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The period circadian regulator 2 (Per2) gene is important for the modulations of rhythmic homeostasis in the gut and liver;
disruption will cause metabolic diseases, such as obesity, diabetes, and fatty liver. Herein, we investigated the alterations in
intestinal metabolic and hepatic functions in Per2 knockout (Per2-/-, KO) and wild-type (Per2+/+, WT) mice. Growth indices,
intestinal metabolomics, hepatic circadian rhythms, lipid metabolism, inflammation-related genes, antioxidant capacity, and
transcriptome sequencing were performed after euthanasia. Data indicated that KO decreased the intestinal concentrations of
amino acids such as γ-aminobutyric acid, aspartic acid, glycine, L-allothreonine, methionine, proline, serine, and valine while it
increased the concentrations of carbohydrates such as cellobiose, D-talose, fucose, lyxose, and xylose compared with WT.
Moreover, the imbalance of intestinal metabolism further seemed to induce liver dysfunction. Data indicated that Per2
knockout altered the expression of hepatic circadian rhythm genes, such as Clock, Bmal1, Per1, Per3, Cry1, and Cry2. KO also
induced hepatic lipid metabolism, because of the increase of liver index and serum concentrations of low-density lipoprotein,
and the upregulated expression of Pparα, Cyp7a1, and Cpt1. In addition, KO improved hepatic antioxidant capacity due to the
increase activities of SOD and GSH-Px and the decrease in concentrations of MDA. Lastly, KO increased the relative
expression levels of hepatic inflammation-related genes, such as Il-1β, Il-6, Tnf-α, Myd88, and Nf-κB p65, which may
potentially lead to hepatic inflammation. Overall, Per2 knockout induces gut metabolic dysregulation and may potentially
trigger alterations in hepatic antioxidant and inflammation responses.

1. Introduction

Circadian rhythms are defined as the cyclical changes in
physiology, metabolism, behavior, and circulation according
to a 24 h cycle in the life of mammals regulated by the peri-
odic expression of a series of circadian clock genes [1, 2]. At
present, many circadian clock genes have been identified in
animals including period circadian clock 1/2/3 (Per1/2/3),
cryptochrome 1/2 (Cry1/2), brain and muscle ARNT-like 1

(Bmal1), and circadian locomotor output cycle kaput (Clock)
[3, 4]. A central circadian clock located in the suprachias-
matic nucleus (SCN) coordinates the oscillation of the
peripheral circadian clock, while the intrinsically photosen-
sitive retinal ganglion cells (ipRGCs) send light signals into
SCN to guide the central clock to periodically oscillate and
output rhythmic behaviors consistent with daily changes
[5]. The circadian clock is produced by the transcriptional-
translational feedback loops (TTFLs) of circadian genes [6,
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7]. Mechanistically, the TTFLs involve events after the het-
erodimer formation by Clock and Bmal1 proteins that lead
to activation of transcription and translation of Per and
Cry. The Per and Cry proteins then undergo nuclear translo-
cation and inhibit the formation of heterodimer, thereby
inhibiting transcription [8].

Period circadian clock 2, as an important core circadian
gene, is mainly expressed in the brain and spinal cord of the
central nervous system, as well as in the surrounding organs
such as the intestine, skin, and stomach; the mutation in
Per2 will shorten the circadian oscillation and inhibit the
TTFL axis according to some previous reports [9–11]. Circa-
dian genes are also involved in a variety of metabolic pro-
cesses [12, 13]. For example, PER2 is associated with
abdominal obesity, psycho-behavioral factors, and attrition
in the dietary treatment of obesity in humans [14]. In addi-
tion, Per2 is closely related to glucose metabolism and myo-
cardial function in mice [15]. Another study has shown that
the deletion of Per2 causes glucocorticoid imbalance and
leads to circadian eating disorders, such as night-eating syn-
drome and obesity in mice [16, 17].

Rhythm disorders will also lead to imbalances in homeo-
stasis of intestinal microbes and their metabolites [18]. It has
been reported that Per2 gene can interact with gut microbial
metabolites; for example, the circadian oscillation of Per2 in
peripheral tissues can be modulated by 3-(4-hydroxyphenyl)
propionic acid and 3-phenylpropionic acid which produced
by Clostridium sporogenes [19]. We previously found that
Per2 knockout increased the relative abundance of Lachnos-
piraceae family and Ruminococcaceae family in the large
intestine and further increased the concentration of butyrate
[20]. Moreover, Per2 is also associated with hepatic func-
tions; for example, Per2 knockout mice showed more severe
liver fibrosis, cholestasis, or infarction under toxic condi-
tions than wild-type mice [21]. It is also noteworthy to high-
light that liver-specific deletion of Per2 abolished daily food
anticipation by regulating the production of β-hydroxybuty-
rate [22]. However, few studies have reported the impacts of
Per2 on global microbial metabolism in the large intestine,
and it is still unknown whether these impacts could mediate
changes in hepatic functions.

