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Abstract: Colistin, a last-resort antibiotic, is used to treat infections caused by multi-drug-resistant
Gram-negative bacteria. Colistin resistance can emerge by acquiring the mobile colistin gene, mcr-1,
usually plasmid borne. Studies on mcr-1 and its transmissibility are limited in the Middle East
and North Africa (MENA) region. Here, we investigated the occurrence of mcr-1 in 18 previously
collected Escherichia coli isolates collected from chicken samples in Qatar; whole-genome sequencing
was performed to determine the location (plasmid-borne and chromosomal) of mcr-1 in the isolates.
Additionally, we assessed the transmissibility of plasmid-borne mcr-1 and its cost on fitness in E. coli
biofilms. Our results showed that the E. coli isolates belonged to different sequence types, indicating
that mcr-1 was occurring in strains with diverse genetic backgrounds. In silico analysis and transfor-
mation assays showed that all the isolates carried mcr-1 on plasmids that were mainly IncI2 types.
All the mcr-1 plasmids were found to be transmissible by conjugation. In biofilms, a significant reduc-
tion in the number of CFU (≈0.055 logs CFU/mL) and colistin resistance (≈2.19 log CFU/mL) was
observed; however, the reduction in resistance was significantly larger, indicating that the plasmids in-
cur a high fitness cost. To our knowledge, this is the first study that investigates mcr-1 transmissibility
and persistence in Qatar. Our findings highlight that mcr has the potential to spread colistin resistance
to potentially disparate strains and niches in Qatar, posing a risk that requires intervention.

Keywords: colistin; mcr-1; E. coli; fitness; transmission; biofilm

1. Introduction

Colistin (polymyxin E) is a cationic polypeptide antibiotic. Colistin was approved in
1959 to treat Gram-negative bacterial infections but was withdrawn in the 1980s due to its
nephrotoxicity and neurotoxicity [1,2]. However, the emergence of multi-drug-resistant
(MDR) bacteria and the scarcity of new antibiotics resulted in the reintroduction of colistin
in the 2000s as a last-resort antibiotic to treat complicated MDR infections [3–5].

Resistance to colistin was associated with chromosomal mutations that lead to lipopolysac-
charide modifications [6]. However, in 2015, the plasmid-borne mobile colistin resistance
gene (mcr-1) was first reported in an Escherichia coli isolated from a pig in China [7]. mcr-1
encodes for a phosphoethanolamine transferase, which modifies lipid A by increasing its
positive charge, resulting in resistance to colistin [7]. Since the discovery of mcr-1, multiple
mcr genes and variants have been identified (mcr-2 to mcr-10) [8–16]. However, an analysis
of 1386 mcr carrying Gram-negative bacterial genomes from the NCBI database found that
E. coli (952 isolates, ≈68.7%) were the most common carriers of mcr-1 so far [17]. To date,
mcr-1 has been reported in isolates belonging to different species from diverse sources,
including animals, humans, and the environment [17–19].
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The wide and relatively rapid dissemination of mcr-1 can be attributed to the robust
plasmids that carry this gene. Previous studies have reported several mcr-1-carrying
plasmids with varying sizes (58–256 kb) and Inc types, including IncI2, IncHI2, IncX4,
IncP, IncY, IncF, IncFI, IncFII, IncFIB, INcK2, IncN, and IncQ. However, IncI2, IncHI2, and
IncX4 appear to be the most common carriers of mcr-1 [7,18,20–25]. Notably, a single E. coli
isolate can harbor two different mcr-1-carrying plasmids simultaneously, increasing the
possibility of the transmission of this gene [26]. The mobility of mcr-1 poses an apparent
public health concern associated with the spread of colistin resistance, rendering this
critically important antibiotic ineffective. Additionally, the latter is complicated further
because mcr-1-carrying plasmids often harbor other antimicrobial resistance (AMR) genes,
including those encoding resistance to β-lactams, fluoroquinolones, and tetracyclines,
among others [20].

