diseases were included if phenotypes had at 

least one shared SNP with myocardial infarction (directly connected with MI). The selected 

disease categories and disease-layers are described in Figure 2. In the SNP-layer, 39,365 

SNPs were selected with genome-wide significance p-value threshold ≤ 1 × 10−4. Linkage 

disequilibrium (LD) pruning was performed with thresholds (window size: 50, step size: 5, 

and r2 threshold: 0.5). A list of components in the DS-Net is described in Supplementary 

Table 1.

Individual genotype data were collected from the PMBB. The PMBB is an institutional 

research program that recruits patient-participants throughout the University of Pennsylvania 

Health System by enrolling at the time of outpatient visits ore more recently, through 

electronic consenting. Approximately 45,000 of these participants already have genotype 

data available along with electronic health records (EHR). ICD-9 and ICD-10 codes were 

aggregated to PheCodes by referring to the PheCode Map 1.2 version.17-19 4,972 individuals 

of European ancestry were included for this study, all of whom underwent genotyping 

and had available electronic health record data (Table 1). The detailed genotype QC we 

performed refers to the previous study 20. According to the accumulated medical history at 

the time of participation, individuals were considered cases for MI if they had at least 2 

instances of the PheCode on unique dates, controls if they had no instance of the PheCode, 

and ‘other/missing’ if they had one instance or a related PheCode. Table 1 describes the list 

of data and sources for model development and validation cohort.
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3.1.2. Experimental Setting—To evaluate the prediction performance of netCRS using 

PMBB genotype data, we compared proposed method to PRS with pruning and thresholding 

(PRS-PT), calculated using PRSice-221. Area under the receiver operating characteristic 

curve (AUC) was used as performance measure. The model parameters were searched 

over the following ranges for the respective models. In netCRS(MI), we performed a hyper-

parameter search of μ for Eq. (4) of graph-based SSL over μ = {0.01, 0.1, 1, 10, 100}. The 

PRS-PT was generated from the sum of the risk alleles weighted by their effect sizes based 

on GWAS summary statistics from Coronary Artery Disease Genome-wide Replication 

and Meta-analysis plus the Coronary Artery Disease Genetics (CARDIOGRAMplus C4D 

consortium).22 The parameters were selected from a range of p-value thresholds {5 × 10−8, 

1 × 10−6, 0.0001, 0.001, 0.01, 0.05} and LD-based clumping r2 (0.1 to 0.9) within 1,000 

kb. The generated netCRS(MI) and PRS-PT(MI) were compared between MI cases and 

healthy controls with the logistic regression model, respectively. For both models, the best 

performance was selected by searching over the respective model-parameter space. The 

best model of PRS-PT(MI) was determined based on the optimal threshold with the largest 

Nagelkerke's R2 value (in Supplementary Table 1).

3.1.3. Risk predictions of myocardial infarction with netCRS—Table 2 shows the 

performance comparison of the best PRS-PT(MI) and netCRS(MI) in terms of overall AUC 

for MI cases and healthy controls. In the results, we included the prediction performance 

of singleton risk model (netCRS and PRS-PT) and models with covariates of sex and age. 

We also included the additive models of (PRS-PT + netCRS) with and without covariates. 

The netCRS with μ = {0.1} achieved best predictive performance a cross both singleton 

and additive models. When netCRS was used along with the conventional PRS model, the 

combined model [6] (netCRS + PRS-PT + covariates) achieved an AUC improvement of 

28.29%(=(0.7417 − 0.5827)/0.5827) compared to the PRS-PT alone model [1] in MI case 

prediction. Also, the combined model [6] improved the performance up to 0.7417 of AUC 

(lifted from 0.6979), comparing to the individual PRS-PT model [4] (AUC improvement 

of 6.26%). Models with superscript of asterisk were used in further association analysis to 

validate netCRS and its effectiveness (model [2], [5], and [6])

3.1.4. Association analysis of netCRS and PRS—To investigate the effectiveness 

of the association between both risk scoring models and covariates with age and sex, we 

assessed multiplicative interactions between netCRS and each of the stratification variables. 