In this study, we hypothesized that a disorederd circa-
dian rhythm caused by Per2 knockout could potentially
destroy intestinal metabolic homeostasis and induce nega-
tive impacts on hepatic functions, such as inflammation.
This hypothesis is based on the fact that Per2 is one of the
core circadian clock genes and is closely related to intestinal
and hepatic metabolic functions [15]. To address the
hypothesis, Per2 knockout (KO) and wild-type (WT) mice
were managed under a regular light-dark cycle to study the
impacts on intestinal metabolism using metabolomics and
the hepatic circadian rhythms, lipid metabolism, inflamma-
tion, and antioxidant capacity using real-time PCR, bio-
chemical kits, and transcriptome sequencing.

2. Materials and Methods

2.1. Ethics Statement. All animal experiments were per-
formed according to the ethical policies and procedures

approved by the Animal Care and Use Committee of Yang-
zhou University, Jiangsu, China (Approval no. SYXK (Su)
2017-0044).

2.2. Mouse Management and Experimental Design. The Per2
knockout homozygous (Per2-/-) mice were used in our study.
Firstly, heterozygous (Per2+/-) mice were generated by Bio-
cytogen Pharmaceuticals (Beijing, China) using CRISPR/
Cas9 technology. The C57BL/6N strain was used, and all
mice were housed in a specific pathogen-free facility. Briefly,
the candidate sgRNAs, respectively, located in the intron 4
and intron 22 of Per2 were screened with the CRISPR design
tool (http://www.sanger.ac.uk/htgt/wge/). The selected
RNAs were then determined according to on-target activity
use UCATM (Universal CRISPR Activity Assay). The Cas9
mRNA and sgRNAs were coinjected into the cytoplasm of
one-cell stage fertilized eggs (C57BL/6N). The injected
zygotes were transferred into oviducts of Kunming pseudo-
pregnant females to generate F0 mice. The F0 mice with
expected genotype, verified by tail genomic DNA PCR and
sequencing, were mated with C57BL/6N mice to establish
germline-transmitted F1 heterozygous (Per2+/-) mice. These
F1 mice were further genotyped by tail genomic PCR and
DNA sequencing.

Mice were then sent to nonhuman primate research plat-
form, Chinese Academy of Science (Suzhou, China), to
obtain a sufficient number of homozygous mice (Per2-/-,
KO) and wild-type mice (Per2+/+, WT). The 8-week-old
KO and WT mice were in good health, similar in body size
and initial body weight (n = 6). Each mouse was managed
in a single cage with an environmentally controlled ware-
house that allowed for manipulating the light-dark cycle of
12 h light and 12 h dark. The lights were turned on at 6
AM (ZT0) and turned off at 6 PM (ZT12).

Composition of the commercial maintenance pellet feed
consisted of corn, soybean, wheat, chicken meal, fish meal,
and vegetable oil. The trough, drinking fountain, and bed-
ding were changed weekly. The experimental period was
42 days and was divided into 2 stages. The first stage lasted
28 days and was used for the acclimatization of the diets
and light-dark cycle, and the next stage lasted 14 days and
was used for formal trial under strict environmental control
conditions.

All mice were fasted for 24h before sampling, and the
body weight was recorded. Blood was collected from the ret-
roorbital sinus for measurement of serum biochemical indi-
ces. The KO and WT mice were then anesthetized with ether
and euthanized by spinal dislocation during ZT4-ZT6 (n = 3
) and ZT16-18 (n = 3). The intestinal contents were stripped
along the outer wall of the colon for metabolomics analysis.
The liver, heart, thymus, spleen, and other organs were iso-
lated and weighed after blotting excess blood, and samples
immediately snap-frozen in liquid nitrogen before storage
at -80°C until analysis. The organ index was calculated fol-
lowing a previously described equation [23].

2.3. Detection of Serum Indicators. Blood samples were cen-
trifuged at 4, 000 rpm and 4°C for 10min to collect the
serum. Then, the serum was sent to Yangzhou Medical
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Figure 1: Continued.
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Testing Center (Jiangsu, China) for the measurement of
serum indicators.

2.4. Total RNA Extraction and Real-Time PCR (RT-PCR).
Total RNA was extracted from hepatic tissue using the Fas-
tPure Cell/Tissue Total RNA Isolation Kit V2 (RC112,
Vazyme, Nanjing, China). Concentration and purity of total
RNA were determined with a NanoDrop spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). Reverse
transcription referred to FastKing gDNA Dispelling RT
Super Mix (TIANGEN, Beijing, China). Reverse transcrip-
tion reaction system was as follows: RT Mix, 4μL; total
RNA, 1, 000 ng; and RNase-free ddH2O to make the volume
of 20μL. Reaction procedure was set as 42°C for 15min and
95°C for 3min following the manufacturer’s instructions.