Many of the mcr genes were first reported in animals, highlighting their importance as
a reservoir for colistin resistance [8–16,20,27]. It was hypothesized that the dissemination
of mcr-1 among livestock-associated isolates was accelerated by using colistin as a growth
promoter and/or prophylaxis in the treatment of livestock [18–20]. Therefore, it is important
to closely monitor the emergence of mcr and associated plasmids and strains in livestock to
devise appropriate control strategies and reduce the dissemination of colistin resistance
via the food chain and/or environment. We previously reported colistin resistance in
samples from humans, broiler chickens, and chicken carcasses in Qatar [28–30]. However,
our previous analysis focused primarily on detecting mcr using PCR analysis. Here, the
mcr-1-harboring isolates from broiler chickens (fecal matter) and chicken carcasses were
subjected to an in-depth investigation to determine (1) the location of mcr-1 (plasmid-
borne or chromosomal), (2) the transmissibility of plasmid-borne mcr-1, (3) the stability of
existence of mcr-1 in the isolates after biofilms formation, and (4) the plasmid types and
other properties (sequence type, acquired resistome, virulence) of the strains that carried
this gene.

2. Results
2.1. Antibiotic Susceptibility Profiles of the mcr-1-Carrying E.coli

All 18 isolates were resistant to colistin with MICs ranging between 3 and 12 µg/mL
(median = 6 µg/mL; Table 1). The majority of the isolates (17 of 18, ≈94.4%) were
identified as MDR due to the resistance to the ≥3 antibiotic classes [30]. However,
none of isolates were extended-spectrum β-lactamase or carbapenemase producers be-
cause they were sensitive to β-lactam/β-lactamase inhibitor combinations; second-, third-,
and fourth-generation cephalosporins; and carbapenemases (Figure 1). Resistances to
sulfamethoxazole–trimethoprim, ciprofloxacin, tetracycline, and fosfomycin were highly
detected at 94.44%, 66.7%, 50%, and 44%, respectively.

2.2. Genomic Features and Diversity

The isolates’ genomic features, including phylogroups, sequence types (ST), antibiotic
resistance genes (ARG), plasmid Inc types, FimH type, and virulence genes, are listed
in Table 1 and shown in Figure 1. The isolates belonged to 12 STs, with four isolates
(22%) belonging to ST 602, two to ST295, and another two to ST48. The remaining isolates
belonged to ST10, ST1011, ST155, ST224, ST3270, ST34, ST355, ST6448, and ST744. Lastly,
one isolate (ar182) was not assigned an ST because the housekeeping gene alleles did not
match any known ST in the database. Notably, the four isolates (FC1, FC4, FC7, and FC12)
that belonged to ST 602 were isolated from fecal samples collected from chickens on the
same farm. These isolates also had similar ARGs, virulence factors, and plasmid types.

As for phylogroups (Figure 1), most of the isolates (n = 9; 50%) belonged to phylogroup
B1, followed by phylogroup A (n = 7; 38.9%), and an isolate belonged to each of the
phylogroups B2 and E, respectively.
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Table 1. Colistin minimum inhibitory concentrations (MICs), genomic analysis, and properties of the mcr-1-harbouring E. coli isolates.

Isolate MIC (µg/mL) Source Phylogroup Sequence Type FimH Type Plasmid Inc Types Virulence Genes Other Antibiotic
Resistance Genes

ad107 8 Retail chicken B1 224 fimH39
IncFIA,

IncFIB(APNANA1918),
IncFII, IncFII(pCoo),
IncI1, IncI2, IncX4

cba, cma, etsC, gad,
hlyF, iha, iroN, iss,
iucC, iutA, lpfA,

mchB, mchC, mchF,
ompT, ompT, papC,

sitA, terC, traT

aadA2_104, aph3”-Ib_146,
aph6-Id.v2_172, AmpC1_286,
cmlA1_2259, dfrA14.v1_2362,

fosA4_1904, mphA_2174,
mphB.v2_2176, strA.v1_2409,

strB.v1_2410, sul3_2285,
TEM-206_1678

ad108 12 Retail chicken E 1011 fimH31
Col(MG828),

IncFII(pCoo), IncI1,
IncI2, pNA111

air, astA, chuA,
eilA, hra, iss,

terC, traT

aac3-IId_16, aadA8b_121,
aph3”-Ib_146, aph3-Ia.v1_165,
aph6-Id.v2_172, AmpC1_286,
catA1_2229, dfrA15.v2_2365,