We stratified participants based on quartiles of netCRS; low risk (0th-25th), intermediate 

risk (26th-50th), high risk (51st-75th), and very high risk (76th-100th). Compared with 

the low-netCRS risk group, the higher netCRS risk group had higher odds ratios in the 

validation cohort. In stepwise multivariate models (model [5] and [6]), the models with 

covariates and/or PRS-PT remained significantly (Table 3). Participants in the very high-

netCRS risk group for MI had approximately four-fold increased risk of MI occurrence 

relative to those with the corresponding low-genetic risk group (shown in Table 3). In 

addition, we investigated the benefit of using netCRS and PRS together in screening high-

risk groups for MI. Table 4 demonstrates that combinations of MI-PRS and netCRS were 

able to capture the risk of MI up to approximately eight-fold higher than the low-risk group. 
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Supplementary Table 3 provides demographics of participants according to netCRS risk 

groups.

4. Conclusion

In this study, we developed and proposed netCRS, a network-based disease comorbidity 

risk scoring algorithm based upon biobank-scale PheWAS summary statistics. To improve 

the prediction ability of PRS, we introduced a novel combined comorbidity risk scores 

using a multi-layered network. Most current biological networks suggest only associative 

information between biological components according to aggregated population-level data 
23. Although these population-level networks provide insights regarding the interaction of 

components, it is not easy to obtain individual inference from them.

To solve this problem, we proposed a novel method for the prediction of individual-level 

risk scores from population-level interactome. We first constructed a DDN (disease-layer) 

which elaborates on the genetic associations among multiple phenotypes in UKBB PheWAS 

data. In order to use the disease-layer at the individual-level, we attached a SNP-layer to 

the disease-layer. The final developed network is a disease-SNP heterogeneous multi-layered 

network denoted as DS-Net. We employed graph-based SSL on the network to devise a 

network-based scoring algorithm. The SNP-layer is a single network that serves as initial 

labeling to receive individual genotyping data, and the disease-layer is an output network. 

The disease-layer serves as the predicted possible comorbidity risk scores in which the 

individual's genotype is propagated. To obtain layer-wise predicted scores, a layer-wise 

positive-unlabeled learning setting was employed, where the all nodes on the disease-layer 

are unlabeled and all the SNPs on the SNP-layer are labeled. Graph-based SSL can operate 

in this problem setting to propagate label information according to the topology of the 

network. The resulting netCRS is an estimated comorbidity score that integrates pre-defined 

genetic association between phenotypes using the underlying structure of the DS-Net. This 

score includes not only genetic information about a specific target disease, but also multiple 

associations of diseases. We validated the proposed netCRS by considering MI as index 

disease of interest. The netCRS model outperformed the conventional PRS-PT model in 

predicting MI patients and healthy controls. From experimental results of the association 

analysis, it is noteworthy that netCRS and PRS-PT work complementary to one another in 

identifying the very high-risk group of patients with myocardial infarction.

The current proposed method still has room for improvement. First, when constructing a 

disease-specific heterogeneous multi-layered network, it is expected that better comorbidity 

scores will be obtained if more precise criteria are applied to node selection. Second, our 

network was constructed using only common variants from PheWAS summary data. If we 

expand the network to include rare variants and other clinical information, we expect that 

using these risk prediction models will allow for the development of prevention strategies 

and reduction of MI morbidity and mortality. Also, the current disease-layer was constructed 

according to shared common SNPs between diseases. We can also try to build the DDN 

using different forms of genetic correlations such as LD regression scores. For future 

work, we will test netCRS in various diseases and compare netCRS with more recent PRS 

approaches in order to prove its generalized prediction performance.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overall framework of network-based comorbidity risk scoring algorithms (netCRS):
Left) individual genotype data collected from Penn Medicine BioBank. Middle) schematic 

description of disease-SNP heterogeneous multi-layered network (DS-Net). SNP-layer 

constructed by linkage-disequilibrium and disease-layer constructed using UK biobank 

PheWAS summary data. Right) Upper right represents possible comorbidity scores of each 

disease for individual. The possible comorbidity scores are combined by logistic regression, 

and the combined scores, netCRS, are generated by each patient
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Figure 2. Visualization of MI-specific disease-layer:
The node size is the sum of the weighted degree of the node, indicating the relative size, 

and the node labels represents their PheCode. The thickness of the line represent the edge 

weights (similarity). Parentheses in disease categories represent the percentages of diseases 

that belong to a category.
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Table 1.

