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Abstract: The immune regulatory receptor CD69 is expressed upon activation in all types of leukocytes
and is strongly regulated at the transcriptional level. We previously described that, in addition to the
CD69 promoter, there are four conserved noncoding regions (CNS1-4) upstream of the CD69 promoter.
Furthermore, we proposed that CNS2 is the main enhancer of CD69 transcription. In the present study,
we mapped the transcription factor (TF) binding sites (TFBS) from ChIP-seq databases within CNS2.
Through luciferase reporter assays, we defined a ~60 bp sequence that acts as the minimum enhancer
core of mouse CNS2, which includes the Octl TFBS. This enhancer core establishes cooperative
interactions with the 3’ and 5" flanking regions, which contain RUNX1 BS. In agreement with the
luciferase reporter data, the inhibition of RUNX1 and Octl TF expression by siRNA suggests that they
synergistically enhance endogenous CD69 gene transcription. In summary, we describe an enhancer
core containing RUNX1 and Oct1 BS that is important for the activity of the most potent CD69 gene
transcription enhancer.
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1. Introduction

In mammals, 95% of the genome is noncoding, and 40% of the noncoding region plays a role in
transcription regulation [1]. In combination with gene promoters, cis-regulatory elements contribute to
gene transcriptional regulation as enhancers or repressors. Cis-regulatory elements are often identified
as conserved noncoding sequences (CNS) with DNase I hypersensitivity. Cis-regulatory elements
contain binding sites for trans-acting transcription factors (TFBSs) and serve as centers of epigenetic
changes [2,3]. These elements can be located around or within genes and can affect their transcription
from as far as megabases [4]. The three-dimensional conformation of the genome seems to be important
to promote contacts between distant elements and their target genes. Thus, these sequences form
complex regulatory landscapes within the noncoding genome.

CD69 is a leukocyte activation marker that plays an important role in the regulation of immune
responses [5-8]. CD69 is dully expressed on the membrane of some leukocyte subsets in a steady
state [9-11], and it is strongly and rapidly upregulated on all leukocytes upon activation. By the study
of CD69-deficient mice, CD69 has been defined as a regulator of the immune response in different
murine models of tumor, infection, autoimmune disease and other inflammatory models [6-8,12-16].
Galectin-1, S100A8/A9 and myosin light chains 9 and 12 have been proposed as CD69 ligands [5,17,18].
In T cells, CD69 is upregulated in response to TCR engagement [19,20], cytokines [21-23] and PKC
activators [11,24-27]. This upregulation is strongly dependent on transcriptional induction [20,25,28].
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Human and mouse CD69 promoters are able to direct transcription in resting cells, as well as to increase
CD69 transcription in stimulated cells [29]. This inducibility is attributed to cis-elements located in the
promoter interacting with Erg-1, Erg-3, ATF-3/CREB, AP-1 and NFkB transcription factors [29-31].

We previously described the existence of, in addition to the CD69 promoter, another five
cis-regulatory regions: A non-conserved hypersensitivity site (HS) located within the first intron of the
CD69 gene and four conserved noncoding regions (CNS1-4) upstream of the CD69 promoter [32,33]. In
murine T cells, these regions showed DNasel sensitivity and specific histone modifications. Moreover,
CNS2 and CNS4 had constitutive and inducible enhancer activity in reporter assays, with CNS2 being
the region with the highest inducible enhancer capacity [32,33]. Furthermore, in a recent work, we
proposed that CNS2 is the main enhancer of CD69 promoter transcription in vivo [34] based on the
characterization of TFBSs conserved between 6 mammal species and explored the contribution of some
of its regulatory features to its enhancing capacity. However, that study did not take into account
sequences to which transcription factors bind. In the present study, we mapped TFBSs on mouse
CNS2 according to updated ChlP-seq data; and, based on their distribution, we divided them into
five different regions. Then, we determined the enhancer activity of CN52 and identified its location
through luciferase reporter assays. With this approach, we found a minimum enhancer core of ~60 bp
that includes an Oct1 (POU2F1) BS. This core functionally interacts with adjacent regions at the 5" end,
which contains RUNX1 BSs, and at the 3’ end, which contains SRF BSs, via a cooperative modular
model that leads to CD69 promoter induced enhancement of transcription. Moreover, we assessed the
roles of Octl and RUNX1 in the transcriptional regulation of the endogenous CD69 gene by siRNA.
In agreement with the luciferase reporter data, the gene silencing results also indicate synergistic
cooperation between these TFs to enhance CD69 transcription.

In summary, our work strengths support indicating that CNS2 is a potent enhancer of mouse CD69
promoter transcription and defines an enhancer core that acts together with flanking cis-interacting TFs
through a cooperative modular model to increase CD69 promoter induced enhancement of transcription.

2. Materials and Methods

Data-mining, identification and mapping of conserved TFBSs within CNS2. The CNS2
sequences of several mammal species were downloaded and analyzed for the presence of conserved
TFBSs, as previously described [34]. Transcription factor binding data determined by chromatin
immunoprecipitation followed by sequencing (ChIP-seq) in different cell lines were obtained from
the ENCODE consortium for human (hg19 genome) data [35] and both the ChIP Atlas [36] (Database
Center for Life Science, Kyushu University, Fukuoka, Japan) and the ChIPBase v2.0 (version 2.3.4, Qu
Lab, School of Science, Sun Yat-Sen University, Guangzhou, China) for mouse (mm10 genome) data [37]
and were displayed using the SnapGene® software (GSL Biotech; available at www.snapgene.com) to
create a comprehensive map of the TFBSs contained within CNS2.

Mouse luciferase plasmids. The mouse CD69 promoter (-1 to —609, BAC clone RP24-188C4)
was cloned into BglIl and HindllI restriction enzyme (RE) cloning sites of the commercial luciferase
vector pGL3 basic (Promega, E1751, Madison, WI, USA, [Addgene sequence]) (pPr plasmid). Then,
the CNS2 region (mouse 2010 chr6: 129,234,359-129,235,318) was cloned into Kpnl and Xhol RE sites,
with the introduction of an EcoRI site by Kpnl for further cloning (pPr2 plasmid). Modified CNS2
constructs containing different regions or specific TFBSs were generated by PCR amplification of pPr2
employing custom primers (Table 1), followed by cloning of the fragments into EcoRI and Xhol sites in
the plasmid containing the mouse CD69 promoter (Table 2). The resulting luciferase plasmids were
validated through Sanger sequencing (Figure 1).
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Table 1. List of the primers used to amplify the sequences within CNS2 for further cloning and
sequencing. The sequence in italics indicates the extra bases that allow restriction enzymes to cut; bold
sequences indicate Xhol and EcoRI target sequences; plain text indicates the CNS2 sequence.