The reverse transcription gDNA samples were used as
templates for real-time PCR (RT-PCR) using the 2×
TSINGKE Master qPCR Mix (SYBR Green I) (TSE201,
Tsingke, Beijing, China) in an ABI7500 (Thermo Fisher)
sequence detector. The reaction system for PCR was as fol-
lows: qPCR Mix 10μL, forward primer 0.8μL (10μM),
reverse primer 0.8μL (10μM), 50× ROX Reference Dye
0.4μL, and ddH2O up to 20μL. PCR reaction procedure
was 95°C for 60 s, 40 cycles of 95°C for 10 s, and 60°C for
30 s, ultimately tested at 95°C for 15 s, 60°C for 60 s, 95°C
for 30 s, and 60°C for 15 s. The standard curve method and
QuantStudio™ 7 Flex Real-Time PCR Software (Applied
Biosystems, CA) were used for data analysis. Results were
analyzed using 2−ΔΔCt method [24]. Specific primers used
for RT-PCR were shown in Table S1.

2.5. Hepatic Antioxidant Capacity Analysis. Hepatic tissues
were immediately extracted and homogenized with extrac-
tion solution on ice for antioxidant capacity analysis. The

homogenized samples were centrifuged at 8000 rpm at 4°C
for 10min to collect the supernatant. Protein concentrations
were determined using total protein quantitative assay kit
(A045-2, Nanjing Jiancheng Bioengineering Institute, Nan-
jing, China). The activity of glutathione peroxidase (GSH-
Px) was determined using colorimetric test kit (A005-1, Jian-
cheng). The activities of superoxide dismutase (SOD)
(BC5165, Beijing Solarbio Science & Technology Co., Ltd.,
Beijing, China), catalase (CAT) (BC0205, Solarbio), glutathi-
one (GSH) (BC1175, Solarbio), and malondialdehyde
(MDA) (BC0025, Solarbio) were assayed using biochemical
kits following the manufacturer’s protocols.

2.6. Metabolite Extraction and Nontargeted Metabolomics.
Fifty-milligram intestinal content mixture was ground with
liquid nitrogen for metabolite extraction. The homogenate
was resuspended with a 450μL extraction solution and vor-
texed. Samples were then centrifuged at 12, 000 rpm and 4°C
for 20min. A 350μL of supernatant was pipetted into a
1.5mL EP tube and mixed 80μL of each sample into the
QC samples [25]. The supernatant was then dried under
vacuum and 80μL of MOX reagent (O-methoxyamine
HCl, dissolved in 20mg/mL pyridine) added, vortexed, and
incubated at 80°C for 30min. A 100μL of BSTFA (contain-
ing 1% TMCS) was added, vortexed, and incubated at 70°C
for 90min. Lastly, a 10μL of FAME (dissolved in chloro-
form) was added after cooling. The Agilent 7890 gas chro-
matograph (Agilent Technologies, USA) was used for GC-
TOF-MS analysis with a Agilent DB-5MS
(30m × 250 μm× 0:25μm, J&W Scientific, USA) capillary
column following the manufacturer’s instructions [26, 27].

The raw data files generated by GC-TOF-MS were fur-
ther processed with the ChromaTOF software (V4.3x,
LECO) to perform peak extraction, baseline correction,
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Figure 1: The relative expression levels of hepatic circadian rhythm genes in KO and WT mice. WT: wild-type (Period2+/+) mice; KO: Per2
gene knockout (Period2-/-) mice. Representative charts of the relative expression levels of Clock (a), Bmal1 (b), Per1 (c), Per3 (d), Cry1 (e),
and Cry2 (f) were determined in liver tissues of Per2 knockout and wild-type mice during ZT4-ZT6 and ZT16-ZT18 by RT-PCR method. ∗,
P < 0:05, significant difference; ∗∗ or ∗∗∗, P < 0:01 or P < 0:001, extremely significant difference; NS, P > 0:05, without a difference. Data
were shown as mean ± SEM; n = 3 biological replicates.
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Figure 2: Serum indicators, organ weights, and the relative expression levels of hepatic lipid metabolism-related genes in KO and WT mice.
WT: wild-type (Period2+/+) mice; KO: Per2 gene knockout (Period2-/-) mice. Representative charts of the serum concentrations of ALT (a),
AST (b), glucose (c), cholesterol (d), HDL-C (e), LDL-C (f), liver index (g), and thymus index (h) were measured in Per2 knockout and wild-
type mice. The relative expression levels of Pparα (i), Pparγ (j), Cyp7a1 (k), and Cpt1 (I) were determined in liver tissues of Per2 knockout
and wild-type mice by RT-PCR method. ∗, P < 0:05, significant difference; ∗∗ or ∗∗∗, P < 0:01 or P < 0:001, extremely significant difference;
NS, P > 0:05, without a difference. Data were shown as mean ± SEM; n = 6 biological replicates.
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and peak alignment. The metabolites were matched using
LECO/Fiehn Metabolomics Library Database [28] and
annotated using KEGG (https://www.genome.jp/kegg/
pathway.html) and HMDB (https://hmdb.ca/metabolites)
databases. Principal component analysis (PCA) and partial
least square discriminant analysis (PLS-DA) were performed
using the SIMCA-P software (version 14.1, Umetrics, Umea,
Sweden). Analysis of variance (ANOVA) was conducted
using the SPSS software (version 13.0) to calculate statistical
significance (P value). Differential metabolites were consid-
ered as VIP > 1 and P < 0:05. Volcano plots were used to fil-
ter metabolites of interest based on log2 (fold change) and
-log10 (P value). The functions and metabolic pathways were
enriched in KEGG database with MetaboAnalyst 5.0 website
(https://www.metaboanalyst.ca/MetaboAnalyst/
ModuleView.xhtml) [29].

