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Reviewed by:
Mohamed Hijri,

Université de Montréal, Canada
Mari Pent,

University of Tartu, Estonia

*Correspondence:
Shujing Sun

shjsun2004@126.com

Specialty section:
This article was submitted to

Microbial Symbioses,
a section of the journal

Frontiers in Microbiology

Received: 01 October 2021
Accepted: 12 January 2022
Published: 31 January 2022

Citation:
Chen L, Yan M, Qian X, Yang Z,

Xu Y, Wang T, Cao J and Sun S (2022)
Bacterial Community Composition

in the Growth Process of Pleurotus
eryngii and Growth-Promoting

Abilities of Isolated Bacteria.
Front. Microbiol. 13:787628.

doi: 10.3389/fmicb.2022.787628

Bacterial Community Composition in
the Growth Process of Pleurotus
eryngii and Growth-Promoting
Abilities of Isolated Bacteria
Liding Chen, Miao Yan, Xin Qian, Ziwei Yang, Yanfei Xu, Tianjiao Wang, Jixuan Cao and
Shujing Sun*

College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China

The effects of biological factors on the vegetative growth process of mushrooms
remain largely unexplored. We investigated the bacterial community in different growth
stages of Pleurotus eryngii by high-throughput sequencing technology to explore the
relationship between interacting bacteria and the growth and development of P. eryngii.
We found significant variances in mushroom interacting association bacteria (MIAB)
compositions among the samples from different growth stages, and 410 genera were
identified. The bacteria in the full-bag and post-ripe stages were shifted to the biocontrol
and growth-promotion ones. The mushroom growth-promoting bacteria (MGPB) were
also isolated successfully and identified as B. cereus Bac1. The growth speed and
density of mycelial pellets of P. eryngii, and activities of two exoenzymes (laccase and
amylase), were analyzed by adding the different volumes of cell-free fermentation broth
of B. cereus Bac1 to fungal culture media. The results showed that when a 5 mL cell-
free fermentation broth was used, the growth speed of P. eryngii hyphae was enhanced
by 1.15-fold over the control and reached 0.46 mm/h. The relative activity of laccase
and amylase was increased by 26.9 and 43.83%. Our study revealed that the abundant
interacting bacteria coexist with P. eryngii hyphae. Moreover, the abundance of some
bacteria exhibiting a positive correlation with the growth periods of their host fungi can
effectively promote the growth of the host, which will provide technical supports on the
high-efficiency production of P. eryngii in factory cultivation.

Keywords: bacterial diversity, community composition, endophytic bacteria, physiological function, Pleurotus
eryngii

INTRODUCTION

In general, the growth and development of edible fungi are divided into the vegetative growth phase
and reproductive growth phase. Some cultivation environmental factors, such as light, temperature,
moisture, and CO2, can influence the growth and development of edible fungi at these two phases
through different metabolic pathways (Tisch and Schmoll, 2010; Lenoir et al., 2016). In addition
to the cultivation environment, biological factors can also be a pivotal part of the production
cycle of edible fungi. As hosts, edible fungi interact with many beneficial microorganisms
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(Carrasco and Preston, 2020). These interacting microorganisms
play crucial roles in improving nutrient uptake, promoting, or
inhibiting the growth of host fungi, and preventing pathogen
contamination (Frey-Klett et al., 2007; Noble et al., 2009; Aslani
et al., 2018; Dygico et al., 2019).

Research on mushroom-interacting microorganisms has now
identified many bacteria that may play a role in promoting
hyphal extension and increasing compost productivity
(Kertesz and Thai, 2018). In our former research (Sun et al.,
2020a), many mushroom interacting association bacteria
(MIAB) in the cultivation bags in different growth stages
of mushrooms were detected and classified using high-
throughput sequencing technology. These bacteria can effectively
promote the growth and metabolism of mushrooms. The
diversity and community structure of bacteria can reflect
the growth and nutrient utilization status of mushrooms. At
the same time, the mushroom growth-promoting bacteria
(MGPB) were isolated, and the growth promotion effects were
systematically analyzed. P. putida was the best growth-promoting
inoculant among 23 tested bacterial strains that could increase the
fruiting-body yield of Agaricus bisporus (Zarenejad et al., 2012).
The bioinoculant of Glutamicibacter arilaitensis MRC119 can
be potentially used as an eco-friendly substitute improving the
fruitbody yields and biological efficiency of oyster mushrooms
(Kumari and Naraian, 2021). Pseudomonas fluorescens strains
could promote the formation of the primordium, the mycelial
growth, and the fruiting body productivity of Pleurotus eryngii
(Kim et al., 2008) and Pleurotus ostreatus (Cho et al., 2003).