erm42_2125, floR.v1_2271,
fosA4_1904, mphA_2174,

mphB.v2_2176, qnrS1_2006,
strA.v1_2409, strB.v1_2410,

sul3_2285, TEM-135.v2_1673,
tetA.v1_2317

ad174 8 Retail chicken A 10 fimH54

Col(MG828),
IncFIB(APNANA1918),

IncFIC(FII),
IncFII(pCoo),

IncI2, pNA111

cma, cvaC, gad,
hlyF, iroN, iss, iucC,

iutA, ompT, sitA,
terC, traT

aadA8b_121, aph3”-Ib_146,
aph3-Ia.v1_165, aph6-Id.v1_171,

AmpC1_286, dfrA12_2360,
fosA4_1904, mphA_2174,

mphB.v2_2176, strA.v1_2409,
strB.v1_2410, sul1_2283

ad28 6 Retail chicken B1 6448 fimH60

Col(MG828), IncFIA,
IncFIB(APNANA1918),

IncFIC(FII),
IncFII(pCoo),
IncI1, IncI2

cvaC, etsC, gad,
hlyF, iroN, iss, iucC,
iutA, mchF, ompT,
sitA, terC, traT, tsh

erm42_2125, floR.v1_2271,
fosA4_1904, mphA_2174,

mphB.v2_2176, tetA.v1_2317

ad80 12 Retail chicken A 34 * fimH24
IncFIB(APNANA1918),
IncFIC(FII), IncFII, IncI1,

IncN, IncX1, IncX4
etsC, gad, iss,

terC, traT

aac3-IV_21, aadA24_108,
aph3-Ia.v1_165, aph4-Ia_166,
AmpC1_286, cmlA1_2259,
floR.v1_2271, mefB_2098,

mphA_2174, mphB.v2_2176,
qnrB7_1992, sul3_2285,

TEM-128.v2_1671

ar181 8 Retail chicken B1 295 fimH38
Col(MG828), IncFIA,

IncFIB(APNANA1918),
IncFII(pCoo), IncHI2,
IncHI2A, IncI1, IncI2

astA, cea, cvaC,
etsC, hlyF, iroN, iss,

iucC, iutA, lpfA,
lpfA, mchF, ompT,

sitA, terC, traT, tsh

aadA15_101, AmpC1_286,
dfrA1.v1_2357, fosA4_1904,
mphA_2174, mphB.v2_2176,

qnrB7_1992, sat-2_193,
tetA.v1_2317
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Table 1. Cont.

Isolate MIC (µg/mL) Source Phylogroup Sequence Type FimH Type Plasmid Inc Types Virulence Genes Other Antibiotic
Resistance Genes

ar182 8 Retail chicken A NF fimH54

Col156,
IncFIB(APNANA1918),

IncFII, IncFII(29), IncHI2,
IncHI2A, IncI1,
IncN, pNA111

celb, cma, cvaC, fyuA,
gad, hlyF, iroN, irp2,

iss, ompT, sitA,
terC, traT

aadA24_108, aph3”-Ib_146,
aph3-Ia.v1_165, aph6-Id.v1_171,

AmpC1_286, cmlA1_2259,
dfrA14.v1_2362, floR.v1_2271,
mphA_2174, mphB.v2_2176,
strA.v1_2409, strB.v1_2410,

sul3_2285,
TEM-207_1756, tetA.v1_2317

br128 6 Retail chicken B1 155 fimH121
IncFIB(APNANA1918),

IncHI2, IncHI2A,
IncI2, IncQ1

etsC, gad, hra,
lpfA, terC

aac3-IIa.v1_12, aadA2_104,
aph3”-Ib_146, aph3-Ia.v1_165,
aph6-Id.v1_171, AmpC1_286,

catA1_2229, cmlA1_2259,
dfrA12_2360, floR.v1_2271,
mphA_2174, mphB.v2_2176,
strA.v1_2409, strB.v1_2410,

sul3_2285,
TEM-207_1756, tetA.v1_2317

br129 6 Retail chicken A 744 fimH54
Col(MG828),

IncFIB(APNANA1918),
IncFIC(FII), IncQ1, IncX1,

IncX4, pNA111

cba, cia, cma, cvaC,
etsC, fyuA, gad, hlyF,
iroN, irp2, iss, iucC,
iutA, mchF, ompT,
sitA, terC, traT, tsh