Primer Sequence 5 — 3’
I_Fw GAGGAATTCTTTCAGAAACCTCCCTCCGG
I_Rv AGACTCGAGCAGCATCTGTTGTGATTAGCAT
I+II+II1_Fw CCGAATTCCCAGTACCTCATTCACTCACTG
I+OCT_Fw AAAAGAATTCAGCTGCCGTGATAAGGACTGTA
III_Fw ATAAAGAATTCCCAGTACCTCATTCACTCACTG
I+OCT_Rv AGTCTCGAGCACTAAAACCCAGTGCAGTTCT
II+OCT_Fw AAAGAATTCCCAGTACCTCATTCACTCACTG
OCT_Fw AAAAGAATTCAGCTGCCGTGATAAGGACTGTA
OCT_Rv AAACTCGAGCTGAAAGGAAATGATGTAATGT
III_Rv AAACTCGAGGCCTTAGTGGTATGTGTTCAAAG
I+II_Fw AAAAGAATTCTGGTTCCTTTGAACACATAC
III-GATA_Rv AAAACTCGAGAGGAAGGCAGGGTGT
MyoD+GATA_Rv AAACTCGAGAGGAAGGCAGGGTGTACA
RV3_Fw * CTAGCAAAATAGGCTGTCCC
Prom_Seq_Rv * TGACATGGGAAAAGCACTGGA

* indicates the primers used for sequencing and validation of the resulting plasmids.

Table 2. Primers used for the amplification of luciferase plasmids, and length of the expected amplicon.
Below is displayed the primers in the DNA sequence of regions I-III.

Construct Primers Used Amplicon Length
I+IT+I1T I+II+II_Fw + I + Octl_Rv 297 bp
IT+111 MI+Octl_Fw + Octl_Rv 227 bp
I+11 Octl_Fw + I+ Octl_Rv 177 bp
I I_Fw + [+Oct1_Rv 70 bp
II I+II_Fw + Octl_Rv 107 bp
III II_Fw + III_Rv 120 bp
GATA+MyoD I+II_Fw + MyoD + GATA_Rv 65 bp
Octl Octl_Fw + Octl_Rv 60 bp
GATA+MyoD+III III_Fw + III-GATA_Rv 156 bp
I+Oct1 I+Oct1_Fw + I+Oct1_Rv 142 bp

Luciferase assays. Human Jurkat T cells (5-7 X 10°) were transfected with 1 ug of modified firefly
luciferase plasmid (purified with the Plasmid Maxi Kit from Qiagen 12163) plus 20 ng of pRL-TK
(Renilla luciferase plasmid, Promega E224, Madison, USA [Addgene sequence]) to standardize the
luciferase activity independent of the efficiency of transfection between samples) using Effectene
(Qiagen 301425) following the manufacturer’s protocol. After transfection, the cells were cultured at
37°C with 5% CO, for 24 h and were then stimulated with 10 ng/mL PMA and 500 ng/mL Ionomycin
for an additional 24 h. Forty-eight hours after transfection, cells were lysed with passive lysis buffer
(Promega E1941, Madison, WI USA), and luciferase activity (firefly/renilla) was measured with a dual
luciferase kit (Promega E1910, Madison, WI USA) using the Orion II microplate luminometer (Berthold
11300010, Bad Wildbad, Germany).

Design of dicer substrate small interfering RNA (DsiRNA). All DsiRNAs described were
synthetized by IDT (Integrated DNA Technologies, Coralville, IA, USA). Three DsiRNAs were
designed for each gene to be silenced in addition to two additional DsiRNAs and a negative control
targeting NC1. The genome reference used for DsiRNA design was mm10. Table 3 provides the
sequence and cross-reacting properties of DsiRNAs against POU2F1 (Octl) and RUNX1 mRNAs.
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Figure 1. Sanger sequencing of mouse CNS2 sequence containing regions I, Il and III. Primers used to

amplify the CNS2 sequences used in the luciferase experiments are depicted as purple arrows.

Table 3. Nucleotide sequences of the sense and antisense strands and cross-reaction of the DsiRNAs
used to silence RUNX and POU2F1 (Octl).

DsiRNA Sequences Cross-Reacting Transcript
NM_001111022
Runx1.13.1 5’-AAGAAAGAUAUCAAGUACUACAULt-3’ NM_001111021
R 3’-AAUUCUUUCUAUAGUUCAUGAUGUAAA-5’ NM_001111023
NM_009821
NM_009821
Runx1.13.2 5’-AUGGCAGGCAACGAUGAAAACUACt-3' NM_001111023
o 3’-AGUACCGUCCGUUGCUACUUUUGAUGA-5 NM_001111021

NM_001111022

NM_001111022

RunxL13.3 5-GAAGAACCAGGUAGCGAGAUUCAac-3’ NM_001111021
' 3’-UACUUCUUGGUCCAUCGCUCUAAGUUG-5’ NM_001111023
NM_009821
NM_198932
Pou2f113.1 5-UAAAUUUCAUGAAAGCUUUACUUgt-3' NM_011137
e 3’-CGAUUUAAAGUACUUUCGAAAUGAACA-5’ NM_198934
NM_198933
NM_198933
Poudfl13.2 5-CAAGAAUGAAUAAUCCAUCAGAAac-3' NM_ 198934
3’-GAGUUCUUACUUAUUAGGUAGUCUUUG-5’ NM_011137
NM_198932
NM_198932
Pou2fl13.3 5-GCAGUUUGCCAAGACUUUCAAACaa-3’ NM_011137
- 3’-CUCGUCAAACGGUUCUGAAAGUUUGUU-5/ NM_198934
NM_198933

Upper case letter represent RNA bases, while lower case letters correspond to DNA bases.

40f 15
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DsiRNA transfection and CD69 characterization. Mouse EL-4 T cells (10°) were transfected with
a1l uM pool of three DsiRNAs against POU2F1 (Octl) or RUNXT in a 1:1:1 ratio or a negative control
DsiRNA against NC1. RNA of transfected cells were extracted, and a qPCR was performed to assess
mRNA levels of RUNX1 and POU2F1 (Octl).

Transfected cells were cultured in a 96-well plate at 37 °C with 5% CO; for 16 h and then stimulated
or not with 10 ng/mL PMA and 500 ng/mL ionomycin for an additional 6 h. Twenty-two hours after
transfection, CD69 surface expression was measured by flow cytometry as follows: cells were washed
twice in cold 1X PBS and stained for 30 min at 4 °C with 0.5 pg of an a-mCD69/PE-Cy7 monoclonal
antibody (Clone H1.2F3, eBioscience 25-0691-81, San Diego, CA, USA). Samples were acquired with
a FACSCanto (Becton Dickinson, Franklin Lakes, NJ USA) flow cytometer, and data were analyzed
using Flow]o software. The percentage of inhibition of CD69 expression with respect to its expression
in the NC-1 control was represented using GraphPad Prism 7 (version 7, San Diego, CA, USA).

Data representation and statistical analysis. Luciferase assay and flow cytometry data were
plotted with GraphPad Prism 7. Significant differences between multiple conditions were tested with a
nonparametric one-way ANOVA test performed with GraphPad Prism 7.