The fermentation broth of beneficial bacteria also contributed
to promote the development of edible fungi. For example,
the harvest time of P. eryngii was ahead of schedule due
to the increase of the mycelia growth rate raised by adding
the fermentation broth of Pseudomonas sp. P7014 to the
growing substrate (Kim et al., 2008). Although the increasing
knowledge of microbiome in soil or casing layer of edible
fungi habitats, such as Morchella sextelata (Benucci et al.,
2019), Stropharia rugosoannulata (Gong et al., 2018), Tuber
melanosporum (Deveau, 2016) and Agaricus bisporus (Siyoum
et al., 2016), microecology in cultivation bags of mushroom
factory production remains less studied. Conclusions drawn from
these literatures indicate that the interaction between edible fungi
and beneficial microorganisms is universal and beneficial to the
production of edible mushrooms.

It is crucial to delve into the composition and function
of beneficial bacteria in the growth media of non-casing soil
edible fungi, to explore potential interactions between the
edible fungi and bacteria, and to further improve mushroom
production efficiency and quality. P. eryngii (DC.ex.Fr.) Quel.
belongs to the family Pleurotaceae and genus Pleurotus. It is
ranked second among the commercially cultivated mushrooms
in China (Stajic et al., 2009) due to its undemanding cultivation,
good taste, and rich nutrition. In this study, to improve
the productivity and quality of P. eryngii in factory model
cultivation, the microbial diversity of samples obtained from the
cultivation bags of P. eryngii was determined by high-throughput
sequencing technology. The functions of the isolated bacteria
were preliminarily examined. Some substrate-associated bacteria

were discovered, and their essential role was also confirmed in
promoting the growth of P. eryngii hyphae. These interacting
bacteria may be developed into useful agronomical amendments
to increase mushroom productivity through growth promotion.
The present work will display the first evidence to prove the
existence of the abundant interacting bacteria during the growth
process of P. eryngii, which will lay the theoretical basis and
provide technical supports for the high-efficiency production of
P. eryngii with good quality.

MATERIALS AND METHODS

Media
The strain P. eryngii is a strain cultivated by Lvshengyuan
Biotechnology Co., Ltd (Zhangzhou, Fujian Province, China).
The strain was maintained on potato dextrose agar medium
(potato 200 g, glucose 20 g, peptone 3 g, yeast powder 3 g,
KH2PO4 1.5 g, MgSO4·7H2O 1.5 g, agar 20 g, H2O 1 L) at 25◦C.
The bacteria were cultivated in LB medium (yeast powder 5 g,
beef extract 5 g, peptone 10 g, NaCl 10 g, agar 20 g, pH 7.2∼7.4).
All these media were prepared by homemade raw materials.

Sample Collections
Cultivation bags of P. eryngii were collected from Lvshengyuan
Biotechnology Co., Ltd (Zhangzhou, Fujian Province, China).
The growing substrate formulation (all ingredients based on
dry substrate weight, w/w) consisted of 25% sawdust, 27%
corncob powder, 13% bagasse, 15% bran, 10% bean pulp, 8%
corn starch, 1% light calcium carbonate, and 1% calclime. All
mixed substrates were sterilized with high-pressure steam under
constant monitoring for 2.5 h at 135◦C. Cultivating substrates at
different hyphal growth stages of P. eryngii were sampled from
the cultivation bags. Three different growth stages are PEBH
(the half-bag of P. eryngii hypha stage), PEBF (the full-bag of
P. eryngii hypha stage), and PEBM (the post-ripe stage) because
these three different growth stages are extremely representative
in the life history of P. eryngii. At these three different growth
stages, a lot of MIAB in the cultivation bags can be detected
and classified systematically and the diverse functions of different
bacterial communities can be investigated and clarified in detail.
Most of all, the mushroom growth promoting bacteria (MGPB)
can be isolated and the growth promotion effects can be
systematically analyzed at these three different growth stages.
During the experiment, samples (5 g each) were collected from
the top, middle, and bottom of each bag using aseptic techniques
to make the samples representative of the microorganism
population. Sampling was repeated in three independent bags.
Three samples from the same part of three independent bags were
immediately mixed and frozen by liquid nitrogen and then used
for DNA extraction and microbial diversity analysis.

DNA Extraction and Illumina HiSeq 2500
Sequencing
The 16S rDNA library preparations and Illumina HiSeq 2500
sequencing were performed at Biomaker, Inc. (Beijing, China).
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According to the manufacturer’s instruction, DNA was extracted
from 0.4 g of samples from cultivation bags using EasyPure
Genomic DNA Kit (TransGen, Beijing, China). The bacterial 16S
rDNA gene was amplified with the forward primer 338 F (5′-
ACTCCTACGGGAGGCAGCA-3′) and the reverse primer 806
R (5′-GGACTACHVGGGTWTCTAAT-3) targeting the V3 and
V4 regions (Sun et al., 2020a). When amplifying the bacterial
16S rDNA gene, PCR thermal cycle profile was as follows:
2 min at 98◦C, 30 cycles of 30 s at 98◦C, 30 s at 50◦C,
and 1 min at 72◦C, a final extension at 72◦C for 5 min,
and hold 4◦C.

