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Biological neural networks produce information backgrounds of multi-scale spontaneous

activity that become more complex in brain states displaying higher capacities for

cognition, for instance, attentive awake versus asleep or anesthetized states. Here, we

review brain state-dependent mechanisms spanning ion channel currents (microscale)

to the dynamics of brain-wide, distributed, transient functional assemblies (macroscale).

Not unlike how microscopic interactions between molecules underlie structures formed

in macroscopic states of matter, using statistical physics, the dynamics of microscopic

neural phenomena can be linked to macroscopic brain dynamics through mesoscopic

scales. Beyond spontaneous dynamics, it is observed that stimuli evoke collapses of

complexity, most remarkable over high dimensional, asynchronous, irregular background

dynamics during consciousness. In contrast, complexity may not be further collapsed

beyond synchrony and regularity characteristic of unconscious spontaneous activity. We

propose that increased dimensionality of spontaneous dynamics during conscious states

supports responsiveness, enhancing neural networks’ emergent capacity to robustly

encode information over multiple scales.

Keywords: computational neuroscience, neural network models, mean-field models, membrane biophysics,

low-dimensional manifold, cerebral cortex, coupling, desynchronized

INTRODUCTION

Brain activity transitions between healthy states, including stages of sleep, restful and aroused
waking, as well as pathological states such as epilepsy, coma, and unresponsive wakefulness
syndrome. From such a diversity of brain states, phenomenological categories encompassing
similar spatio-temporal activity patterns can roughly, but usefully, be defined: unconscious (e.g.,
sleep and anesthesia) and conscious (e.g., waking and dreaming) brain states. At the macroscopic,
global scale, unconscious brain states are dominated by high voltage, low frequency oscillatory
brain activity related to the microscopic alternation of synchronous neuronal spiking and near
silence (Steriade et al., 1993; Brown et al., 2010). Conversely, conscious states are macroscopically
characterized by low voltage, high frequency, complex “disorganized” dynamics resulting from
more asynchronous irregular (AI) microscopic network activity (Tsodyks and Sejnowski, 1995;
Van Vreeswijk and Sompolinsky, 1996; Brunel, 2000), thought to be important for neural coding
(Skarda and Freeman, 1987; Van Vreeswijk and Sompolinsky, 1996; Tononi and Edelman, 1998;
Zerlaut and Destexhe, 2017).

Much as different states of matter like solids, liquids, and gases emerge from interactions
between populations of molecules, different brain states may emerge from the interactions
between populations of neurons. Statistical physics provides a mathematical framework to
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uncover structures of microscopic interactions underlying
macroscopic properties. In this sense, macroscopically observed
high synchrony, low complexity brain signals recorded from
unconscious states may be accounted for by an increased
coupling in the system’s components, behaving more like a
solid (Peyrache et al., 2012; Le Van Quyen et al., 2016; Olcese
et al., 2016; Nghiem et al., 2018a). In contrast, conscious brain
states may be described as higher complexity (Sitt et al., 2014;
Engemann et al., 2018; Nghiem et al., 2018a), perhaps liquid-like.

Though quantitative expressions directly linking order and
complexity are not straightforward, various definitions and
metrics of complexity have been described to vary between
brain states. Reports of enhanced complexity in conscious
compared to unconscious states may be understood as increased
dimensionality (El Boustani and Destexhe, 2010), namely the
number of degrees of freedom needed to capture a system’s
dynamics. Intuitively, dimensionality relates, though is not
reducible to, algorithmic complexity which quantifies the length
of a deterministic algorithm required to reproduce an exact
signal. For a random signal resulting from purely stochastic
dynamics (similar to neural activity observed during conscious
states), the length of the algorithm would be as long as the
signal itself. In contrast, a purely oscillatory signal (reminiscent
of unconscious brain dynamics) can be recapitulated by a
shorter algorithm, easily described by a periodic trajectory in
few dimensions.

Here, we aim to connect spatial scales from microscopic
(nanometers to micrometers—molecules to whole neurons) to
macroscopic brain activity (centimeters to meters—brain areas
to individual subjects’ brains), describing both spontaneous and
evoked dynamics. Toward linking interpretations of studies
between scales, mesoscopic data (micrometers to millimeters—
populations of thousands to tens of thousands of neurons)
have been useful to inform models of neuronal assemblies.
The perspective concludes by discussing a hypothesis best
tested with a multi-scale understanding of brain function: the
global complexity of neural activity increases in conscious
brain states so as to enhance responsiveness to stimuli. We
suggest responsiveness may depend on the capacity of neural
networks to transiently collapse the dimensionality of collective
dynamics—in particular neural assemblies sensitive to stimulus
features—into evoked low-dimensional trajectories supporting
neural codes (Figure 1A).