3. Results

3.1. Mapping of Transcription Factor Binding Sites within Mouse CNS2 Enhancer

In a previous data-mining study of the regulatory features of the CNSs of the CD69 gene, we
proposed that CNS2 is the putative main enhancer based on the enrichment of chromatin accessibility,
modifications and bound TF [34]. Given the availability of new Chip-seq data, in the present work, we
updated the map of TFBSs in the human locus using Chip-seq data from human hematopoietic cell
lines available from the ENCODE consortium (Figure 2A) and also mapped bound TF to the mouse
locus using data from murine primary B and T cells available from the ChIP Atlas and ChIPBase v2.0
databases (Figure 2B) to compare them. These maps showed that the human CD69 3’untranslated
region, intron 1, promoter, CNS1, CNS2 and CN54 and in the murine 3’untranslated region, promoter,
CNS1 and CNS2 have a higher density of TFBSs (TFBSs per 100 bp) than the rest of noncoding sequence
within the CD69 locus. Thus, the 3’untranslated region, promoter, CNS1 and CNS2 of both species
contain numerous TFBSs, which suggests that they may play a particularly important role in the
transcriptional regulation of the CD69 promoter. In agreement with our previous observations, mouse
CNS2 also shows a higher total number of TFBSs compared to the other regulatory regions within
CD69 locus.

In our previous work [34], we subdivided CNS2 into different subregions based on the presence of
TFBSs conserved between 6 mammal species and tested their contribution to the enhancer capacity of
CNS2. However, that characterization left undefined regions where bound TFs have subsequently been
identified and could play a relevant role. Moreover, considering that some regulatory mechanisms may
have diverted during evolution and that, consequently, some important TFBS might not be conserved,
in the present work, we subdivided the mouse CNS2 into five regions based on the abovementioned
updated ChIP-seq data, taking into account all bound TFs, as well as those bound to sites that are
not conserved between six mammal species (Figure 3A). Regions II and III contain more than 70% of
TFs bound to non-conserved sites, while regions I and IV contains TFs bound only to conserved BSs.
Region V has intermediate characteristics.
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Figure 2. CD69 gene locus. UCSC genome browser showing the human (A) (GRCh37/hg19 assembly,
chr12: 9,900,752-9,952,771) and mouse (B) (GRCm38/mm10 assembly, chr6: 129,259,289-129,321,308)
CD69 locus and the four upstream conserved noncoding regions (CNS1-4). The alignment of the
mouse and human genomes are displayed as a grayscale density plot that indicates the alignment
quality, where darker values indicate higher levels of overall conservation. Transcription factor binding
site peaks (TFBS peaks) show the proportion (between 0 and 1) of ChIP-seq data sets reporting TF
binding at each location. The grey boxes represent different transcription factors found by ChIP-seq
in human cell lines H1-hESC, A549, GM12878, HeLa-S3, IMR90, K562, HepG2, MCF-7, SK-N-SH,
SK-N-SH_RA, HUVEC, AG04449, AG04450, AG09309, AG09319, AG10803, AoAF, BE2_C, BJ, Caco-2,
Dnd41, ECC-1, Fibrobl, GM06990, GM08714, GM10847, GM12801, GM12864, GM12865, GM12872,
M12873, GM12874, GM12875, GM12891, GM12892, GM15510, GM18505, GM 18526, GM18951, GM19099,
GM19193, GM19238, GM19239, GM19240, Gliobla, HA-sp, HAc, HBMEC, HCFaa, HCM, HCPEpiC,
HCT-116, HEEpiC, HEK293, HEK293-T-REx, HFF, HFF-Myc, HL-60, HMEC, HMF, HPAF, HPF, HRE,
HRPEpiC, HSMM, HSMMtube, HVMF, MCF10A-Er-Src, NB4, NH-A, NHDF-Ad, NHDF-neo, NHEK,
NHLEF, NT2-D1, Osteobl, PANC-1, PBDE, PBDEFetal, PFSK-1, ProgFib, RPTEC, Raji, SAEC, SH-SY5Y,
SK-N-MC and T-47D (available at UCSC) and in mouse primary T CD4*, T CD8" and B lymphocytes
(TF-ChIP-seq, available at ChIP Atlas and ChIP-Base v2.0).
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Figure 3. Luciferase activity of CNS2 regions II+III is similar to that of the whole CNS2 sequence.
(A) Map of the CNS2 regions and TFBS defined by ChIPSeq data. Color boxes indicate transcription
factor binding sites conserved among six mammals species, as previously described [34]; grey boxes
indicate non-conserved TFBSs identified by public ChIP-seq experiment databases. (B) Jurkat cells
were transfected with luciferase constructs carrying the mouse CD69 promoter alone or together with
the whole CNS2 or regions I+I1I, II+III or I-II. The bars show the mean RLU of three independent
experiments. The error bars show the standard deviation. One-way ANOVA was applied; * (p < 0.05),
** (p <0.01), and *** (p < 0.001). RLU: Relative luciferase units.

3.2. Transcriptional Enhancer Capacity of the CNS2 Region and Its Enhancer Core Activity

Then, we assessed the contribution of the different regions to mouse CNS2 enhancer capacity
using a luciferase reporter assay in Jurkat cells stimulated or not with PMA plus ionomycin. In
this experiment, we compared the capacity of the complete CNS2 sequence (Prom+I-V) to enhance
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transcription from the mouse CD69 promoter with those of different CNS2 fragments: I+II+111, II+III
and I+II (Prom+I-1II, Prom+II-III and Prom+I-II). As shown in Figure 3B regions II+III have an
inducible enhancer activity similar to that of regions I+II+11II, while regions I+1I have lower enhancer
potential. Therefore, regions II+III seem to contain the most of the relevant enhancing features for
transcription for the CD69 promoter upon PMA/ionomycin activation, while those of regions I, IV and
V have a more modest contribution.

While region III contains three overlapping BSs, region II has two separate subregions with TFBSs:
One with an Oct1 BS and another with GATA+MyoD TFBSs. We further assessed the contribution of the
individual regions I, Il and III, as well as the subregions of region II separately or in combination with
the region I or III, but keeping, within the tested fragment, the original sequence with the endogenous
TFBSs distribution. Figure 4 shows that region II (Prom+II) significantly increases CD69 promoter
transcriptional activity upon activation, but neither region I (Prom-+I) nor region III (Prom-+III) increases
CD69 promoter transcriptional activity upon activation (Figure 4B).