2.7. Hepatic Transcriptome Sequencing and Data Processing.
The raw sequencing data of hepatic tissues in Per2 knockout
and wild-type mice were downloaded from [22] (https://
www.ncbi.nlm.nih.gov/bioproject/PRJNA281172) (Exp1)
and [30] (https://www.ncbi.nlm.nih.gov/geo/query/acc
.cgi?acc=GSE156450) (Exp2).

The downloaded data from Exp1 (n = 3 for each group)
and Exp2 (n = 2 for each group) were used for downstream
analysis. The Fastp software (v0.23.1) [31] was used to per-
form quality control on the raw data and obtain clean data.
The HISAT2 software (v2.1.0) [32] was used to align the
obtained clean data to the reference genome (Mus musculus
genome, GRCm39). The SAMtools software (v.1.10) was
used to sort and convert the SAM files to BAM format
[33]. The StringTie (v2.2.1) software was used to assemble
and quantify the transcripts and genes based on read counts
[32]. Lastly, the expression levels of all mRNA were esti-
mated using DESeq2 package (1.36.0) in the R (v4.2) soft-
ware. The differential expression genes (DEGs) of Exp1
and Exp2 were selected according to a threshold of P <
0:05 and jlog2fold changej > 1; then, the DEGs shared by

Exp1 and Exp2 were considered for further analysis. Func-
tional enrichment was analyzed and visualized using KEGG
database. The hierarchical clustering was generated using
Pheatmap package (v.1.0.12).

2.8. Statistical Analysis. All indicators except for the metabo-
lomics and transcriptome sequencing data were subjected to
the Students’ t-test using the SPSS 13.0 (SPSS, Inc., Chicago,
IL, US) software. The GraphPad Prism (v6.0) software was
used to draw the histograms. Results were represented as
mean ± SEM (∗ denotes P < 0:05, significant difference; ∗∗
or ∗∗∗ denotes P < 0:01 or P < 0:001, extremely significant
difference).

3. Results

3.1. Relative Expression Levels of Hepatic Circadian Rhythm
Genes. Compared with WT, KO significantly decreased the
relative expression level of Bmal1 (Figure 1(b)) while it
increased the relative expression levels of Per1
(Figure 1(c)), Per3 (Figure 1(d)), Cry1 (Figure 1(e)), and
Cry2 (Figure 1(f)) during ZT4-ZT6 (P < 0:05 or P < 0:01)
but had no impacts on the relative expression level of Clock
(Figure 1(a)) (P > 0:05) in the liver. In terms of the relative
expression levels of circadian rhythm genes during ZT16-
ZT18, KO significantly increased the relative expression level
of Clock (Figure 1(a)) while it decreased the relative expres-
sion levels of Per3 (Figure 1(d)), Cry1 (Figure 1(e)), and Cry2
(Figure 1(f)) (P < 0:05 or P < 0:01) but had no impacts on
the relative expression levels of Bmal1 (Figure 1(b)) and
Per1 (Figure 1(c)) compared with WT (P > 0:05) in the liver.