High-Throughput Sequencing Data
Analysis
Amplicons were sequenced using a paired-end method by
Illumina HiSeq. Raw data generated from the high-throughput
sequencing run were joined using the FLASH v1.2.11, filtered
using the Trimmomatic software (V 0.33), and removed the
chimera sequences using the UCHIME software (V8.1). Only
the effective tags classified into OTUs will be pre-clustered
to 97% sequence identity using the software QIIME v1.8.0
(Morey et al., 2013).

The OTUs were assigned into taxonomic categories using
the ribosomal database program (RDP) with a confidence
threshold of 0.8 and predicted to the kingdom, phylum,
class, order, family, genus, and species level using the Silva
database. The alpha diversity index including ACE value, Chao1,
Simpson index, and Good’s coverage were calculated using
“vegan” R package. One-way analysis of variance (ANOVA)
and subsequent post hoc Tukey’s honestly significant difference
(HSD) tests were used to compare differences in OTU richness
among different periods. Chord diagram and heatmap were
plotted to investigate abundant taxa at phylum and genus
levels using “circlize” and “pheatmap” R packages, respectively.
Then, principal coordinate analysis (PCoA) based on Bray–
Curtis distance was performed to investigate the patterns of
the bacterial community structure. In addition, analysis of
composition of microbiomes (ANCOM) test (Mandal et al.,
2015; Kaul et al., 2017) were used to explore the significant
differences in the relative abundance at the genus level
among the different groups. We generated a table grouping
the sequences taxonomically assigned to the same genus
according to the report (Ramirez et al., 2021) before the
implementation of ANCOM.

Strains Isolation From Pleurotus eryngii
Hypha
Pleurotus eryngii hyphae were sampled from cultivation bags,
washed by sterilized water, and ground in a sterile environment.
Serial dilutions of the hyphae were prepared with sterilized pure
water. A total of 0.1 mL of the dilutions was spread on LB
agar media plates. The samples were incubated at 35◦C for 48 h
to enumerate and isolate the microbic colonies. The bacterial
16S rRNA gene was amplified with the forward primer 16S-F
(AGAGTTTGATCCTGGCTCAG) and the reverse primer 16S-R
(GGTTACCTTGTTACGACTT) (Sun et al., 2020a).

Cell-Free Fermentation Broth
Preparation
The culture of isolated bacteria was grown in LB liquid medium
and incubated on an incubator shaker at 37◦C and 180 r·min−1

until the OD600 reached 0.6∼0.7 after dilution two-fold. The
culture then was centrifuged (at 10 000 r·min−1 and 4◦C for
20 min) and filtered (8 = 0.45 µm) to obtain a cell-free
fermentation broth.

Cell-Free Fermentation Broth Assay
The modified media were prepared by mixing different volumes
of cell-free fermentation broth into sterilized PDA enrichment
media. Then the media poured into a petri dish. The additive
amounts of culture and fermentation broth were 1, 3, 5, 7, 9,
and 11% (v/v). Discs of P. eryngii hyphae (8 = 6.0 mm) were
inoculated in the middle of modified media and grew at 25◦C.
The diameters of P. eryngii hyphae and their growth rates were
measured when they grew over the entire plate (Zhao et al.,
2007). The average of three diameter measurements was used
to estimate mycelial growth rate, and the mycelial growth rate
was expressed as a mean diameter of the increase in mycelia
length. The measurement and calculation were repeated in
triplicate. When submerged fermentation was carried out, the
same additives of cell-free fermentation broth were added to
sterilized liquid PDA enrichment media. Seven mycelial agar
discs were cut from P. eryngii hyphae (8 = 5.0 mm) into
each flask. The strain was cultivated in a rotary shaker at 120
r·min−1, at 25◦C, and was sampled each day for 7 days. The
density of P. eryngii hyphae pellets and activity of laccase and
amylase in the fermentation broth was measured as follows:
4.0 mL of P. eryngii mycelial broth was transferred to a glass
Petri dish, where the number of mycelial pellets was counted.
The experiment was repeated three times. The average of the
three replicates was used to represent the density of P. eryngii
hyphae pellets. According to the method established by Sun
et al. (2020b), laccase activity was determined by monitoring
the rate of 5 mM 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic
acid) (ABTS) oxidizing to its cation radical (ABTS+) at 436 nm
(ε436 = 29,300 M−1 cm−1) in 0.1 M sodium acetate buffer (pH
5.0) at 30◦C. Briefly, the 3 mL reaction system consisted of
2.4 mL of HAc-NaAc buffer solution, 0.2 mL of ABTS solution,
and 0.4 mL of crude enzyme. The mixture was preheated in
a 30◦C water bath for 5 min, and the changes in absorbance
at 436 nm for the first 3 min were recorded after zeroing the
spectrophotometer. One unit (U) of enzyme activity was defined
as the amount of enzyme required to oxidize 1 µmol of ABTS per
minute at 30◦C.