aadA5_114, aph3”-Ib_146,
aph3-Ia.v1_165, aph6-Id.v1_171,

AmpC1_286, catA1_2229,
dfrA17_2369, floR.v1_2271,
mphA_2174, mphB.v2_2176,
strA.v1_2409, strB.v1_2410,

sul1_2283,
TEM-206_1678, tetB.v2_2325

cd62 12 Retail chicken B1 295 fimH38
Col(MG828), IncFIA,

IncFIB(APNANA1918),
IncFII(pCoo), IncI1, IncI2

astA, cea, cvaC, etsC,
hlyF, iroN, iss, iucC,

iutA, lpfA, lpfA, mchF,
ompT, sitA, terC,

traT, tsh

aadA12_98, AmpC1_286,
dfrA1.v1_2357, fosA4_1904,

mphA_2174,
mphB.v2_2176, sat-2_193

cd63 6 Retail chicken A 48 fimH54
IncFIB(APNANA1918),

IncFII, IncFII(pCoo), IncI1,
IncI2, pNA111

astA, gad, hlyF, iroN,
iss, ompT, sitA,

terC, traT

aadA2_104, aph3”-Ib_146,
aph3-Ia.v1_165, aph6-Id.v2_172,

AmpC1_286, cmlA1_2259,
dfrA14.v1_2362, erm42_2125,

floR.v1_2271, fosA4_1904,
mphA_2174, mphB.v2_2176,
strA.v1_2409, strB.v1_2410,

sul3_2285,
TEM-206_1678, tetA.v1_2317

cr102 8 Retail chicken A 48 fimH41

Col(MG828), IncFIB(K),
IncFII(pCoo),

IncFII(pSE11), IncI1, IncI2,
IncX1, IncX4, pNA111

astA, gad, terC, traT

aadA_93, aph3-Ia.v1_165,
AmpC1_286, dfrA1.v1_2357,
erm42_2125, floR.v1_2271,
fosA4_1904, mphA_2174,
mphB.v2_2176, sat-2_193,

sul3_2285,
TEM-176_1646, tetA.v1_2317
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Table 1. Cont.

Isolate MIC (µg/mL) Source Phylogroup Sequence Type FimH Type Plasmid Inc Types Virulence Genes Other Antibiotic
Resistance Genes