MACROSCOPIC SIGNALS VARY
ROBUSTLY BETWEEN BRAIN STATES

Both spontaneous and evoked (Figures 1A,B) neural signals
vary macroscopically across brain states, as demonstrated
in electroencephalography (EEG), magnetoencephalography
(MEG), and functional magnetic resonance imaging (fMRI).
In unconscious states, neural activity is dominated by low-
frequency, high-amplitude signals (Niedermeyer and Lopes da
Silva, 2005). Accordingly, analyses of entropy (Sitt et al., 2014;
Engemann et al., 2018), complexity (Tononi and Edelman,
1998), and dimensionality (El Boustani and Destexhe, 2010)

during unconscious states indicate a relative simplicity of
signals compared to conscious states. In unconscious states,
synchronous activity slowly sweeps across the cortex (Massimini
et al., 2004) along paths formed by cortical tracts (Capone
et al., 2017). In both conscious resting and unconscious states,
the default mode network (Raichle et al., 2001; Boly et al.,
2008) establishes a pattern of synchronization between brain
areas, producing correlations in ultra-slow (< 1 Hz) dynamics
(Brookes et al., 2011). Sustained, slow oscillations were initially
reported in the thalamocortical system (Steriade, 2003), but
are also observed experimentally in isolated cortex, without
thalamus (Sanchez-Vives and McCormick, 2000; Timofeev et al.,
2000). Thalamocortical connections shape slow wave dynamics
(Destexhe et al., 2007; Poulet et al., 2012; David et al., 2013;
Crunelli et al., 2015; Zucca et al., 2019) although slow oscillations
appear to be the default state of cortical networks (Sanchez-Vives
and McCormick, 2000; Sanchez-Vives et al., 2017).

Patterns of neocortical regions activated in resting state
networks have been successfully retrieved using eigenmodes of
the structural connectivity matrix, i.e., the possible oscillatory
patterns at frequencies allowed by white matter tract lengths
(Atasoy et al., 2016). In active states, the executive control
network replaces the default mode (Fox et al., 2005), and the co-
activation of different cortical regions is more strongly controlled
by correlations in external stimuli than by white matter structural
connectivity (Gilson et al., 2018), with patterns of activity
propagating recurrently between low-level, sensory areas and
high-level, associative areas.

During conscious states, on the background of globally
disorganized neural activity, transient patterns emerge (Duncan-
Johnson and Donchin, 1982; Goodin and Aminoff, 1984; Sur and
Sinha, 2009; Uhlhaas et al., 2009; Luck and Kappenman, 2011;
Churchland et al., 2012; Sato et al., 2012; Singer, 2013; Chemla
et al., 2019). Under an interpretation of brain states in analogy to
states of matter, microscopic changes in the interactions between
neurons could permit the emergence of larger-scale structures in
brain activity.

MICROSCOPIC MECHANISMS;
BIOPHYSICS OF BRAIN STATES

Experiments have demonstrated that during unconscious brain
states, the membrane potential (Vm) of single cells slowly
oscillates between hyperpolarized and depolarized potentials
associated with alternating periods of silence (Down states,
also termed “OFF periods”) and AI-like firing (Up states, also
termed “ON periods”) (Steriade et al., 1993) (Figure 2A). During
conscious brain states, neurons show sustained but sparse and
irregular AI firing patterns (Vreeswijk and Sompolinsky, 1998;
Destexhe et al., 1999; Brunel, 2000; Steriade, 2000; Renart et al.,
2010; Dehghani et al., 2016; di Volo and Torcini, 2018). It
was found that, during AI states, excitatory (E) and inhibitory
(I) synaptic inputs are near-balanced (Dehghani et al., 2016),
as predicted theoretically (Van Vreeswijk and Sompolinsky,
1996). In AI states, voltage fluctuations drive neurons over
the threshold for firing action potentials, resulting in irregular
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FIGURE 1 | Complex dynamics associated with conscious brain states provide a potential substrate for neural coding. (A) Schematics of spontaneous (top) and