A 1 11 111
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Figure 4. Transcriptional enhancer activity of the CNS2 regions I+II+III and region II subregions. (A)
Map of regions I-III and the conserved TFBSs within them. (B) Measurement of the luciferase activity
after stimulation of Jurkat cells transfected with constructs carrying the mouse CD69 promoter alone
or in combination with the different regions and subregions (I+II+I1I, I, II, I, GATA+MyoD, Octl,
GATA+MyoD+III, Oct1+I). The bars show the mean RLU. The error bars show the standard deviation
of three independent experiments with duplicate measurements. One factor ANOVA was applied
to test for significant differences, with * (p < 0.05), ** (p < 0.01), and *** (p < 0.001). RLU: Relative
luciferase units.
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The ~60 bp sequence of region II containing the Octl TFBS (Prom+Octl) significantly increases
the inducible enhancer activity in a similar manner as region II (Prom-+II), while the ~65 bp sequence
containing GATA+MyoD TFBSs (Prom+GATA+MyoD) did not significantly increase the inducible
enhancer activity. These results suggest that the subregion that contains the Oct1 TFBS constitutes the
most relevant regulatory feature of region II. Moreover, considering that regions I and III alone do not
show enhancing activity, these data indicate that the ~60 bp sequence containing the Oct1 TFBS is the
shortest sequence identified within regions I+1I+1III that has transcriptional enhancer activity, likely
acting as the enhancer core of CD69 transcription. Furthermore, the combination of this sequence
with region I (Prom+I+Octl, ~200 bp) had a transcriptional enhancing capacity as high as half of
that of region I-III and similar to that of regions I and II together (Figures 3B and 4B). Although the
combination of region III with the ~65 bp sequence GATA+MyoD (Prom+GATA+MyoD+III, ~190 bp)
increased the transcriptional activity twofold compared to the sequences containing the BS of each
TF individually, it did not reach transcription levels significantly higher than those of the promoter
alone. Since GATA and MyoD BS are between Octl and RUNX]1, it is not possible to test Oct1+RUNX1
without altering the original TFBSs distribution. Thus, considering that regions II+III have almost as
much enhancer activity as regions I-1II (Figure 3B), it is suggested that the Octl TFBS also needs to
cooperate with region III to enhance transcription. Thus, the Octl TFBS seems to act as the enhancer
core of CD69 transcription and can synergize with either region I or region III or with both of them to
achieve greater enhancement of transcription from the CD69 promoter. Altogether, these data suggest
a cooperative modular model between the TFs in region II and those in regions I and III.

3.3. RUNX1 and Oct1 Silencing Affects the Transcriptional Regulation of CD69

Given the synergy observed between the Octl BS and region III and the fact that the latter
contains a BS for RUNX1, an important TF during development and homeostasis of immune cells,
we evaluated the relative contribution of Octl and RUNX1 to CD69 transcriptional regulation. To
do so, we silenced them individually or in combination using siRNA in the mouse T cell line EL-4
and analyzed the effect of silencing on surface CD69 protein in unstimulated cells or cells activated
with PMA/Ion. Under both conditions, inhibition of RUNX1 and Octl individually resulted in a
CD69 expression reduction of ~40%, and the joint inhibition of both TFs did not further reduce CD69
expression (Figure 5). Therefore, RUNX1 and Octl contribute to enhancing CD69 expression both at
resting and after stimulation. Moreover, the fact that the effect of their individual silencing was the
same as that of their combined deletion suggests that they need each other to increase CD69 expression,
which supports the cooperative model of enhancing transcription.
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Figure 5. RUNX1 and Octl (POU2F1) silencing downregulates mouse CD69 protein expression. (A)
EL-4 T cells were transfected with a 1 uM pool of three DsiRNAs against RUNX1, POU2F1 (Octl), a
combination of both, or a non-targeting DsiRNA (NC-1) and were cultured for 16 h. They were then
stimulated or not stimulated with PMA/Ion, and the CD69 surface levels were measured 6 h later. The
bars represent the mean + SEM of the % relative inhibition with respect to CD69 expression in the NC-1
control of 2 different experiments in which each transfection was performed in duplicate. (B) mRNA
expression of RUNX1 and POU2F1 was analyzed by qPCR 22 h after DsiRNA transfection, compared
with the NC1 DsiRNA control. Data are presented as means + SD of two independent experiments (* p
< 0.05).

4. Discussion

In this work, we deepened the understanding of the enhancer function of mouse conserved
noncoding sequence 2 (CNS2) on CD69 promoter transcriptional regulation. Using ChIP-seq data,
we mapped the TFBS within CNS2 and used the TFBS distribution to define different regions. Then,
we tested the effect of these regions on transcription induced by the CD69 promoter in response to
PMA/ionomycin activation in luciferase reporter assays. In this way, we defined a minimal sequence
with intrinsic enhancer capacity that contained a conserved Octl BS that could further enhance
transcription if it was accompanied by either a 3’ flanking region containing a conserved SRF BS
or a 5’ flanking region containing conserved RUNX1, GABPA and Elk-1 TFBSs and could enhance
transcription to even higher levels in the presence of both of them. These results suggest cooperation
between these TFs. We further tested the effect of Octl and RUNXI silencing on CD69 protein
expression. It these experiments, the observed synergy seemed even more striking because the effect of
each TF depended on the presence of the other.

In previous studies, we observed that among the different CNSs, CNS2 had the most potent
enhancer activity on CD69 transcription. In the present work, the mapping of TFBSs on the CD69 locus
showed that several of the TFs that have been shown to bind to CNS2 also bind the promoter region,
which suggests their importance in the transcriptional regulation of CD69. Despite the fact that there
are fewer data available for the TFs bound to the mouse CD69 locus than to the human CD69 locus,
similar to humans, mouse CNS2 is also the region with the highest enrichment of TFBSs. Occupancy
by specific TF has been described to be a predictor of enhancer activity of a given region [38]. Thus,
these results highlight the importance of CNS2 as a transcriptional enhancer of CD69.

The present results regarding the enhancer capacity of CNS2 regions are in agreement with our
previous work, in which the regions with the highest enhancer capacity comprises regions I, II and III,
described in the current study [34]. In the present study, the further subdivision of this regions into
smaller regions allowed us to identify an Oct1 BS-containing minimum enhancer core that can cooperate
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with either an adjacent region at the 3’ end (region I, containing an SRF TFBS) or 5’ end (region III,
containing a RUNX1 TFBS) or with both of them to reach greater enhancer activity. Interestingly,
although region I did not have enhancer activity per se, it could increase that of Oct1 BS. This could
be explained by an interaction of TFBSs in region I with the transcriptional machinery that bounds
to the region containing the Octl BS. Altogether, these data suggest a cooperative modular model of
transcription factors that synergistically enhances transcription. Cooperation between transcription
factors may occur based on their physical association, a mechanism frequently described for enhancer
sequences that affect the transcriptional behavior of several immune system genes [39-41].

Although Octl1 has been widely studied as a regulator of transcription in many cell types [42,43], its
precise role is still unclear. Octl is known to have both activating [44-46] and silencing activity [47-49];
moreover, this TF has been described to play a role in CD4" T cell differentiation [50] and memory
formation [51], orchestrating the fate and function of CD4* effector T cells as a switchable stabilizer of
the repressed and inducible state [52], acting at hypersensitivity sites that are distant from promoters
of target genes in several cases. RUNX1 has been implicated in the development and homeostasis of
different immune subpopulations [53].