cr103 8 Retail chicken A 3270 fimH31-like
Col(MG828), IncB/O/K/Z,

IncFIB(APNANA1918),
IncFII, IncFII(pCoo), IncI2

cba, cea, cia, cma,
cvaC, etsC, gad, hlyF,

hra, iha, iroN, iss,
iutA, kpsE,

kpsMIII_K96, mchF,
ompT, sitA, terC, traT

AmpC1_286, dfrA5_2387,
fosA4_1904, mphA_2174,

mphB.v2_2176, tetA.v1_2317

FC1 3 Fecal B1 602 fimH86 IncFIB(APNANA1918),
IncFII, IncI1, IncI2

cia, cvaC, etsC, gad,
hlyF, iroN, iss, iucC,

iutA, lpfA, mchF,
ompT, papC, sitA,

terC, traT

aadA_93, aph3”-Ib_146,
aph6-Id.v2_172, AmpC1_286,

dfrA1.v1_2357, mphB.v2_2176,
sat-2_193, strA.v1_2409,
strB.v1_2410, sul2_2284,

TEM-206_1678, tetB.v2_2325

FC12 3 Fecal B1 602 fimH86 IncFIB(APNANA1918),
IncFII, IncI1, IncI2

cia, cvaC, etsC, gad,
hlyF, iroN, iss, iucC,

iutA, lpfA, mchF,
ompT, papC, sitA,

terC, traT

aadA_93, aph3”-Ib_146,
aph6-Id.v2_172, AmpC1_286,

dfrA1.v1_2357, mphB.v2_2176,
sat-2_193, strA.v1_2409,
strB.v1_2410, sul2_2284,

TEM-206_1678, tetB.v2_2325

FC4 3 Fecal B1 602 fimH86 IncFIB(APNANA1918),
IncFII, IncI1, IncI2

cia, cvaC, etsC, gad,
hlyF, iroN, iss, iucC,

iutA, lpfA, mchF,
ompT, papC, sitA,

terC, traT

aadA_93, aph3”-Ib_146,
aph6-Id.v2_172, AmpC1_286,

dfrA1.v1_2357, mphB.v2_2176,
sat-2_193, strA.v1_2409,
strB.v1_2410, sul2_2284,

TEM-207_1756, tetB.v2_2325

FC6 3 Fecal B2 355 fimH154
Col(MG828),

IncFIB(APNANA1918),
IncFIC(FII), IncI2

cba, cea, chuA, cia,
cma, fyuA, hlyF, hra,
ibeA, irp2, iss, iucC,
kpsE, kpsMII_K1,
neuC, ompT, sitA,

terC, traT, usp,
vat, yfcV

-

FC7 3 Fecal B1 602 fimH86 IncFIB(APNANA1918),
IncFIIIncI1, IncI2

cia, cvaC, etsC, gad,
hlyF, iroN, iss, iucC,

iutA, lpfA, mchF,
ompT, ompT, papC,

sitA, terC, traT

aadA_93, aph3”-Ib_146,
aph6-Id.v2_172, AmpC1_286,

dfrA1.v1_2357, mphB.v2_2176,
sat-2_193, strA.v1_2409,
strB.v1_2410, sul2_2284,

TEM-76_1698, tetB.v2_2325
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The FimH types FimH86 and FimH54 were the most common, with four isolates each.
Two isolates had FimH39, and the remaining isolates belonged to individual FimH types.
Analysis of the plasmid Inc types showed that all isolates carried at least four plasmids and
at most nine (median = 6.5).
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Figure 1. Phylogenetic tree, antimicrobial susceptibility profiles, virulence factors, and plasmid
incompatibility (Inc) types of the 18 mcr-1-carrying Escherichia coli isolated from retail chicken carcasses
and broiler chicken fecal samples. E. coli K-12 MG1655 (GenBank: CP014225.1) was used as a
reference strain for the phylogeny and indicated in grey. The antibiotics tested were ampicillin (AMP),
amoxicillin-clavulanic acid (AMC), piperacillin-tazobactam (TZP), cephalothin (CEF), cefuroxime
(CXM), ceftriaxone (CRO), cefepime (FEP), ertapenem (ETP), meropenem (MEM), ciprofloxacin
(CIP), tetracycline (TCY), sulfamethoxazole-trimethoprim (SXT), gentamicin (GEN), amikacin (AMK),
fosfomycin (FOF), nitrofurantoin (NIT), and colistin (CST). S, I, and R correspond to susceptible,
intermediate, and resistant in the antibiotic susceptibility profiles, respectively. For the virulence
factors and plasmid Inc types, red indicates presence, and blue indicates the absence from the
genome assembly.

2.3. Location of the mcr-1

The location of the mcr-1 was analyzed using mlplasmids and MGEfinder (Table 2) [31,32].
The mlplasmids showed that most isolates (83.3%) carried mcr-1 on a plasmid. However,
analysis with MGEfinder showed that only 66.67% of the isolates harbored the gene on
a plasmid. The discrepancies were in three cases where mlplasmids flagged the gene
to be on plasmid, while MGEfinder assigned it as chromosomal. In another case, the
opposite occurred between the two programs. However, there was a concordance of 83.3%.
Moreover, the results of the MGEfinder analysis showed that all isolates that had plasmid-
harbored mcr-1 carried the gene on an IncI2 plasmid, except for two isolates that carried
mcr-1 on IncX4.

Plasmids were extracted from each isolate and transformed into a chemically com-
petent colistin-sensitive E. coli to verify the in silico results and assess the transmissibility
of the mcr-1. Successful transformation was evaluated by colonies growing on colistin-
supplemented media, and the transformation resulted in colonies in all cases (Figure 2).
All transformants were colistin-resistant, confirming that mcr-1 was carried on plasmids
in all the isolates. DNA was extracted from the colistin-resistant transformants and by
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mcr-1-specific PCR analysis for further verification. All the transformants showed positive
amplification of mcr-1 (Figure 2).