evoked (bottom) dynamics in connected neuronal assemblies encoding different related concepts (different colors) in unconscious (left) and conscious (right) brain

states. In unconscious brain states, slow, synchronous, large amplitude oscillations are observed. Stimuli delivered during unconscious states evoke large amplitude,

transient responses similar to spontaneous activity. In contrast, during conscious states, asynchronous, irregular firing of neurons results in macroscopically

desynchronized, low amplitude signals. Only networks recruited by the perturbation (here, a rabbit) produce lower-dimensional patterns that propagate relatively

further in time and space. (B) Global mean-field power (GMFP) recorded with EEG in response to transcranial magnetic stimulation, during deep, non-rapid eye

movement (NREM) sleep versus wakefulness. Mean EEG signal is represented by black traces. Background colors represent temporal latency (light blue, 0 ms; red,

300 ms) of maximum current sources, also shown in cortical space on the right, where yellow crosses represent the location of stimulation (right dorsolateral premotor

cortex). Reprinted with permission from AAAS (Massimini et al., 2005). If brain dynamics between states may be described in analogy to states of matter, perturbing

unconscious brains results in large, brief signals perhaps akin to a small perturbation of a solid, which can displace the solid briefly, but will not modify its internal

structure. In contrast, the same perturbation delivered during conscious, liquid-like brain states results in smaller but more complex patterns that propagate further in

time and space. Under this interpretation, in coding networks, responses evoked during conscious states could represent a form of transient “crystallization,”

consistent with neural trajectories lying on low-dimensional manifolds.

spiking dynamics, also known as fluctuation-driven regimes
(Kuhn et al., 2004; Destexhe, 2007; Destexhe and Rudolph-Lilith,
2012). To understand mechanisms at work during fluctuation-
driven dynamics, computational models have further shown that
three parameters are important to capture neuronal responses in
this regime, the average membrane voltage Vm, the amplitude
of Vm fluctuations, and the conductance state of the membrane
(Reig et al., 2015; Zerlaut et al., 2016).

Neuromodulators, including acetylcholine, play important
biological roles in modulating the membrane properties of

neurons (McCormick, 1992) and thus transitions between
AI and slow oscillatory dynamics through the regulation of
membrane currents (Hill and Tononi, 2005). Neuromodulators
are present at higher concentrations during conscious states
(McCormick, 1992; Jones, 2003) and, most generally, inhibit
potassium (activity-dependent and leak K+) channels, which
leads to depolarization of cells and suppression of spike-
frequency adaptation. At low neuromodulatory concentrations,
during unconscious states, K+ leak channels are constitutively
open and activity-dependent K+ channels open when neurons
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FIGURE 2 | Simple, high-amplitude signals in unconscious brain states are associated with synchronous regular neuronal firing, whereas complex, low-amplitude

signals in conscious brain states emerge from asynchronous irregular firing. (A) Data sample from Peyrache et al. (2012), Dehghani et al. (2016),

(Continued)
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FIGURE 2 | Le Van Quyen et al. (2016), Teleńczuk et al. (2017), and Nghiem et al. (2018b), containing local field potential (LFP; top), spike times (action potentials;

middle), and spike counts (bottom) recorded from a human subject during NREM sleep (left) and wakefulness (right). Spikes from inhibitory (orange) and excitatory

(blue) neurons were separated and spike counts were calculated in bins of 5ms. Up states shaded in the left panel. (B) Transition between slow-wave (unconscious)

and activated (conscious) state dynamics in vivo (top) and in silico (bottom). Experimentally the transition is generated by electrical stimulation of acetylcholine neurons

in the pedunculopontine tegmentum (PPT) of anesthetized cat (Volgushev et al., 2011), triggering awake-like, desynchronized dynamics in cortex (Rudolph et al.,