The amylase activity assay was conducted using the 3,5-
dinitrosalicylic acid (DNS) method (Miller, 1959). Briefly, 1.0
mL of sample and an equal amount of substrate (1.0% w/v
soluble starch) were mixed thoroughly, and test tubes were
incubated at 37◦C for 15 min in a water bath. After 10 min,
the reaction was stopped by adding 2.0 mL of DNS reagent,
and tubes were kept in a boiling water bath for 5 min. Tubes
were cooled at room temperature, and absorbance was measured
at 540 nm against substrate and enzyme blank. One unit (U)
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of amylase activity was defined as the amount of enzyme that
releases 1 µmol of reducing sugar as D-glucose per min under
the assay conditions. Extracellular protein concentration was
estimated using the Lowry method and bovine serum albumin
as the standard.

Statistical Analysis
All experiments were performed in triplicate to ensure the
precision of the results. Data analysis was performed with SPSS
software. The difference between samples was estimated using a
one-way analysis of variance (ANOVA) to test for the significant
differences between mean± SD of treatments (n = 3) at p < 0.01
significance level.

RESULTS AND DISCUSSION

Sequencing Data Analysis
In this study, Illumina HiSeq 2500 was used for its incredible
speed and throughput, unprecedented flexibility, exceptional
data quality, and complete end-to-end sequencing solutions.
A total of 457,104 pairs of reads were generated from the high-
throughput sequencing runs. After quality control, an average
of 42,374 effective tags was recovered from nine samples (three
samples per stage). We removed OTUs that do not belong to
bacterial taxa and have fewer than 0.005% relative abundance.
Then, we rarefied each sample to the minimum size (17,948),
resulting in a normalized dataset comprising 1,240 bacterial
OTUs. As shown in Figure 1A, the average OTUs numbers
varied at different growth periods of P. eryngii hyphae. The
maximum OTUs were generated at the half-bag stage of the
P. eryngii hyphae (PEBH), which was significantly more than
OTUs of PEBF (the full-bag stage) and PEBM (the post-ripe
stage). PEBM has more OTUs numbers than PEBF, but not
statistical significance. It is interesting to note that 111 OTUs
were shared among three growth stages of P. eryngii (Figure 1B).
When the growth shifted from the half-bag to the full-bag stage,

218 OTUs were preserved and shared among groups, and 359
new OTUs were generated. When the growth shifted from the
full-bag stage to the post-ripe stage, the numbers of shared
OTUs and newly generated OTUs were changed to 169 and 237,
respectively. These results indicated that the cultivation bags have
different bacterial communities coexisting with P. eryngii hyphae
at various growth periods.

The overall perception of “microecologics” has been around.
Currently, edible fungi can no longer be considered an
independent population because most evidence pointed out the
symbiosis between bacteria and mushrooms (Li et al., 2015;
Siyoum et al., 2016; Gong et al., 2018; Benucci et al., 2019).
It is well known that the edible mushrooms displaying above-
ground fruit bodies and under-ground hyphae assets can be
colonized with diverse bacteria due to the biodiversity of air and
soil (Rousk et al., 2010; Zagriadskaia et al., 2013; Deveau, 2016).
However, little research has been done on interacting bacteria in
cultivation bags full of culture substrates of P. eryngii. Therefore,
the high-throughput sequencing technologies were used to better
understand the whole micro-ecosystem of the cultivation bags
during growth periods of P. eryngii hyphae. Although only 3
samples per stage were used in the high-throughput sequencing
step, we still got pretty good results because all four reversible
terminator-bound dNTPs are present in each sequencing cycle
and this feature minimizes bias of incorporation and greatly
reduces raw error rates in HiSeq 2500 System.

Analysis of Alpha Diversity
The average coverage of bacteria in the samples from cultivation
bags was between 0.9974 and 0.9997 (Table 1), indicating that the
sequencing depth was sufficient and the sampling was reasonable.
The results could reflect the bacterial community composition in
the cultivation bags. The microbial species richness was estimated
and compared by Chao1, ACE, and Simpson indices. The order
of the ACE and Chao indices at the half-bag period (PEBH) was
significantly higher than those at the full-bag period (PEBF) and
post-ripe period (PEBM), and PEBH showed the lowest Simpson

FIGURE 1 | The OTU number of samples from cultivation bags (A) and Venn analysis at different periods (B). Different letters on bars indicate statistical significance
in OTU richness between groups by Tukey’s HSD test at P < 0.05.
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TABLE 1 | Diversity analysis of bacterial communities at different growth periods.

Group ACE Chao1 Simpson Coverage

PEBH 533.936 ± 123.642a 542.137 ± 121.965a 0.945 ± 0.017b 0.9974 ± 0.0014a

PEBF 270.009 ± 20.198b 269.658 ± 19.649b 0.986 ± 0.002a 0.9997 ± 0.0001a

PEBM 316.834 ± 67.715b 314.543 ± 80.501b 0.969 ± 0.013ab 0.9990 ± 0.0008a

Different letters indicate statistical significance in alpha diversity between groups by Tukey’s HSD test at P < 0.05.

value among the three periods (Table 1). These results indicated
that the bacterial diversity at the half-bag period of P. eryngii
hyphae was higher than those at the other periods, suggesting that
the bacterial diversity in the samples was closely related with the
growth process of P. eryngii hyphae.