Table 2. Results of the in silico analysis of the mcr-1 gene location.

Isolate Mlplasmids * Probability MGEfinder * Result

ad107 0.34 chromosome
ad108 0.76 Incl2
ad174 0.76 Incl2
ad28 0.79 Incl2
ad80 0.79 IncX4
ar181 0.62 chromosome
ar182 0.39 chromosome
br128 0.13 chromosome
br129 0.78 IncX4
cd62 0.63 chromosome
cd63 0.71 Incl2
cr102 0.81 chromosome
cr103 0.77 Incl2
FC1 0.76 Incl2
FC12 0.75 Incl2
FC4 0.76 Incl2
FC6 0.76 Incl2
FC7 0.76 Incl2

* Mlplasmids and MGEfinder are bioinformatic tools that statistically classify contigs or genes as chromosmal
or plasmid. Mlplasmids provides the porbability that the contig is on a plasmid, while MGEfinder provides a
classification of whether the gene of interest is on the chromosome or a plasmid and provides the incompatibility
group of the plasmid.
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Figure 2. (A) Representative image of the One ShotTM OmniMAXTM 2 T1R E. coli growth in
Muller–Hinton media supplemented with 4 µg/mL of colistin following heat-shock transformation.
The negative control underwent the heat-shock method without adding plasmid. (B) Agarose gel
electrophoresis of the mcr-1 PCR product from DNA extracts of the transformants. The first well,
labelled M, contained a 1 kb Ladder. Plasmids extracted from each sample were transformed into a
chemically competent E. coli. The origin of the DNA in each well were as follows, 1: ad28, 2: ad80,
3: ad107, 4: ad108, 5: ad174, 6: ar181, 7: ar182, 8: br128, 9: br129, 10: cd62, 11: cd63, 12: cr102, 13: cr103,
14: FC1, 15: FC4, 16: FC6, 17: FC7, 18: FC12, 19: PCR negative control.

2.4. Trasnmissibility of the mcr-1 via Conjugation

To further assess the transmissibility of mcr-carrying plasmids, conjugation experi-
ments were performed. Transconjugants were obtained for all donors. Hence, conjugation
was successful in all cases (Figure 3). For confirmation, DNA was extracted from the
transconjugants that grew on MH media containing colistin and streptomycin and sub-
jected to mcr-1-specific PCR analysis. Transconjugants from all donors showed positive
amplification of mcr-1 (Figure 3).
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Figure 3. (A) Representative image of the trans-conjugant E. coli K12 growth in Muller–Hinton media
supplemented with 2 µg/mL of colistin and 2000 µg/mL of streptomycin following conjugation. The
negative control underwent the conjugation method without adding donor cells. (B) Agarose gel
electrophoresis of the mcr-1 PCR product from DNA extracts of the transconjugants. The first well,
labeled M, contains a 1 kb Ladder. mcr-1 positive E. coli isolates (donors) underwent conjugation
with E. coli K12, strain IM93b (recipient). The origin of the DNA in each well were as follows, 1: ad28,
2: ad80, 3: ad107, 4: ad108, 5: ad174, 6: ar181, 7: ar182, 8: br128, 9: br129, 10: cd62, 11: cd63, 12: cr102,
13: cr103, 14: FC1, 15: FC4, 16: FC6, 17: FC7, 18: FC12, 19: PCR negative control.

2.5. Presistence of the mcr-1 Plasmids in Biofilms

All isolates showed an ability to form biofilms as measured by the absorbance at
570 nm for the crystal violet dye (see Figure S1a,b). A Wilcoxon signed-rank test indicated
that the log CFU/mL from the biofilms was significantly lower on day 6 compared to
day 3 on both MH agar without colistin (p = 0.033) and MH with colistin (p = 7.6 × 10−6)
(Figure 4). However, the reduction in the colistin-supplemented medium was signif-
icantly larger than the reduction in the non-supplemented medium (p = 7.6 × 10−6;
0.055 log CFU/mL vs. 2.19 log CFU/mL), suggesting a partial loss of mcr-1-carrying plas-
mids in a portion of the biofilm E. coli population.
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Figure 4. Log bacterial concentration (CFU/mL) was obtained from each sample on days 3 and 6 of
the biofilm formation. Each count was performed on two media, one in Mueller–Hinton (MH) agar
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(blue) and one in MH supplemented with 4 µg/mL of colistin (red). The left side shows the bacterial
concentration on day 3, and the right side represents the bacteria concentrations on day 6.