As is the case for CNS2, many enhancers are located far from their target genes, but are able to
specifically communicate with distal promoters over large distances [54-56] through the formation of a
chromatin loop [57,58]. Thus, chromosome topology is critical for the interactions between distant
enhancers and promoters. However, the relevance of particular interactions for target gene transcription
is difficult to assess because they have not always been related to functional outcomes [59,60].

Because of the lack of a genomic context in reporter plasmids, luciferase assay data do not reflect
the effects of chromosome topology on transcription. However, the luciferase assay can still be used as a
predictor of the regulatory capacity of elements that can be further characterized in a more physiologic
context. With that aim, we tested the effects of RUNX1 and Oct1 silencing on the expression of the
endogenous CD69 gene. Silencing of these TFs separately in the mouse EL-4 T cell line reduced CD69
expression as much as their joint silencing, suggesting that they can enhance CD69 expression, but only
if the other TF is also present. This result suggests a mode of action that is completely synergic. Given
the predominant enhancer role of CNS2 in CD69 transcription and, within it, of the Octl TFBS, and its
observed cooperation with region I, we believe that these results might reflect, to some extent, the role
of Octl and RUNX1 acting on the BSs described in regions I and II of CNS2. However, we cannot rule
out that they might also be influenced by the action of these TFs on other BSs within the CD69 locus.
The ChIP-seq databases show two RUNX1 BS found in CD69 promoter sequence. However, since these
regions have a much more modest enhancing capacity, we propose that the main enhancer effect of
RUNX1 is through the BS in CNS2. Future experiments using ChlIP, TF silencing and TFBS mutagenesis
might shed more light on the role of the studied TF in CD69 transcription in the genomic context.

In summary, our results strengthen evidence of the role of CNS2 as an essential enhancer of mouse
CD69 promoter transcription. Despite the need for further studies on the role of CNS2 in the genomic
context, to our knowledge, no detailed studies on the composition and function of regulatory elements
within this enhancer have been published. Our work is, therefore, a step forward in understanding
how CNS2 regulates CD69 expression.

Author Contributions: M.G.F. performed the literature search, data collection and figures. M.G.F,, L.N., E.L.,
E.A.-P. and PL. designed experiments and discussed data. M.G.F,, E.A.-P. and P.L. performed manuscript writing.
P.L. was responsible for the project design and management.

Funding: This work was supported by the Spanish Ministry of Science, Innovation and Universities and the
Carlos III National Health Institute (ISCIII)—RITCC (RD12/0036/15649). Miguel Gémez Fontela was supported
by a pre-doctoral fellowship (FPU, FPU 15/05605) from the Spanish Ministry of Education, Culture and Sports
(MECD).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of the data; in the writing of the manuscript; or in the decision
to publish the results.



Genes 2019, 10, 651 12 of 15

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Stamatoyannopoulos, J.A. What does our genome encode? Genome Res. 2012, 22, 1602-1611. [CrossRef]
[PubMed]

Kanno, Y.; Vahedi, G.; Hirahara, K.; Singleton, K.; O’Shea, J.J. Transcriptional and Epigenetic Control of
T Cell Lineage Specification: Molecular Mechanisms Underlying Commitment and Plasticity. Annu. Rev.
Immunol. 2012, 30, 707-731. [CrossRef] [PubMed]

Lee, G.R.; Kim, S.T.; Spilianakis, C.G.; Fields, PE.; Flavell, R.A. T Helper Cell Differentiation: Regulation by
cis Elements and Epigenetics. Immunity 2006, 24, 369-379. [CrossRef] [PubMed]

Montavon, T.; Duboule, D. Landscapes and archipelagos: Spatial organization of gene regulation in
vertebrates. Trends Cell Biol. 2012, 22, 347-354. [CrossRef] [PubMed]

Esplugues, E.; Sancho, D.; Vega-Ramos, ]J.; Martinez-A, C.; Syrbe, U.; Hamann, A.; Engel, P;
Sanchez-Madrid, F.; Lauzurica, P. Enhanced Antitumor Immunity in Mice Deficient in CD69. ]. Exp.
Med. 2003, 197, 1093-1106. [CrossRef] [PubMed]

Viedma, F,; De La Fuente, H.; Sancho, D.; Gomez, M.; Esplugues, E.; Gordon-Alonso, M.; Garcia-Lopez, M.A;
Martinez-A, C.; Lauzurica, P.; Sdnchez-Madrid, F. CD69 downregulates autoimmune reactivity through
active transforming growth factor-f3 production in collagen-induced arthritis. J. Clin. Investig. 2003, 112,
872-882.

Notario, L.; Alari-Pahissa, E.; De Molina, A.; Lauzurica, P. CD69 Deficiency Enhances the Host Response
to Vaccinia Virus Infection through Altered NK Cell Homeostasis. J. Virol. 2016, 90, 6464-6474. [CrossRef]
[PubMed]

Vega-Ramos, J.; Alari-Pahissa, E.; Valle, ].D.; Carrasco-Marin, E.; Esplugues, E.; Borras, M.; Martinez, A.C,;
Lauzurica, P. CD69 limits early inflammatory diseases associated with immune response to Listeria
monocytogenes infection. Immunol. Cell Biol. 2010, 88, 707-715. [CrossRef] [PubMed]

Alari-Pahissa, E.; Vega-Ramos, J.; Zhang, J.-G.; Castano, A.R.; Turley, S.J.; Villadangos, J.A.; Lauzurica, P.
Differential effect of CD69 targeting on bystander and antigen-specific T cell proliferation. J. Leukoc. Biol.
2012, 92, 145-158. [CrossRef] [PubMed]

Lanier, L.L. Interleukin 2 activation of natural killer cells rapidly induces the expression and phosphorylation
of the Leu-23 activation antigen. J. Exp. Med. 1988, 167, 1572-1585. [CrossRef] [PubMed]

Hara, T. Human T cell activation. III. Rapid induction of a phosphorylated 28 kD/32 kD disulfide-linked
early activation antigen (EA 1) by 12-o-tetradecanoyl phorbol-13-acetate, mitogens, and antigens. J. Exp.
Med. 1986, 164, 1988-2005. [CrossRef] [PubMed]

Matloubian, M.; Lo, C.G.; Cinamon, G.; Lesneski, M.].; Xu, Y.; Brinkmann, V.; Allende, M.L.; Proia, R.L.;
Cyster, ].G. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor
1. Nature 2004, 427, 355-360. [CrossRef] [PubMed]

Sancho, D.; Gémez, M.; Del Hoyo, G.M.; Lamana, A.; Esplugues, E.; Lauzurica, P; Martinez-A, C,;
Sanchez-Madrid, F; Sancho-Madrid, D. CDé9 targeting differentially affects the course of collagen-induced
arthritis. J. Leukoc. Biol. 2006, 80, 1233-1241. [CrossRef]