Comparison of Bacterial Communities in
the Samples
Our previous study demonstrated a correlation between the
community structure of interacting bacteria and the growth
and development of edible fungi (Sun et al., 2020a). On this
basis, a novel strategy was developed to improve the industrial
production of edible fungi using interacting microbial resources.
Therefore, the detailed analysis of the microbiome of P. eryngii
in production bags will provide an important theoretical basis
for a deeper understanding of the existence of the abundant
interacting bacteria and the knowledge of interactions of the
fungus with other microorganisms. And on top of that, the
fungus production technology can be improved by regulating
microbial communities after confirming their growth-promoting
effects. In the present study, the bacterial community in the
samples from cultivation bags was examined by RDP. The 1,240
OTUs generated from the samples were classified into 37 phyla,
74 classes, 151 orders, 228 families, and 410 genera. As shown
in Figure 2A, the top 10 abundant phyla were Proteobacteria
(34.65∼46.28%), Firmicutes (4.58∼22.91%), Epsilonbacteraeota
(0.46∼44.30%), Actinobacteria (2.52∼19.66%), Bacteroidetes
(3.50∼8.81%), Tenericutes (0.10∼3.91%), Acidobacteria
(0.48∼2.28%), Patescibacteria (0.23∼2.15%), Chloroflexi
(0.44∼1.63%) and Synergistetes (0.09∼1.15%), accounting
for 96.51% of the total bacteria in three samples. Except
for the two phyla Firmicutes and Actinobacteria, other
dominant bacteria phyla included Gram-negative bacteria.
Throughout the three periods of hyphal growth, phylum
Proteobacteria was the second and the first dominant phyla at
PEBH and the latter two growth periods of P. eryngii hyphae,
respectively, mainly including classes Alphaproteobacteria,
Gammaproteobacteria and Deltaproteobacteria. The class
Alphaproteobacteria was significantly (P < 0.01) increased from
2.61 to 12.86% when the growth of P. eryngii hyphae switched
from PEBH period to PEBF period. However, Campylobacteria,
the dominant class in the phylum Epsilonbacteraeota was
significantly (P < 0.001) decreased from 44.39% to 1.39%.
Besides, Firmicutes, Actinobacteria, and Acidobacteria levels
were significantly increased up to 5.00, 5.13, and 4.76-folds
from PEBH to PEBF. The fourth-highest abundant phyla

Actinobacteria was significantly increased from 12.96% in the
PEBF sample to 19.67% in the PEBM sample.

A total of 410 genera were identified across the samples,
which revealed that bacteria in the cultivation bags were plentiful
and varied. The dominant genera (relative abundances > 1%)
in the samples was shown in Figure 2B. Those 14 abundant
genera were shared by the samples at the three growth periods.
Arcobacter was the most abundant genus, whose relative
abundance was harply decreased to less than 0.15% at PEBM,
from 40.31% at PEBH. Four genera (Pseudomonas, Escherichia
shigella, Acinetobacter and Bacteroide) were dominant in
PEBF samples with a relative abundance higher than 3.0%.
Whereas, the other five genera (Acinetobacter, Ochrobactrum,
Escherichia-Shigella, Corynebacterium, and Lactobacillus)
were dominant in PEBM samples. The relative abundance
of some genera such as Acinetobacter, Ochrobactrum, and
Corynebacterium was significantly increased up to 2.6∼3.1 folds
from PEBF to PEBM. Additionally, ANCOM results showed
that some abundant genera including Acinetobacter, Escherichia-
Shigella, Corynebacterium, Achromobacter, Cutibacterium, and
Brevibacterium were also the important differential generic
indicators structuring the bacterial composition among the
different periods (Table 2).

Heatmap (Figure 3) showed that the bacteria genera differed
in the cultivation bags collected at different growth periods of the
P. eryngii hyphae. The relative abundances of nine bacteria genera
in P. eryngii hyphae bags, including Sulfurimonas, Gluconobacter,
Desulfuromonas, Actinobacillus, Fibrisoma, Gaiella, Sphingopyxis,
Acholeplasma, and Ameyamaea, were decreased sharply or even
disappeared. Figure 3 also showed a high degree of similarity
between the PEBF and PEBM samples. For example, 11 genera
including Oceanobacter, Denitrovibrio, Acholeplasma, Thiovirga,
Thiomicrorhabdus, Sulfurovum, Desulfuromonas, Thiomicrospira,
Sulfurimonas, Arcobacter, and Chrysiogenes were obviously more
abundant in PEBH than other two periods (Figure 3).