Demographics table of the development and validation cohort.

Development
Cohort

(Network construction)

UK BioBank PheWAS summary data (UKBB)

Phenotypes 135 (out of 1,403)

SNPs 39,365 (after genetic pre-processing)

Penn Medicine BioBank (PMBB)

Total MI cases Controls p-value

Validation
Cohort

(Genotype data)

No. of samples (N = 4972) (N = 763) (N = 4209)

Sex <0.001

Female (%) 1,854 (37.3%) 171 (22.4%) 1683 (40.0%)

Male (%) 3,118 (62.7%) 592 (77.6%) 2526 (60.0%)

Age at enrollment 62.0 ± 14.8 68.4 ± 11.2 60.9 ± 15.1 <0.001
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Table 2.

Performance comparison of netCRS and PRS-PT in terms of AUC

Models
Hyper-parameter (μ) for netCRS

0.01 0.1 1 10 100

[1] PRS-PT 0.5827 (Baseline)

[2] netCRS* 0.6028 0.6444 0.6395 0.6197 0.6039

[3] netCRS + PRS-PT 0.6274 0.6609 0.6570 0.6389 0.6255

[4] PRS-PT + Sex + Age 0.6979 (Baseline)

[5] netCRS + Sex + Age* 0.7083 0.7287 0.7261 0.7144 0.7051

[6] netCRS + PRS-PT + Sex + Age* 0.7230 0.7417 0.7396 0.7287 0.7199
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Table 3.

Diagnostic odds ratio and 95% confidential intervals for the MI according to netCRS risk group: We compared 

three different models: (a) model [2]: netCRS alone, (b) model [5]: netCRS + sex + age, and (c) model [6]: 

netCRS + PRS-PT + sex + age.

Total (N = 4,972) No. of MI/
No. of Total

Model [2] Model [5] Model [6]

OR (95% CI) p-value* OR (95% CI) p-value* OR (95% CI) p-value*

Low risk (0th-25th) 94/1243 Reference

Intermediate risk (26th-50th) 150/1243 1.68 (1.28–2.21) <0.001 1.71 (1.30–2.25) <0.001 1.65 (1.25–2.19) <0.001

High risk (51st-75th) 218/1243 2.60 (2.02–3.37) <0.001 2.72 (2.10–3.55) <0.001 2.70 (2.08–3.53) <0.001

Very high risk (76th-100th) 301/1243 3.91 (3.06–5.02) <0.001 4.01 (3.13–5.50) <0.001 3.83 (2.98–4.96) <0.001

Abbreviations: OR, odds ratio; CI, confidence interval; PRS, polygenic risk score.

*
p-value for netCRS categories.
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Table 4.

Genetic subgroups based on the combinations of PRS and netCRS

Odds ratio*
(No. of MI / No. of Total)

PRS-PT(MI)

Low risk
(0th-25th)

Intermediate risk
(26th-50th)

High risk
(51st-75th)

Very high risk
(76th-100th)

netCRS(MI)

Low risk (0th-25th) Reference (19/334) 1.18 (20/299) 1.35 (21/273) 2.46 (34/243)

Intermediate risk (26th-50th) 1.46 (23/276) 2.36 (36/268) 2.77 (45/286) 3.07 (46/263)

High risk (51st-75th) 2.07 (33/280) 4.59 (71/272) 3.94 (52/241) 4.55 (60/232)

Very high risk (76th-100th) 4.04 (52/226) 4.66 (58/219) 5.60 (78/245) 7.88 (113/252)

*
For calculating odds ratio, we performed multivariate logistic regression analysis for MI classification task (myocardial infarction (MI) cases 

versus Normal control). Logistic model: (MI cases vs. Normal control) ~ 16 combinations (PRS and netCRS groups) + sex + age. With the lowest 
risk group (Low PRS group & Low netCRS group) as a reference, the odds ratio of each combination was reported in this table.
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