Esplugues, E.; Vega-Ramos, ].; Cartoixa, D.; Vazquez, B.N.; Salaet, I.; Engel, P.; Lauzurica, P. Induction of
tumor NK-cell immunity by anti-CD69 antibody therapy. Blood 2005, 105, 4399-4406. [CrossRef] [PubMed]
Martin, P, Gomez, M.; Lamana, A.; Marin, A.M.; Cortés, J.R.; Ramirez-Huesca, M.; Barreiro, O.;
Lépez-Romero, P; Gutiérrez-Vazquez, C.; De La Fuente, H.; et al. The leukocyte activation antigen
CD69 limits allergic asthma and skin contact hypersensitivity. J. Allergy Clin. Immunol. 2010, 126, 355-365.
[CrossRef] [PubMed]

Gomez, M.; Sanz-Gonzalez, S.M.; Abu Nabah, Y.N.; Lamana, A.; Sanchez-Madrid, F; Andres, V.
Atherosclerosis development in apolipoprotein E-null mice deficient for CD69. Cardiovasc. Res. 2009,
81,197-205. [CrossRef] [PubMed]

Cruz-Adalia, A.; Jiménez-Borreguero, L.J.; Ramirez-Huesca, M.; Chico-Calero, 1.; Barreiro, O.;
Lopez-Conesa, E.; Fresno, M.; Sanchez-Madrid, F.; Martin, P. CD69 Limits the Severity of Cardiomyopathy
After Autoimmune Myocarditis. Circulation 2010, 122, 1396-1404. [CrossRef]

Cibrian, D.; Sanchez-Madrid, F. CD69: From activation marker to metabolic gatekeeper. Eur. J. Immunol.
2017, 47, 946-953. [CrossRef]


http://dx.doi.org/10.1101/gr.146506.112
http://www.ncbi.nlm.nih.gov/pubmed/22955972
http://dx.doi.org/10.1146/annurev-immunol-020711-075058
http://www.ncbi.nlm.nih.gov/pubmed/22224760
http://dx.doi.org/10.1016/j.immuni.2006.03.007
http://www.ncbi.nlm.nih.gov/pubmed/16618596
http://dx.doi.org/10.1016/j.tcb.2012.04.003
http://www.ncbi.nlm.nih.gov/pubmed/22560708
http://dx.doi.org/10.1084/jem.20021337
http://www.ncbi.nlm.nih.gov/pubmed/12732655
http://dx.doi.org/10.1128/JVI.00550-16
http://www.ncbi.nlm.nih.gov/pubmed/27147744
http://dx.doi.org/10.1038/icb.2010.62
http://www.ncbi.nlm.nih.gov/pubmed/20440294
http://dx.doi.org/10.1189/jlb.1011499
http://www.ncbi.nlm.nih.gov/pubmed/22544938
http://dx.doi.org/10.1084/jem.167.5.1572
http://www.ncbi.nlm.nih.gov/pubmed/3259252
http://dx.doi.org/10.1084/jem.164.6.1988
http://www.ncbi.nlm.nih.gov/pubmed/2946796
http://dx.doi.org/10.1038/nature02284
http://www.ncbi.nlm.nih.gov/pubmed/14737169
http://dx.doi.org/10.1189/jlb.1205749
http://dx.doi.org/10.1182/blood-2004-10-3854
http://www.ncbi.nlm.nih.gov/pubmed/15692061
http://dx.doi.org/10.1016/j.jaci.2010.05.010
http://www.ncbi.nlm.nih.gov/pubmed/20621339
http://dx.doi.org/10.1093/cvr/cvn227
http://www.ncbi.nlm.nih.gov/pubmed/18703531
http://dx.doi.org/10.1161/CIRCULATIONAHA.110.952820
http://dx.doi.org/10.1002/eji.201646837

Genes 2019, 10, 651 13 of 15

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Rutella, S.; Rumi, C.; Lucia, M.B.; Barberi, T.; Puggioni, P.L.; Lai, M.; Romano, A.; Cauda, R.; Leone, G.
Induction of CD69 antigen on normal CD4+ and CD8+ lymphocyte subsets and its relationship with the
phenotype of responding T-cells. Cytometry 1999, 38, 95-101. [CrossRef]

Testi, R.; Phillips, ].H.; Lanier, L.L. T cell activation via Leu-23 (CD69). J. Immunol. 1989, 143, 1123-1128.
Shiow, L.R.; Rosen, D.B.; Brdickova, N.; Xu, Y.; An, J.; Lanier, L.L.; Cyster, ].G.; Matloubian, M. CD69 acts
downstream of interferon-«/f to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 2006,
440, 540-544. [CrossRef] [PubMed]

Feng, H.; Zhang, D.; Palliser, D.; Zhu, P,; Cai, S.; Schlesinger, A.; Maliszewski, L.; Lieberman, ]. Listeria-Infected
Myeloid Dendritic Cells Produce IFN-, Priming T Cell Activation. J. Immunol. 2005, 175, 421-432. [CrossRef]
[PubMed]

Lin, S.-J.; Chao, H.-C.; Kuo, M.-L. The Effect of Interleukin-12 and Interleukin-15 on CD69 Expression
of T-Lymphocytes and Natural Killer Cells from Umbilical Cord Blood. Neonatology 2000, 78, 181-185.
[CrossRef] [PubMed]

Sanchez-Mateos, P.; Cebrian, M.; Acevedo, A.; Lépez-Botet, M.; De Landazuri, M.O.; Sanchez-Madrid, F.
Expression of a gp33/27,000 MW activation inducer molecule (AIM) on human lymphoid tissues. Induction
of cell proliferation on thymocytes and B lymphocytes by anti-AIM antibodies. Immunology 1989, 68, 72-79.
[PubMed]

Cebridan, M.; Redondo, J.M.; De Landazuri, M.O.; Rodriguez-Tarduchy, G.; Lépez-Rivas, A.;
Rodriguez-Tarduchy, G.; Sanchez-Madrid, F,; Lopez-Rivas, A.; Rodriguez-Tarduchy, G.; Sanchez-Madrid, F.
Expression and function of AIM, an activation inducer molecule of human lymphocytes, is dependent on the
activation of protein kinase C. Eur. J. Immunol. 1989, 19, 809-815. [CrossRef] [PubMed]

Bjorndahl, ].M.; Nakamura, S.; Hara, T.; Jung, L.K.; Fu, S.M. The 28-kDa/32-kDa activation antigen EA
1. Further characterization and signal requirements for its expression. J. Immunol. 1988, 141, 4094—4100.
[PubMed]

Risso, A.; Smilovich, D.; Capra, M.C.; Baldissarro, I.; Yan, G.; Bargellesi, A.; E Cosulich, M. CD69 in resting
and activated T lymphocytes. Its association with a GTP binding protein and biochemical requirements for
its expression. J. Immunol. 1991, 146, 4105-4114. [PubMed]