3.2. Serum Indicators, Organ Weights, and Relative
Expression Levels of Hepatic Lipid Metabolism-Related
Genes. Compared with WT, KO significantly increased the
concentrations of serum glucose (Figure 2(c)) and low-
density lipoprotein (LDL-C) (Figure 2(f)) (P < 0:01) but
had no impact on the concentrations of serum alanine
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Figure 3: The activities of hepatic antioxidant capacity indicators in KO and WT mice. WT: wild-type (Period2+/+) mice; KO: Per2 gene
knockout (Period2-/-) mice. Representative charts of the activities of superoxide dismutase (a, b), catalase (c, d), glutathione peroxidase
(e, f), glutathione (g, h), and the concentration of malondialdehyde (i, j) were determined in liver tissues of Per2 knockout and wild-type
mice as a function of liver weight and liver protein. ∗, P < 0:05, significant difference; ∗∗ or ∗∗∗, P < 0:01 or P < 0:001, extremely
significant difference; NS, P > 0:05, without a difference. Data were shown as mean ± SEM; n = 6 biological replicates.
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aminotransferase (ALT) (Figure 2(a)), aspartate aminotrans-
ferase (AST) (Figure 2(b)), cholesterol (Figure 2(d)), and
high-density lipoprotein (HDL-C) (Figure 2(e)) (P > 0:05).
Moreover, KO increased liver index (Figure 2(g)) and thy-
mus index (Figure 2(h)) compared with WT (P < 0:05). In
terms of hepatic lipid metabolism-related genes, KO
increased the relative expression levels of Pparα
(Figure 2(i)), Cyp7a1 (Figure 2(k)), and Cpt1 (Figure 2(l))
while it decreased the relative expression level of Pparγ
(Figure 2(j)) compared with WT (P < 0:01 or P < 0:001).

3.3. Activities of Hepatic Antioxidant Capacity Indicators.
Compared with WT, the activity of hepatic SOD was signif-
icantly upregulated in KO mice both as a function of liver
weight (Figure 3(a)) and liver protein (Figure 3(b))
(P < 0:01). Besides, the activity of hepatic GSH-Px was also
significantly upregulated in KO mice as a function of liver
weight (Figure 3(e)) and liver protein (Figure 3(f))
(P < 0:01). However, the activities of hepatic CAT and
GSH as a function of liver weight (Figure 3(c) and
Figure 3(g)) and liver protein (Figure 3(d) and Figure 3(h))
between KO and WT did not differ (P > 0:05). Lastly, the
concentration of hepatic MDA was significantly downregu-
lated in KO mice as a function of liver weight (Figure 3(i))
and liver protein (Figure 3(j)) (P < 0:01).

3.4. Overview of Intestinal Metabolomics Profiles and
Identification of Significantly Different Metabolites.Multivar-
iate statistical methods were applied to analyze metabolo-
mics data based on GC-TOF-MS. First, PCA score chart
was used to show the distribution of the original data and
indicated that metabolites in the intestinal content of KO

and WT mice showed slight separation on the PC2 axis
(Figure 4(a)). To further illustrate the contribution of KO
to the classification and differentiation of metabolites, an
OPLS-DA score chart was used to clarify the metabolic pat-
tern. Data indicated that the metabolites in the intestinal
contents of KO and WT mice were significantly separated
on the PC1 axis (Figure 4(b)), which indicated that KO sig-
nificantly altered the metabolism mode of intestinal content.
In addition, a permutation test was used to test the reliability
of the model (Figure 4(c)); the R2Y and Q2 intercept values
were 0.911 and -0.158, respectively. The Q2 intercept values
were less than zero, indicating that the OPLS-DA model was
reliable and could be used for downstream analysis [27, 34,
35].

Metabolites with VIP > 1:0 and P < 0:05 were selected as
differentially altered metabolites [36]. The volcano chart of
differentially altered metabolites revealed a total of 50
between KO and WT mice (Figure 4(d)). Among those, 30
were upregulated while 20 were downregulated (Table S2
and Figure 4(d)) (analyte plus number represented
unrecognized metabolites, and unknown represented
unknown metabolites). There were 33 metabolites
accurately identified. Differentially sorted according to the
VIP value mainly included aminomalonic acid, serine,
glutathione, lyxose, 5-(2-hydroxyethyl)-4-methylthiazole,
N-methyl-DL-alanine, and glycine (Figure 5).

3.5. Characterization and Functional Analysis of Key
Metabolite Pathways. The classification of differential
metabolites is shown in Figure 6(a). Among those, 13 metab-
olites belonged to amino acids, and 6 metabolites belonged
to carbohydrate, while 8 metabolites belonged to lipids and
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Figure 4: Construction of the PCA and OPLS-DA metabolomics model in the intestinal content of KO and WT mice. WT: wild-type
(Period2+/+) mice; KO: Per2 gene knockout (Period2-/-) mice. (a) The PCA plot based on GC-TOF-MS analysis in KO and WT mice. (b)
The OPLS-DA plot based on GC-TOF-MS analysis in KO and WT mice. (c) The OPLS-DA corresponding validation plots based on 200
times permutation tests. (d) Volcano plots of significantly differential metabolites. Red dots represent upregulated; blue dots represent
downregulated metabolites.
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3 metabolites belonged to organic acids, but 3 of total 33
metabolites were unclassified. The differentially altered
metabolites were further analyzed to study the effect of
Per2 knockout on amino acid and carbohydrate metabolism
in the hindgut of mice. Data indicated that the majority of
differentially altered amino acids in KO mice were signifi-
cantly lower than those in WT (P < 0:05 or P < 0:01). These
mainly included γ-aminobutyric acid (GABA), aspartic acid,
glycine, L-allothreonine, methionine, proline, serine, and
valine (Figure 6(b)), while most differentially altered carbo-
hydrates were upregulated compared with WT. These
included cellobiose, D-talose, fucose, lyxose, and xylose
(P < 0:05) (Figure 6(c)).