3. Discussion

Several studies have shown that the prevalence of mcr-carrying colistin-resistant E. coli
is usually higher in livestock than in humans [33]. For example, studies in Vietnam found
that 97.2% of the domestic chickens tested carried mcr-1-positive E. coli with evidence of
clonal relationships [34]. Similarly, in Lebanon, approximately 98% of the colistin-resistant
E. coli retrieved from feces of broiler chicken were mcr-1-positive [35]. Additionally, there
are increasing reports of acquiring mcr by strains that carry other antibiotic resistance
determinates such as ESBL- or pAMP-C-encoding genes [36,37]. These observations and
the mobility of mcr highlight the importance of monitoring and analyzing the epidemiology
and transmissibility of mcr in livestock and associated products in different countries. This
is imperative to reduce the risk of spreading colistin resistance via animal farming, the
food chain, and the environment, as well as to control potentially complicated infections.
In previous studies, 270 E. coli from retail chicken carcasses and 172 from fecal samples
from broiler chicken farms were isolated in Qatar [28,38]. In those studies, the prevalence
of mcr-1-carrying E. coli was 31.9% in retail chicken carcasses and 15.6% in the feces of
broiler chickens. However, the isolates were not investigated further. On the basis of
these observations and studies, 18 mcr-1-positive chicken-associated E. coli were randomly
selected (13 from retail chicken and 5 from broiler chicken) for an in-depth analysis to
understand further the emergence and potential spread of mcr in Qatar.

Most of the isolates included in this study showed an MDR phenotype. However,
none of the isolates were likely ESBL producers as none of them were resistant to third- or
fourth-generation cephalosporins, and they were not carbapenem resistant. Interestingly,
the majority of the isolates were ciprofloxacin resistant. Ciprofloxacin and colistin are
frequently used as growth promoters and prophylactic agents [39]. The latter might have
contributed to the observed resistance in these isolates. However, data on antibiotic use
in these animals were not available. Regardless, the over-reliance on antibiotics in animal
farming might drive the selection of more resistant strains that can pose a risk for both
animals and humans.

Phenotypic and genomic analyses revealed a notable diversity between the isolates
(Figure 1 and Table 1). Isolates belonging to Phylogroup B1 were the most common (Table 1).
This was expected because a high proportion of group B1 is common in mammals and
birds [40,41]. One fecal isolate (FC6) belonged to phylogroup B2, common in humans and
associated with inflammatory bowel disease and urinary tract infections [41,42]. However,
the most frequently detected STs were ST602 (22%), while the remaining isolates were
mainly assigned disparate STs. All four isolates that belonged to ST602 were closely
related and were obtained from feces of broiler chickens on the same farm, highlighting
the possibility of clonal transmission. These four isolates carried identical ARGs, virulence
genes, and plasmid replicons. Notably, ST602 is associated with the global spread of AMR
in humans and food-producing animals, particularly poultry [43]. However, detecting
different and diverse STs is consistent with other studies that found that the mcr-1-positive
E. coli were not necessarily clonal [44,45].

Each mcr-1-carrying E. coli isolate in this study carried between 4 and 9 plasmid Inc
types (median = 6.5). The majority of the isolates (n = 10) harbored the IncI2 plasmid, one of
the most prevalent mcr-carrying plasmids detected in poultry, human, and environmental
samples [33]. The bioinformatics analysis also revealed that two isolates had mcr-1 on
IncX4 plasmids (Table 2), which are also associated with the global dissemination of mcr-
mediated colistin resistance [46]. The mcr in the remaining isolates was not assigned to a
plasmid Inc type and had a low probability of being on a plasmid according to in silico
analysis. However, there were discrepancies between the two algorithms used to identify
the location of mcr-1. This discrepancy might have resulted from limitations associated with
short-read WGS for plasmids or because the flanking regions of the mcr-1 did not match a
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known plasmid sequence. The latter is very interesting because mcr-1 in all the isolates was
plasmid-born using heat-shock and conjugation assays, suggesting the potential to detect
unknown mcr-1-carrying plasmid types. To date, more than 12 mcr-1-carrying plasmid
types have been identified [26]. This plasmid diversity contributes to mcr-1 spread; however,
the exact role and diversity of the plasmids still require further investigation.