Ziegler, S.E; Levin, S.D.; Johnson, L.; Copeland, N.G; Gilbert, D.J.; Jenkins, N.A.; Baker, E.; Sutherland, G.R,;
Feldhaus, A.L.; Ramsdell, F. The mouse CD69 gene. Structure, expression, and mapping to the NK gene
complex. J. Immunol. 1994, 152, 1228-1236. [PubMed]

Loépez-Cabrera, M.; Mufioz, E.; Blazquez, M.V,; Ursa, M.A.; Santis, A.G.; Sdnchez-Madrid, F. Transcriptional
regulation of the gene encoding the human C-type lectin leukocyte receptor AIM/CD69 and functional
characterization of its tumor necrosis factor-alpha-responsive elements. J. Biol. Chem. 1995, 270, 21545-21551.
[CrossRef]

Castellanos, M.D.C.; Lopez-Giral, S.; Lopez-Cabrera, M.; De Landazuri, M.O. Multiple cis-acting elements
regulate the expression of the early T cell activation antigen CD69. Eur. J. Immunol. 2002, 32, 3108-3117.
[CrossRef]

Castellanos, M.C.; Mufoz, C.; Montoya, M.C.; Lara-Pezzi, E.; Lopez-Cabrera, M.; De Landazuri, M.O.
Expression of the leukocyte early activation antigen CD69 is regulated by the transcription factor AP-1. J.
Immunol. 1997, 159, 5463-5473. [PubMed]

Vazquez, B.N,; Laguna, T.; Notario, L.; Lauzurica, P. Evidence for an intronic cis-regulatory element within
CD69 gene. Genes Immun. 2012, 13, 356-362. [CrossRef] [PubMed]

Vazquez, B.N.; Laguna, T.; Carabana, J.; Krangel, M.S.; Lauzurica, P. CD69 gene is differentially regulated
in T and B cells by evolutionarily conserved promoter-distal elementsl. J. Immunol. 2009, 183, 6513-6521.
[CrossRef] [PubMed]

Laguna, T.; Notario, L.; Pippa, R.; Fontela, M.G.; Vazquez, B.N.; Maicas, M.; Aguilera-Montilla, N.;
Odero, M.D.; Lauzurica, P.; Corbi Angel, L.; et al. New insights on the transcriptional regulation of CD69
gene through a potent enhancer located in the conserved non-coding sequence 2. Mol. Immunol. 2015, 66,
171-179. [CrossRef] [PubMed]

Consortium, E.P. An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489,
57-74. [CrossRef]


http://dx.doi.org/10.1002/(SICI)1097-0320(19990615)38:3&lt;95::AID-CYTO1&gt;3.0.CO;2-L
http://dx.doi.org/10.1038/nature04606
http://www.ncbi.nlm.nih.gov/pubmed/16525420
http://dx.doi.org/10.4049/jimmunol.175.1.421
http://www.ncbi.nlm.nih.gov/pubmed/15972676
http://dx.doi.org/10.1159/000014268
http://www.ncbi.nlm.nih.gov/pubmed/11044766
http://www.ncbi.nlm.nih.gov/pubmed/2807372
http://dx.doi.org/10.1002/eji.1830190505
http://www.ncbi.nlm.nih.gov/pubmed/2786811
http://www.ncbi.nlm.nih.gov/pubmed/3264302
http://www.ncbi.nlm.nih.gov/pubmed/1710239
http://www.ncbi.nlm.nih.gov/pubmed/8301128
http://dx.doi.org/10.1074/jbc.270.37.21545
http://dx.doi.org/10.1002/1521-4141(200211)32:11&lt;3108::AID-IMMU3108&gt;3.0.CO;2-D
http://www.ncbi.nlm.nih.gov/pubmed/9580241
http://dx.doi.org/10.1038/gene.2012.4
http://www.ncbi.nlm.nih.gov/pubmed/22456278
http://dx.doi.org/10.4049/jimmunol.0900839
http://www.ncbi.nlm.nih.gov/pubmed/19841192
http://dx.doi.org/10.1016/j.molimm.2015.02.031
http://www.ncbi.nlm.nih.gov/pubmed/25801305
http://dx.doi.org/10.1038/nature11247

Genes 2019, 10, 651 14 of 15

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

OKki, S.; Ohta, T.; Shioi, G.; Hatanaka, H.; Ogasawara, O.; Okuda, Y.; Kawaji, H.; Nakaki, R.; Sese, J.;
Meno, C. ChIP-Atlas: A Data-Mining Suite Powered by Full Integration of Public ChIP-Seq Data; Reports; EMBO:
Heidelberg, Germany, December 2018.

Zhou, K.R.; Liu, S.; Sun, W.J.; Zheng, L.L.; Zhou, H.; Yang, J.H.; Qu, L.H. ChIPBase v2.0: Decoding
transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data.
Nucleic Acids Res. 2017, 45, D43-D50. [CrossRef] [PubMed]

Dogan, N.; Wu, W.; Morrissey, C.S.; Chen, K.-B.; Stonestrom, A.; Long, M.; Keller, C.A.; Cheng, Y.; Jain, D.;
Visel, A.; et al. Occupancy by key transcription factors is a more accurate predictor of enhancer activity than
histone modifications or chromatin accessibility. Epigenetics Chromatin 2015, 8, 16. [CrossRef]

Tsytsykova, A.V.; Rajsbaum, R.; Falvo, J.V,; Ligeiro, F.; Neely, S.R.; Goldfeld, A.E. Activation-dependent
intrachromosomal interactions formed by the TNF gene promoter and two distal enhancers. Proc. Natl. Acad.
Sci. USA 2007, 104, 16850-16855. [CrossRef]

Li, L.; Zhang, J.A.; Dose, M.; Kueh, H.Y.; Mosadeghi, R.; Gounari, F.; Rothenberg, E.V. A far downstream
enhancer for murine Bcl11b controls its T-cell specific expression. Blood 2013, 122, 902-911. [CrossRef]
Schonheit, J.; Kuhl, C.; Gebhardt, M.L.; Klett, EE,; Riemke, P; Scheller, M.; Huang, G.; Naumann, R.; Leutz, A.;
Stocking, C.; et al. PU.1 Level-Directed Chromatin Structure Remodeling at the Irf8 Gene Drives Dendritic
Cell Commitment. Cell Rep. 2013, 3, 1617-1628. [CrossRef]

Herr, W,; Cleary, M.A. The POU domain: Versatility in transcriptional regulation by a flexible two-in-one
DNA-binding domain. Genes Dev. 1995, 9, 1679-1693. [CrossRef] [PubMed]

Rosenfeld, M.G. POU-domain transcription factors: Pou-er-ful developmental regulators. Genes Dev. 1991, 5,
897-907. [CrossRef] [PubMed]

Duncliffe, K.N.; Bert, A.G.; Vadas, M.A.; Cockerill, PN. A T Cell-Specific Enhancer in the Interleukin-3 Locus
Is Activated Cooperatively by Oct and NFAT Elements within a DNase I-Hypersensitive Site. Immunity
1997, 6, 175-185. [CrossRef]