2005). A prominent consequence of enhancing cholinergic signaling in cortex is a reduction of spike-frequency adaptation (McCormick, 1992). In silico, a similarly

desynchronizing effect can be generated by reducing the parameter responsible for spike-frequency adaptation. Simulated traces shown in the bottom were modified

from Destexhe (2009), which used a network of adaptive exponential integrate-and-fire neurons. The average Vm of the network, the Vm of a randomly chosen neuron,

and the raster plot of the network are shown. Reproduced with permission from Destexhe (2009). (C) State dependence of network responsiveness. The

responsiveness of two spiking networks to a Gaussian pulse is shown. Raster plots display spike times of excitatory (blue) and inhibitory (orange) neurons connected

by conductance-based synapses. Population activity (spike counts, thin line), as well as mean-field model (thick lines), and standard deviation (shaded area) of

population firing rate generated by a mean-field model developed in di Volo et al. (2019). Responsiveness is found to vary between different network states, obtained

by changing the ratio of the time-averaged global excitatory conductance (GE ) (Destexhe et al., 2003) to membrane leakage conductance (GL).

spike, allowing K+ ions to exit cells thus hyperpolarizing the
membrane. Accumulating self-inhibition in the form of spike-
frequency adaptation during Up periods results in the transition
to Down states. Conversely, spike-frequency adaptation wears
off during Down states, allowing noise fluctuations (present
ubiquitously; Destexhe and Rudolph-Lilith, 2012) to trigger
transitions to Up states (Destexhe, 2009; Jercog et al., 2017;
Nghiem T.-A. E. et al., 2018; di Volo et al., 2019) (Figure 2B).
Computationally speaking, for high values of spike-frequency
adaptation, bistability can be observed, with solutions at firing
rate zero (Down state) and non-zero (Up state) values (Holcman
and Tsodyks, 2006; di Volo et al., 2019). The more chaotic
dynamics of AI states associated with consciousness allows for
more reliable stimulus encoding (D’Andola et al., 2017), more
reliable propagation (Zerlaut and Destexhe, 2017), and more
sustained responses (Nghiem T.-A. E. et al., 2018) to stimuli over
time. In contrast, during unconscious states, neuronal responses
are more unreliable and vary greatly depending on the stimulus
amplitude and whether cells receive inputs in Up or Down
periods (Rosanova and Timofeev, 2005; Reig et al., 2015).

The Ising model for spin glasses (Jaynes, 1982) fitted to neural
data (Schneidman et al., 2006) has revealed divergent types
of emergent neuronal dynamics in conscious and unconscious
states. While neuronal interactions are pairwise in wakefulness
(Nghiem et al., 2017), coupling becomes population-wide in
deep sleep (Tavoni et al., 2017; Nghiem et al., 2018b). In
particular, inhibitory neurons organize synchronous activity
across populations (Nghiem et al., 2018b; Zanoci et al., 2019),
especially during deep sleep (Peyrache et al., 2012; Le Van Quyen
et al., 2016; Olcese et al., 2016) where inhibitory neurons regulate
rhythms of slow wave dynamics (Compte et al., 2008; Funk et al.,
2017; Zucca et al., 2017, 2019).

To summarize, between unconscious and conscious
brain states, microscopic data appear intuitively related to
macroscopic data: synchronous microscopic Up and Down
states resulting from constitutive and activity-dependent,
hyperpolarizing currents due to reduced neuromodulation
correspond to relatively simple, high-amplitude macroscopic
dynamics observed in unconscious states. Active, disorganized,
desynchronized, AI, low adaptation, high neuromodulation
conditions correspond to low amplitude, complex, conscious
brain signals. On backgrounds of differing spontaneous
dynamics, generalizable patterns of activity (a.k.a. neural

graphoelements) are observed. Cash et al. have elegantly shown
that K-complexes (graphoelements characteristic of sleep stage
2) are complementarily observed both at microscopic and
macroscopic scales (Cash et al., 2009). Other identifiable patterns
also begin to emerge in empirical and theoretical data, including
phase cones (Freeman and Barrie, 2000) and interacting traveling
waves (Sato et al., 2012; Chemla et al., 2019). Since statistical
physics has successfully described neuronal interactions for
different brain states, we ask next whether mesoscale methods
from statistical physics can help represent spontaneous and
evoked dynamics of neuronal populations, thus formally linking
knowledge between micro- and macroscopic scales.

MESOSCALE BRIDGES; POPULATIONS OF
NEURONS

Brain dynamics at mesoscopic scales, describing thousands of
neurons, are investigated empirically by electrophysiology and
more recently, voltage-sensitive dyes (Arieli et al., 1996; Chemla
and Chavane, 2010). At mesoscales, brain activity follows the
trend of increasing complexity of spontaneous activity with
consciousness (Figure 2A). Studying the effects of inputs at
the mesoscale, studies have shown that perturbations during
deep sleep states induce slow waves, but, during waking states,
perturbations can result in chains of phase-locked activity
(Pigorini et al., 2015) leading to causal global interactions
(Rosanova et al., 2018).