Regarding prokaryotic communities, Pseudomonas,
Acinetobacter, Escherichia-Shigella, Ochrobactrum, and
Lactobacillus were dominant in the microbiome of P. eryngii
hyphae bags. Still, the bacterial communities varied at different
growth periods, and the relative abundance of Pseudomonas
(Proteobacteria) was raised during the PEBF period. The genus
Pseudomonas is known as “fungiphills” (Warmink et al., 2009;
Zagriadskaia et al., 2013). Warmink et al. (2009) demonstrated
that the selection of fungiphills depends on their ability to utilize
organic substrates from the fungi exudates. Moreover, the growth
of the pathogenic genus Arcobacter (Epsilonbacteraeota) could
be inhibited by organic acids, such as citric acid and lactic acid
(Phillips, 1999). At PEBF, the acid-forming bacteria, such as

Frontiers in Microbiology | www.frontiersin.org 5 January 2022 | Volume 13 | Article 787628

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-787628 January 29, 2022 Time: 12:13 # 6

Chen et al. Bacterial Community and Promoting Abilities

FIGURE 2 | Chord diagram visualizing relative abundances of the dominant bacterial phyla (A) and genera (B) in different growth stages of P. eryngii. The ten most
abundant phyla and the genera with relative abundances of > 1% were showed.

TABLE 2 | ANCOM test results showing the 20 most significant the differences in abundance levels of bacterial genus among the three different periods.

Percentile 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

Genus PEBH PEBH PEBH PEBH PEBH PEBF PEBF PEBF PEBF PEBF PEBM PEBM PEBM PEBM PEBM W Reject null
hypothesis

Thiovirga 405 475.5 546 620 694 1 1 1 1 1 1 1 1 2 3 90 TRUE*

Chrysiogenes 122 139 156 170 184 1 1 1 1 1 1 1 1 1 1 81 TRUE*

Porphyromonas 1 1 1 1 1 1 1 1 1 1 41 54 67 68.5 70 81 TRUE*

Parabacteroides 2 4 6 8.5 11 33 34 35 45.5 56 1 1 1 1 1 79 TRUE*

Oceanobacter 114 116.5 119 119.5 120 1 1 1 1 1 1 1 1 1 1 73 TRUE*

Denitrovibrio 105 108.5 112 119.5 127 1 1 1 1 1 1 1 1 1 1 71 TRUE*

Cutibacterium 18 25.5 33 41.5 50 328 380.5 433 460 487 415 416.5 418 423 428 70 TRUE*

Streptomyces 1 1 1 1 1 38 41 44 48 52 1 1.5 2 2 2 68 TRUE*

Sulfurovum 82 92 102 122 142 1 1 1 1 1 1 1 1 1 1 61 TRUE*

Mesorhizobium 3 7.5 12 13 14 39 40 41 43.5 46 31 35.5 40 41 42 59 TRUE*

Bacillus 10 10.5 11 13.5 16 132 157 182 229 276 178 182.5 187 192.5 198 58 TRUE*

Bogoriella 1 1 1 1 1 1 1 1 1 1 20 25 30 39 48 58 TRUE*

Brevibacterium 25 34.5 44 51.5 59 234 243.5 253 263.5 274 470 478 486 498.5 511 58 TRUE*

Micrococcus 1 1 1 1 1 14 15 16 16.5 17 15 19.5 24 27.5 31 51 TRUE*

Escherichia-Shigella 81 109.5 138 179 220 634 660 686 922.5 1159 1077 1121 1165 1296 1427 50 TRUE*

Microbacterium 3 11.5 20 35.5 51 146 146.5 147 171.5 196 134 166 198 235.5 273 49 TRUE*

Achromobacter 17 28.5 40 57.5 75 392 461.5 531 597 663 162 266 370 445.5 521 48 TRUE*

Corynebacterium 97 98.5 100 100.5 101 346 381.5 417 432.5 448 943 997.5 1052 1113.5 1175 48 TRUE*

Acinetobacter 153 186 219 233 247 487 725.5 964 974 984 1446 1788 2130 2512 2894 47 TRUE*

Thiovulum 49 49 49 50 51 1 1 1 1 1 1 1 1 1 1 46 TRUE*

*Indicates statistical significance; the higher the W value the more significant the differences in corresponding bacterial abundance among different groups.

the genera Pseudomonas, Acinetobacter, Escherichia-Shigella,
Bacteroides, Ochrobactrum, Lactobacillus, and so on, increased
significantly and became the dominant genera. As a result,
the genus Arcobacter with a significant abundance (40.31%) at
PEBH was almost disappeared during the PEBF period. Besides,
the identified species of Pseudomonas, including Pseudomonas
putida, which is a growth-promoting inoculant for A. bisporus
(Zarenejad et al., 2012; Siyoum et al., 2016), may also contribute
to promoting the growth of P. eryngii hyphae.