The enrichment results of specific metabolites via KEGG
database are shown in Figure 6(d) and Table S3. Different
metabolites were mainly enriched in “alanine, aspartate, and
glutamate metabolism” pathway of aspartic acid, succinate
semialdehyde, GABA, fumaric acid, and carbamoyl-aspartic
acid; “aminoacyl-tRNA biosynthesis” pathway of glycine,
aspartic acid, serine, methionine, valine, and proline;
“butanoate metabolism” pathway of 3-hydroxybutyric acid,
GABA, and succinate semialdehyde; and “glycine, serine,
and threonine metabolism” pathway of serine, glycine, and
L-allothreonine, via KEGG database.

3.6. Hepatic Transcriptome Sequencing Profiles and Pathway
Enrichment. We next investigated the alterations in hepatic
functions in WT and KO mice using transcriptome sequenc-
ing. Data indicated that a total number of 435 DEGs were
selected in Exp1 (Figure 7(a) and Table S4). A volcano plot
was also used to visualize the changes of DEGs; compared
with WT, 207 DEGs were upregulated, including Hsd3b2,
Mup16, Tfpi2, Serpina11, Tecta, and Serpina3a, in KO,
while 228 DEGs were downregulated, including Cyp2c38,
Slc9a1, Mroh9, and Itch, in KO (Figure 7(b)). Besides, in
Exp2, a total number of 381 DEGs were selected
(Figure 7(c) and Table S5); among those, 161 DEGs were
upregulated, such as Kng1 and Trp63inp1, while 220 DEGs
were downregulated, such as Tdg-ps, Gucy2d, Vmn1r185,
and Ndufa5, in KO compared with WT (Figure 7(d)).
Finally, Figure 7(e) demonstrates that a total number of 45
DEGs were coexpressed in Exp1 and Exp2, including Tfpi2,
Tecta, Itch, Slc9a1, Vmn1r185, and Enho (Figure 7(f)).

To assess the functional consequences, the coexpressed
DEGs were further analyzed using the KEGG database and
Gene Ontology (GO) database. The enrichment analysis
results of KEGG database indicated that KO significantly
altered the pathways in inflammation and disease, such as
nonalcoholic fatty liver disease, Parkinson disease,
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Figure 5: The identification of significantly different metabolites. WT: wild-type (Period2+/+) mice; KO: Per2 gene knockout (Period2-/-)
mice. Variable importance in projection (VIP) scores of the differential metabolites obtained from the OPLS-DA models. Red boxes
represent high concentration, and blue boxes represent low concentration.
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Huntington disease, Alzheimer disease, and the TNF signal-
ing pathway (Figure 8(a)). Besides, KO also altered functions
in the metabolism, endocrine, and digestive systems, such as
primary bile acid biosynthesis, gastric acid secretion, salivary
secretion, bile secretion, protein digestion and absorption,
steroid hormone biosynthesis, and pancreatic secretion
(Figure 8(a)). Next, enrichment analysis using GO database
showed that most of DEGs were also enriched in several pro-
cesses related to metabolism and inflammation functions,
such as bile acid catabolic process and cellular response to
cytokine stimulus (Figure 8(b)).

3.7. Relative Expression Levels of Hepatic Inflammation
Pathway-Related Genes. Compared with WT, the relative
expression levels of Il-1β (Figure 8(c)), Il-6 (Figure 8(d)),
and Tnf-α (Figure 8(e)) were significantly increased in KO
mice (P < 0:01 or P < 0:001). However, KO had no impacts
on the relative expression levels of Tlr2 (Figure 8(f)) and
Tlr4 (Figure 8(g)) compared with WT (P > 0:05). Finally,
the relative expression levels of Myd88 (Figure 8(h)) and
Nf-κB (Figure 8(i)) were also upregulated in KO compared
with WT (P < 0:01).