Mean-field models offer a formalism for scaling up
microscopic detail to collective macroscopic dynamics using few
equations, offering a computational advantage for simulations.
In describing states of matter, mean-field models simplify
the probabilistic behavior of molecules to the relatively more
predictable behavior of macroscopic states (Kadanoff, 2009).
A rich literature has begun to develop mean-field models of
neuronal populations, showing that global variables describing
population activity can be usefully derived from the biophysics
of neurons and their interactions (Ohira and Cowan, 1993;
Ginzburg and Sompolinsky, 1994; El Boustani and Destexhe,
2009; Buice et al., 2010; Dahmen et al., 2016). Mean-field models
have qualitatively reproduced temporal features of spontaneous
dynamics including AI (El Boustani and Destexhe, 2009), Up
and Down dynamics (Compte et al., 2003; Jercog et al., 2017;
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Tartaglia and Brunel, 2017; di Volo et al., 2019), and transitions
between these states (di Volo et al., 2019; Tort-Colet et al.,
2019). In addition, connecting mean-fields provides a tool
for simulating the propagation of patterns through time and
space, across mesoscale structures. For example, recent work
deriving mean-field models of networks with conductance-based
synapses has reproduced the suppressive interaction between
traveling waves observed in visual cortex during conscious
states, a biological phenomenon that could not be captured by
current-based networks (Chemla et al., 2019).

Mean-field models have highlighted that, while complicated
to apply mathematically in the framework of conductance-
based models (di Volo et al., 2019), voltage-dependent
interactions constitute a significant non-linearity in the
membrane evolution equations. Voltage-dependent interactions
appear to be important for explaining non-trivial responses
of biological neurons, through the mean and fluctuations
of the cells’ membrane voltage (Reig et al., 2015). In
fact, while these results do not imply that differences in
responsiveness are due only to conductances, they show
that voltage dependent synapses play a role in the nonlinear
state-dependent response of a neural network. As shown in
Figure 2C, various levels of membrane conductance, regulated
by voltage-dependent synapses, are shown to differently shape
population responses.

Finally, renormalization group theory, a method of coarse-
graining microscopic detail to obtain macroscopic laws helping
to understand how order can emerge from apparent disorder
(Wilson, 1979; Cardy, 1996; Goldenfeld, 2018) has recently begun
to be applied to neural assemblies (Meshulam et al., 2019),
laying further foundation for the formal connection of our
understanding of brain function across scales.

DISCUSSION

In this paper, we briefly reviewed work on the measurement
and modeling of brain states at different scales, from single
neurons to cell assemblies and global brain activity, considering
both spontaneous and evoked dynamics. In particular, we
highlighted that increased complexity in the dynamics of
conscious brain states relates to changes in single-neuron
biophysics, tuned by neuromodulation. In unconscious states,
reduced neuromodulation promotes activity-dependent self-
inhibition of excitatory neurons as they spike, leading to
alternating, synchronous transients of silence and firing,
that produce high-amplitude, low-complexity, synchronous
signals, on resonant frequencies of the structural connectome.
During conscious states, neuronal discharges are asynchronous,
irregular and fluctuation-driven, resulting from sustained
membrane depolarization in cortical neurons, promoting
effective neural communication.

Beyond conscious and unconscious categories proposed
here for the sake of brevity, important differences exist
within categories of unconscious and conscious states (Brown
et al., 2010; El Boustani and Destexhe, 2010; Nghiem et al.,
2018a). Unlike healthy wakefulness and sleep, epileptic

networks display both excessively high conductance and
strongly synchronized, regular dynamics (El Boustani
and Destexhe, 2010). Further, brain signals in coma are
both low-amplitude and low-complexity, in contrast to
high-amplitude signals observed in other unconscious
states, but also to complex signals observed in conscious
states (El Boustani and Destexhe, 2010). Such anomalous
deviations from the overall trend of coordinated changes
in complexity and amplitude may illuminate mechanisms
underlying disease-causing deviations from healthy brain
states (Mackey and Glass, 1977).