After the growth of P. eryngii hyphae to fill the cultivation
bags, Proteobacteria (41.85%) was still one of the dominant

phyla. In comparison, Firmicutes (22.91%), Actinobacteria
(12.96%), and Bacteroidetes (8.81%) replaced Epsilonbacteraeota
(44.30%) and became the dominant phyla. Bacteria communities
in P. eryngii hyphae bags are different from those in the soil
beneath other edible fungi. Actinobacteria, Chloroflexi, and
Proteobacteria were found to comprise the core microbiome
from the soils beneath Morchella sextelata (Benucci et al.,
2019). Three bacteria phyla, Proteobacteria, Acidobacteria, and
Actinobacteria, were dominant in the soil samples from
the forestland where Stropharia rugosoannulata (wine-
cap mushroom) (Gong et al., 2018) and other 16 species
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FIGURE 3 | Heatmap and dendrogram of abundant bacterial genera (relative abundance > 0.1%) in the microbial community of samples. Color blocks represent the
relative abundance. More red color indicates a higher relative abundance.

of mushrooms were cultivated (Pent et al., 2017). Bacterial
communities found in the casing layer of A. bisporus were
Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria
(Siyoum et al., 2016), similar to phyla found in cultivation
bags of P. eryngii hyphae. The abundance of Proteobacteria
was stimulated by the high nutritional status of soil, while
Acidobacteria preferred low nutritional status (Siyoum
et al., 2016; Pent et al., 2017; Gong et al., 2018). Although
most of the bacterial phyla observed in cultivation bags

of P. eryngii hyphae and casing layer were very similar,
their relative abundances in genera differed significantly
between these two habitats. The bacterial population varied
even in the casing layers of A. bisporus from different
mushroom farms (Siyoum et al., 2016; Vieira and Pecchia,
2018; Li et al., 2019). But a general agreement of the
distribution of functional categories and different bacterial
communities among different composts has also been confirmed
(Martins et al., 2013).
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FIGURE 4 | Principal coordinate analysis (PCoA) plot showing the clustering
of bacterial communities based on Bray-Curtis distances between samples.
The values for the two axes are the percentages of variations attributed to the
corresponding axis.

Analysis of Beta Diversity
The beta diversity was analyzed by PCoA, and the percent
variability for each principal component is PCoA1: 56% and
PCoA2: 18%. As shown in Figure 4, ordinations based on Bray-
Curtis metric demonstrated a clear separation among the three
periods. Thereinto, the distance between the samples PEBH and
PEBF was longer than that between the samples of PEBF and
PEBM, indicating that the bacterial communities in the PEBF
samples were more similar to those at the period of PEBM.

Effects of Bacillus cereus Bac 1
Fermentation Broth on the Growth of
Pleurotus eryngii Hyphae
The well-grown bacteria were isolated from P. eryngii hyphae
and identified by 16S rRNA sequencing and physiological and
biochemical indexes to explore promoting effects of the eight
most dominating bacterial genera on the growth of P. eryngii
hyphae. The results showed that Bacillus species became the
dominant microbiota, and the isolated strain belonged to the
Bacillus cereus group with a similarity of 100%. The strain

FIGURE 6 | Mycelia growth rate of P. eryngii cultured in media with and
without the different volumes of B. cereus Bac1 fermentation broth. Different
letters mean a significant difference (∗∗P < 0.01).

was labeled as Bacillus cereus Bac 1 and then was subjected to
submerged fermentation.

As shown in Figures 5, 6, the different volumes of B. cereus
Bac 1 fermentation broth could promote the growth of P. eryngii
hyphae. The mycelia growth rate was significantly faster in the
modified media containing the 5-mL fermentation broth of
B. cereus Bac1 than the control ones (P < 0.01). The mycelia
growth rate reached 0.46 mm/h, which is 1.15-fold higher
than the corresponding control. The mycelia cultured in the
modified media were stronger and thicker than the control
ones. The results showed that the addition of B. cereus Bac1
fermentation broth to culture media was beneficial for the growth
of P. eryngii hyphae. The composition analysis of B. cereus
Bac1 fermentation broth performed by UHPLC-QTOF-MS
technology showed that the extracellular metabolites were mainly
classified into antagonistic substances, promoting materials and
cyclopeptides, including carboxylic acids and derivatives, organic
oxides, benzene, and substituted derivatives, hydrazine and its
derivatives, pyrimidine nucleotides, phenols, imidazopyridines,
and fatty acyl. These compounds are associated with the growth
and development of P. eryngii.

Interestingly, the cyclopeptides in the cell-free fermentation
broth of B. cereus Bac1 promoted the mycelium development of

FIGURE 5 | Mycelial morphology of P. eryngii cultured in media with the different volumes of LB medium (A) and B. cereus Bac1 fermentation broth (B), respectively.
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TABLE 3 | Effects of B. cereus Bac 1 fermentation broth on mycelial pellet density.