4. Discussion

The key objective of this study was to investigate the mech-
anisms whereby a Per2 knockout altered hindgut metabo-
lism and hepatic functions. Our data indicated that Per2
knockout disturbed the relative expression levels of the cir-
cadian rhythm genes in the liver; for example, KO upregu-
lated the relative expression levels of Per1, Per3, Cry1, and
Cry2 while it downregulated the relative expression level of

Bmal1 during ZT4-ZT6; KO also downregulated the relative
expression levels of Per3, Cry1, and Cry2 while it upregu-
lated the relative expression level of Clock during ZT16-
ZT18. Russell et al. [37] reported that Per2 knockout dis-
rupted circadian rhythms and resulted in the imbalance of
the hypothalamus-pituitary-adrenal (HPA) axis, thus lead-
ing to the augment of the depressive and fright behaviors.
Thus, it is concluded that Per2 knockout causes a rhythm
disorder in the liver of mice. Another report also demon-
strated that Per2 knockout shortened circadian rhythm and
reduced mean arterial pressure, heart rate, and exercise fre-
quency in mice [38]. As a consequence, signal transduction
in the renin-angiotensin pathway was inhibited and resulted
in vascular hypertrophy and abnormal blood pressure [39].
Taken together, data underscored the essentiality of Per2
for the normal circadian rhythm and physiological
functions.

Disturbances of the circadian rhythm will induce imbal-
ance in intestinal microbes and their metabolism. In our
study, Per2 knockout inhibited the TTFLs axis, thus affecting
the structure and function of intestinal microbes [9, 10]. We
predicted that the alterations of a variety of digestive and
metabolic functions in hindgut may result from the disor-
dered gut microbe profiles, because the intestinal microbes
can produce key metabolic mediators and further affect the
circadian rhythm of the host [40]. Our previous study using
16S rRNA sequencing revealed that KO significantly altered
the bacterial genes which enriched in amino acid and carbo-
hydrate metabolism pathways; it is interesting to find that
these pathways were consistent with the enrichment results
of differentially altered metabolites using metabolomic data
in this study. We speculated that Per2 knockout induced a

Alanine, aspartate and glutamate metabolism

Aminoacyl-tRNA biosynthesis

Butanoate metabolism

Glycine, serine and threonine metabolism

Glutathione metabolism
Glyoxylate and dicarboxylate metabolism

Cysteine and methionine metabolism
Arginine and proline metabolism

–l
og

10
 P

-v
al

ue

Pathway impact

0

1

2

3

0 0.1 0.2 0.3 0.4

(d)

Figure 6: The characterization and functional analysis of key metabolites. WT: wild-type (Period2+/+) mice; KO: Per2 gene knockout
(Period2-/-) mice. (a) The classification of significantly differential metabolites. (b) Bar chart of the significant differential metabolites
belonged to amino acids. (c) Bar chart of the significant differential metabolites belonged to carbohydrates. (d) Significant metabolic
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disorder of amino acid metabolism, and most of intestinal
amino acids may enter the citrate cycle pathway and are
converted into butyrate to provide energy. The results of dif-
ferentially altered metabolites in our study were consistent
with the hepatic metabolomics data in mice fed with the
high-fat diets [41], which suggested that Per2 knockout
may induce an impairment in insulin signaling and lead to
increased gluconeogenesis and citrate cycle flux [42], further
may contribute to abnormal metabolism and hepatic
damage.

The KO also reduced the concentrations of other metab-
olites which belonge to amino acids, such as GABA, aspartic
acid, and glycine. These metabolites can act as the neuro-
transmitters [43]; for example, GABA is one of the most
important inhibitory neurotransmitters in the brain.
According to a previous report, the gut microbiota can reg-

ulate excitatory and inhibitory neurotransmitters, such as
Lactobacilli [44]. Thus, the decreased concentrations of these
neurotransmitter amino acids in our study may be related to
the imbalance of intestinal microbiota. Ono et al. [45] also
reported that GABA is necessary to maintain circadian
rhythms and stabilize neurotransmitter output signals. Thus,
our study further verified the essentiality of GABA to main-
tain rhythmic oscillations and the key role of the gut micro-
biota in this process.