To characterize brain states, it has been useful to consider
not only spontaneous dynamics but also patterns evoked by
perturbations. It was found that macroscopic responsiveness
highly depends on brain state and different patterns of responses
are evoked in conscious versus unconscious states (Massimini
et al., 2005). Such state-dependent responsiveness can also be
seen at the level of local networks in vivo and in silico, for
example in the different reliability of responses to perturbations
given during Up and Down periods of slow waves (Reig et al.,
2015; Zerlaut and Destexhe, 2017). In simulations, different
responsiveness could be accounted for by three parameters:
membrane voltage, voltage fluctuation amplitude, andmembrane
conductance (Reig et al., 2015). These parameters could be well
described by mean-field models (di Volo et al., 2019), able
to capture fundamental properties of spontaneous dynamics
and also state-dependent responses at mesoscales. As such, the
data-driven coupling of such mean-field models may serve as
natural candidates for modeling the emergence of mesoscopic
and macroscopic-scale patterns.

Transient collapses of dimensionality found in encoding
networks were also discussed as substrates potentially supporting
neural codes. Such collapses in complexity have been observed
in active ensembles at scales spanning microscopic (Churchland
et al., 2010; Fairhall, 2019) to macroscopic (Quiroga et al., 2001;
Zang et al., 2004) activity. This echoes recent work studying
recordings of neural populations which highlighted that neural
representations of stimuli may lie on low-dimensional manifolds
(Churchland et al., 2012; Sadtler et al., 2014; Gallego et al.,
2017; Zhao and Park, 2017; Golub et al., 2018; Chaudhuri
et al., 2019; Recanatesi et al., 2019; Stringer et al., 2019).
Indeed neurons do not fire independently, which would yield
dynamics of dimensionality as high as the number of neurons,
but instead follow constrained trajectories of activity that can
be captured by descriptions of much lower dimensionality that
depend on spontaneous and evoked dynamics. For example, a
neural population firing in synchrony could be fully described
by a periodic orbit trajectory constrained to a low-dimensional
space (Churchland et al., 2012). Since spontaneous global
network activity increases in dimensionality during conscious
states, we ask whether the transient collapse of complexity
in specific networks, translating the emergence of simpler
dynamical structures from disorder, may be associated to
neural codes.

As an analogy, windmills facing all in one direction
display low complexity, but can only be synchronously
active or inactive. Windmills facing in random directions,
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in contrast, are a higher complexity configuration able to
represent wind from any direction through the activity of
a subset. The activity of an ensemble of windmills tuned
to a particular direction of wind could represent a collapse
of complexity and the generation of information by that
subset (in this case, about the direction of wind). Similarly,
enhanced dimensionality associated with conscious states
could subserve neural information through the collapse
of complexity in neural assemblies tuned to encode
particular representations.
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(2009). Neural synchrony in cortical networks: history, concept and current
status. Front. Integr. Neurosci. 3:17. doi: 10.3389/neuro.07.017.2009

Van Vreeswijk, C., and Sompolinsky, H. (1996). Chaos in neuronal networks
with balanced excitatory and inhibitory activity. Science 274, 1724–1726.
doi: 10.1126/science.274.5293.1724

Volgushev, M., Chauvette, S., and Timofeev, I. (2011). “Long-range correlation
of the membrane potential in neocortical neurons during slow oscillation,” in
Progress in Brain Research, Vol. 193 (Amsterdam: Elsevier), 181–199.

Vreeswijk, C. V., and Sompolinsky, H. (1998). Chaotic balanced state
in a model of cortical circuits. Neural Comput. 10, 1321–1371.
doi: 10.1162/089976698300017214

Wilson, K. G. (1979). Problems in physics with many scales of length. Sci. Am. 241,
158–179. doi: 10.1038/scientificamerican0879-158

Zang, Y., Jiang, T., Lu, Y., He, Y., and Tian, L. (2004). Regional
homogeneity approach to fMRI data analysis. Neuroimage 22, 394–400.
doi: 10.1016/j.neuroimage.2003.12.030

Zanoci, C., Dehghani, N., and Tegmark, M. (2019). Ensemble inhibition and
excitation in the human cortex: an ising-model analysis with uncertainties.
Phys. Rev. E 99:032408. doi: 10.1103/PhysRevE.99.032408

Zerlaut, Y., and Destexhe, A. (2017). Enhanced responsiveness and low-
level awareness in stochastic network states. Neuron 94, 1002–1009.
doi: 10.1016/j.neuron.2017.04.001
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