Samples Pellet density (NMP/mL)* Average ± SD Significant
differences (P < 0.01)

I II III

Control 1 CK 28 27 26 27.00 ± 0.58 hij

Control 2 LB-1 mL 25 26 27 26.00 ± 0.58 ij

LB-3 mL 31 32 33 32.00 ± 0.58 defg

LB-5 mL 37 36 35 36.00 ± 0.58 bc

LB-7 mL 32 31 33 32.00 ± 0.58 defg

LB-9 mL 30 28 28 28.67 ± 0.67 ghi

LB-11 mL 26 29 26 27.00 ± 1.00 hij

LB-20 mL 28 25 25 26.00 ± 1.00 ij

In modified media
containing different volumes
of fermentation broth

FF-1 mL 34 33 32 33.00 ± 0.58 cdef
FF-3 mL 35 37 36 36.00 ± 0.58 bc

FF-5 mL 45 45 43 44.33 ± 0.67 a

FF-7 mL 35 35 38 36.00 ± 1.00 bc

FF-9 mL 35 33 34 34.00 ± 0.58 cde

FF-11 mL 23 29 30 27.33 ± 2.19 hi

FF-20 mL 15 15 16 15.33 ± 0.33 k

*Number of mycelial pellets/mL.

P. eryngii as supplemental nitrogen. In addition, the indole acetic
acid in the fermentation broth of B. cereus could also increase the
mycelium growth of P. eryngii. However, when a volume of 7–
11 ml was used, the inhibiting effects of antagonistic substances
became prominent, which decreased the positive effect of the B.
cereus cell-free broth on the growth of P. eryngii.

Effects of Bacillus cereus Bac 1
Fermentation Broth on the Mycelial
Pellet Density of Pleurotus eryngii
The effects of B. cereus Bac 1 fermentation broth on the mycelial
pellet density of P. eryngii were analyzed. The results indicated
that the mycelial pellet density was increased in the modified
media containing less than 9-mL fermentation broth (Table 3).
The mycelial pellet density is expressed as the number of
mycelial pellets (NMP) per milliliter. The mycelial pellet density
reached 44.33 NMP/mL in the modified media containing 5-
mL fermentation broth of B. cereus Bac1, significantly higher
than in the control groups (P < 0.01). The higher pellet
density indicates that the mycelia grow well with more growing
points. The addition of 5-mL B. cereus Bac1 fermentation
broth to culture media could effectively promote the growth of
P. eryngii hyphae.

Effects of Bacillus cereus Bac 1
Fermentation Broth on the Laccase and
Amylase Activities of Pleurotus eryngii
According to our former research (Sun et al., 2011), we found
that the activity of laccase and amylase in edible fungi and
their growing cycles were closely related. The edible fungi
strains with short growing cycles originated from their high
secreted laccase and amylase activity levels. Therefore, the
amylase and laccase produced by P. eryngii were investigated to

demonstrate the effects of B. cereus Bac 1 fermentation broth
on the enzyme activity. As shown in Figure 7, the enzymatic
activities of laccase and amylase were significantly increased by
adding Bac 1 fermentation broth. The laccase activity reached
a maximum of 144.17 U/mL, 1.27-fold higher than that of the
corresponding control. Compared to the control group (113.61
U/mL), The amylase activity was enhanced by 43.83% and
reached 38.16 U/mL. These results demonstrated that the Bac1
fermentation broth could significantly increase two extracellular
enzymatic activities and further promote the mycelial growth
of P. eryngii. In general, decreasing the carbon-to-nitrogen
ratio in the growth substrate by adding nitrogen sources
can promote fungi to produce ligninolytic enzymes, especially
laccase (Brezani et al., 2019). The composition analysis of

FIGURE 7 | Effects of the different volumes of B. cereus Bac1 fermentation
broth on laccase activity (M and ◦) and amylase activity (� and �) of P. eryngii.
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B. cereus Bac1 fermentation broth showed that the
extracellular metabolites were mainly classified into
antagonistic substances, promoting materials, and
cyclopeptides. The cyclopeptides in the cell-free fermentation
broth of B. cereus Bac1 increased nitrogen supply,
thus decreased carbon-to-nitrogen ratio in the growth
substrate, which stimulated two extracellular enzymatic
secretions and activity.

Although fungi have coexisted and interacted with
bacteria since the earliest stages of fungal evolution, we
still understand relatively little about their interactions
(Caporaso et al., 2010). In this study, a Bacillus cereus
strain was isolated from the cultivation bags of P. eryngii.
B. cereus strain was reported to improve the heavy metal
stress tolerance of its hosts (Azcón, 2010), promote growth
(Wu et al., 2012), and inhibit pathogenic bacteria and
fungi, such as Rhizoctonia solani (Pleban et al., 1997),
Fusarium oxysporum, Fusarium solani, and Pythium ultimum
(Chang et al., 2007). The results showed that the Bac1
fermentation broth could promote the mycelial growth and
extracellular enzyme secretion of P. eryngii, demonstrating
the mutualistic symbiosis relationship of the fungal host
P. eryngii and microorganisms during cultivation of P. eryngii
(Caporaso et al., 2010).

CONCLUSION

The study on the composition and dynamics of bacterial
communities during P. eryngii cultivation and the growth
promotion ability of isolated bacteria will provide an important
theoretical basis for a deeper understanding of bacteria-fungi

interactions, which will also make mushroom science research
richer and support the development of medium-term and long-
term strategies to increase both profitability and the greening
of the industry.
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