Our data also indicated that Per2 knockout led to
increased concentrations of serum glucose and low-density
lipoprotein, together with the liver and thymus indexes in
mice. These responses may be associated with hepatic dys-
function and excessive fat deposition because of the role of
Per2 in coordinating aspects of lipid metabolism. In agree-
ment with this idea, KO significantly upregulated the relative
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Figure 8: Pathways enrichment results and the relative expression levels of hepatic inflammation pathway-related genes. WT: wild-type
(Period2+/+) mice; KO: Per2 gene knockout (Period2-/-) mice. (a) KEGG functional analysis of the coexpressed DEGs. (b) Gene ontology
(GO) functional analysis of the coexpressed DEGs. The relative expression levels of Il-1β (c), Il-6 (d), Tnf-α (e), Tlr2 (f), Tlr4 (g), Myd88
(h), and Nf-κB (i) were determined in liver tissues of Per2 knockout and wild-type mice by RT-PCR method.
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expression level of Pparα but downregulated expression of
Pparγ compared with WT. KO also upregulated Cyp7a1
and Cpt1 compared with WT. Several studies from our lab-
oratory reported that Per2 silencing downregulated Pparγ
and suppressed lipid synthesis in bovine mammary epithe-
lial cells [46], underscoring that circadian clock genes con-
trol lipid metabolism via Pparγ [47, 48]. Several previous
studies also showed that Per2 interacts with key nuclear
receptors (Pparα, Pparγ, and Rev-erbα) [49] and plays an
important role in the liver transcriptional response to feed-
ing and acute fasting [50]. For example, Per2 knockout
increased plasma insulin levels due to enhanced glucose-
stimulated insulin secretion and impaired insulin clearance
in mice [51]. Others also found that mice that lacked a func-
tional Per2 protein in liver exhibit decreased glycogen syn-
thase protein levels during refeeding along with augmented
glycogen phosphorylase activity during fasting [50]. The
Per2 mutation mice lack a glucocorticoid rhythm and diur-
nal feeding rhythm, which will develop obesity when fed a
high-fat diet [16, 17]. Several reports also indicated that
the synthesis and secretion of bile acids are reduced in
Per2 knockout mice, underscoring a high risk to develop
fatty liver [52–54]. Besides, there are relatively few reports
on the impacts of Per2 knockout on the antioxidant capacity.
We speculated that dysregulation of circadian rhythms due
to the knockout of Per2 would enhance antioxidant capacity
based on the fact that KO increased activities of SOD and
GSH-Px but decreased the concentration of MDA.

Rhythm disorders led to an imbalance of intestinal
microbiota that affected the adaptability to the environment,
diet, immunity, and other functions [55]. Circadian rhythm
disturbances also can directly endanger host health and
immune function by hindering signal transduction processes
in the central circadian clock responsible for production of
intestinal metabolites [56]. As such, these alterations ulti-
mately induce derangements in inflammation, metabolism,
immunity, and overall health. All these events explain in part
the increased incidence of obesity and metabolic diseases
among workers who reverse day and night shifts [57] and
the physiological effects arising when traveling across time
zones [58]. In order to study whether the intestinal meta-
bolic disorder caused by Per2 knockout impacts metabo-
lism- and inflammation-related functions in the liver, we
further screened the differential expressed genes of Per2
knockout and WT mice of hepatic transcriptome sequencing
data from GEO database and verified using RT-PCR. Tran-
scriptome sequencing data indicated that Per2 knockout
altered the expression of several genes in the liver, such as
Tfpi2, Slc9a1, Enho, Pcolce2, and Mup-ps1. The functional
prediction results of these genes were highly consistent with
our data; for example, KO significantly altered the pathways
in hepatic inflammation and disease, such as nonalcoholic
fatty liver disease. Besides, KO also altered functions in the
metabolism, endocrine, and digestive systems, such as pri-
mary bile acid biosynthesis, gastric acid secretion, salivary
secretion, bile secretion, protein digestion and absorption,
steroid hormone biosynthesis, and pancreatic secretion. It
is also worth noting that several genes also enriched in the
TNF signaling pathway and cellular response to cytokine

stimulus from KEGG and GO databases, which reflected
that KO may induce hepatic inflammation responses. We
also detected alterations of inflammatory-related factors,
and data indicated that compared with WT, the relative
expression levels of Il-1β, Il-6, and Tnf-α, as well as Myd88
and Nf-κB, were upregulated in KO mice, which suggested
that KO may induce hepatic inflammation through the Tlr
signaling and Nf-κB pathways [59].

In summary, our data are consistent with the hypothe-
sis; Per2 knockout altered intestinal amino acids and carbo-
hydrate metabolism; for example, KO decreased the
concentrations of amino acids such as GABA, aspartic acid,
glycine, L-allothreonine, methionine, proline, serine, and
valine while increased the concentrations of carbohydrates
such as cellobiose, D-talose, fucose, lyxose, and xylose.
Moreover, the imbalance of intestinal metabolism further
may induce liver dysfunctions. Firstly, KO induced hepatic
lipid metabolism disordered, because of the increase of liver
index and serum concentrations of low-density lipoprotein,
and upregulated lipid metabolism-related genes, such as
Pparα, Cyp7a1, and Cpt1. Then, KO also improved hepatic
antioxidant capacity due to the increased activities of SOD
and GSH-Px and the decreased concentration of MDA.
Moreover, KO increased the relative expression levels of
hepatic inflammation-related genes, such as Il-1β, Il-6,
Tnf-α, Myd88, and Nf-κB p65, which may potentially lead
to hepatic inflammation.
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