Fletcher, C.; Heintz, N.; Roeder, R.G. Purification and characterization of OTF-1, a transcription factor
regulating cell cycle expression of a human histone H2b gene. Cell 1987, 51, 773-781. [CrossRef]

Zhou, L.; Nazarian, A.A.; Xu, J.; Tantin, D.; Corcoran, L.M.; Smale, S.T. An Inducible Enhancer Required
for I112b Promoter Activity in an Insulated Chromatin Environment. Mol. Cell. Biol. 2007, 27, 2698-2712.
[CrossRef] [PubMed]

dela Paz, N.G.; Simeonidis, S.; Leo, C.; Rose, D.W.; Collins, T. Regulation of NF-kappaB-dependent gene
expression by the POU domain transcription factor Oct-1. J. Biol. Chem. 2007, 282, 8424-8434. [CrossRef]
[PubMed]

Kakizawa, T.; Miyamoto, T.; Ichikawa, K.; Takeda, T.; Suzuki, S.; Mori, J.; Kumagai, M.; Yamashita, K.;
Hashizume, K. Silencing mediator for retinoid and thyroid hormone receptors interacts with octamer
transcription factor-1 and acts as a transcriptional repressor. J. Biol. Chem. 2001, 276, 9720-9725. [CrossRef]
[PubMed]

Schwachtgen, J.L.; Remacle, ].E.; Janel, N.; Brys, R.; Huylebroeck, D.; Meyer, D.; Kerbiriou-Nabias, D. Oct-1
is involved in the transcriptional repression of the von willebrand factor gene promoter. Blood 1998, 92,
1247-1258.

Hwang, S.S.; Kim, L.K.; Lee, G.R.; Flavell, R.A. Role of OCT-1 and partner proteins in T cell differentiation.
Biochim. Biophys. Acta (BBA) Gene Regul. Mech. 2016, 1859, 825-831. [CrossRef]

Shakya, A.; Goren, A.; Shalek, A.K.; German, C.N.; Snook, J.; Kuchroo, V.K,; Yosef, N.; Chan, R.C.; Regev, A;
Williams, M.A.; et al. Oct1l and OCA-B are selectively required for CD4 memory T cell function. J. Exp. Med.
2015, 212, 2115-2131. [CrossRef]

Shakya, A.; Kang, J.; Chumley, J.; Williams, M. A.; Tantin, D. Oct1 is a switchable, bipotential stabilizer of
repressed and inducible transcriptional states. J. Biol. Chem. 2011, 286, 450-459. [CrossRef] [PubMed]
Ebihara, T.; Seo, W.; Taniuchi, I. Roles of RUNX Complexes in Immune Cell Development. Results Probl. Cell
Differ. 2017, 962, 395-413.

Tolhuis, B.; Palstra, R.]J.; Splinter, E.; Grosveld, F.; de Laat, W. Looping and interaction between hypersensitive
sites in the active beta-globin locus. Mol. Cell 2002, 10, 1453-1465. [CrossRef]

Amano, T,; Sagai, T.; Tanabe, H.; Mizushina, Y.; Nakazawa, H.; Shiroishi, T. Chromosomal Dynamics at the
Shh Locus: Limb Bud-Specific Differential Regulation of Competence and Active Transcription. Dev. Cell
2009, 16, 47-57. [CrossRef] [PubMed]


http://dx.doi.org/10.1093/nar/gkw965
http://www.ncbi.nlm.nih.gov/pubmed/27924033
http://dx.doi.org/10.1186/s13072-015-0009-5
http://dx.doi.org/10.1073/pnas.0708210104
http://dx.doi.org/10.1182/blood-2012-08-447839
http://dx.doi.org/10.1016/j.celrep.2013.04.007
http://dx.doi.org/10.1101/gad.9.14.1679
http://www.ncbi.nlm.nih.gov/pubmed/7622033
http://dx.doi.org/10.1101/gad.5.6.897
http://www.ncbi.nlm.nih.gov/pubmed/2044958
http://dx.doi.org/10.1016/S1074-7613(00)80424-0
http://dx.doi.org/10.1016/0092-8674(87)90100-0
http://dx.doi.org/10.1128/MCB.00788-06
http://www.ncbi.nlm.nih.gov/pubmed/17242186
http://dx.doi.org/10.1074/jbc.M606923200
http://www.ncbi.nlm.nih.gov/pubmed/17192276
http://dx.doi.org/10.1074/jbc.M008531200
http://www.ncbi.nlm.nih.gov/pubmed/11134019
http://dx.doi.org/10.1016/j.bbagrm.2016.04.006
http://dx.doi.org/10.1084/jem.20150363
http://dx.doi.org/10.1074/jbc.M110.174045
http://www.ncbi.nlm.nih.gov/pubmed/21051540
http://dx.doi.org/10.1016/S1097-2765(02)00781-5
http://dx.doi.org/10.1016/j.devcel.2008.11.011
http://www.ncbi.nlm.nih.gov/pubmed/19097946

Genes 2019, 10, 651 15 of 15

56.

57.

58.

59.

60.

Yokoshi, M.; Fukaya, T. Dynamics of transcriptional enhancers and chromosome topology in gene regulation.
Dev. Growth Differ. 2019, 61, 343-352. [CrossRef] [PubMed]

Kulaeva, O.I; Nizovtseva, E.V,; Polikanov, Y.S.; Ulianov, S.V.; Studitsky, V.M. Distant Activation of
Transcription: Mechanisms of Enhancer Action. Mol. Cell. Biol. 2012, 32, 4892-4897. [CrossRef]

Levine, M.; Cattoglio, C.; Tjian, R. Looping Back to Leap Forward: Transcription Enters a New Era. Cell 2014,
157,13-25. [CrossRef]

Bender, M. A ; Byron, R.; Ragoczy, T.; Telling, A.; Bulger, M.; Groudine, M. Flanking HS-62.5 and 3’ HS1,
and regions upstream of the LCR, are not required for (3-globin transcription. Blood 2006, 108, 1395-1401.
[CrossRef]

Vernimmen, D.; De Gobbi, M.; Sloane-Stanley, J.A.; Wood, W.G.; Higgs, D.R. Long-range chromosomal
interactions regulate the timing of the transition between poised and active gene expression. EMBO ]. 2007,
26,2041-2051. [CrossRef]

® © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1111/dgd.12597
http://www.ncbi.nlm.nih.gov/pubmed/30780195
http://dx.doi.org/10.1128/MCB.01127-12
http://dx.doi.org/10.1016/j.cell.2014.02.009
http://dx.doi.org/10.1182/blood-2006-04-014431
http://dx.doi.org/10.1038/sj.emboj.7601654
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Results 
	Mapping of Transcription Factor Binding Sites within Mouse CNS2 Enhancer 
	Transcriptional Enhancer Capacity of the CNS2 Region and Its Enhancer Core Activity 
	RUNX1 and Oct1 Silencing Affects the Transcriptional Regulation of CD69 

	Discussion 
	References