Whether the gene is carried on a chromosome or a plasmid might result in different
transmission dynamics. The mcr-1 is typically flanked by ISApl1 transposable elements [47].
ISApl1 is thought to be the element that mobilizes the gene on plasmids and allows for it
to be integrated into chromosomes [44,47]. A gene on a chromosome can be transmitted
vertically within a clonal lineage, while carrying it on a plasmid (in addition to mobilization
through ISApl1) will enable it to be transferred horizontally between clones and to other
bacterial genera. Therefore, a transformation experiment was performed to validate in silico
analysis. The transformation was successful for plasmids extracted from all the isolates, as
evidenced by growth on colistin-supplemented media and subsequent detection of mcr-1
in the transformants (Figure 2).

Similarly, mating in experiments was conducted to evaluate further if mcr-1 was
transmissible plasmid borne. Conjugation was observed with all 18 isolates as donors, as
evidenced by the growth of transconjugants on media supplemented with colistin and strep-
tomycin and subsequent detection of mcr-1 in the transconjugants (Figure 3). The natural
transformation has been observed in E. coli, albeit at low levels and seemingly environmen-
tally dependent [48–50]. For example, a 1996 study that assessed natural transformation
in E. coli in environmental water samples showed that the transformation efficiency was
higher in samples taken downstream of wastewater effluent than elsewhere [48]. Addition-
ally, conjugation was formerly shown for IncI2 and IncX plasmids [5,7,13,51]. Regardless,
the data in this study indicate that mcr is transmissible and, as such, poses a problem that
requires immediate action to identify and limit the factors that are driving the emergence
of mcr in livestock and associated products in Qatar. Further investigations are necessary
to examine the frequency of conjugation and whether it leads to similar resistance levels in
the recipient strain and to track mcr-1-carrying plasmid transmission to other niches and
bacterial hosts.

AMR dissemination continues to be a significant public health challenge and has
been receiving increased research interest. However, ARGs are not the only mechanism
of resistance/persistence possessed by bacteria. Biofilm formation has been shown to
increase antimicrobial tolerance and resistance and promote ARG transfer [52]. However,
dogmatically mcr-1-carrying plasmids might be unstable and can incur a high fitness
cost [53]. It was hypothesized that when a more cost-efficient form of resistance exists, the
bacteria will shed high-cost plasmids. However, in reality, this remains not well investigated
for mcr-1-carrying plasmids. Therefore, a biofilm formation assay was performed to test
this hypothesis. There was a significant reduction in biofilm-associated bacterial density
between days 3 and 6 on MH agar without and with colistin (p = 0.033 and p = 7.6 × 10−6,
respectively). The reduction in bacterial density on day 6 was incompatible with the results
of the crystal violet assay. The discrepancy was likely due to the differences between the two
methods. CFU plate counts is a direct method and accounts only for viable cells, while the
crystal violet assay is indirect and does not distinguish between viable and non-viable cells.
The reduction in bacterial CFU on the MH media was likely due to the bacteria reaching
a growth plateau and resource limitation. However, the decline in colistin resistance was
significantly higher than the reduction in bacterial CFU (p = 7.6 × 10−6; 0.055 log CFU/mL
vs. 2.19 log CFU/mL), indicating that mcr-1-carrying E. coli persistence in biofilms is
reduced after six days. This was likely due to a combination of factors, including energy
conservation, protection in biofilms (tolerance/resistance to stressors such as antibiotics),
and resource limitations. The results are consistent with experiments performed with
Klebsiella pneumoniae using an mcr-1 recombinant plasmid and with the IncX4 plasmid in
E. coli [46,53]. The majority of the isolates in this study carried the gene on IncI2 plasmids,
indicating that a similar fitness cost existed for these plasmids. Despite the reduction in
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resistant CFUs, it should be noted that a significant number of resistant and mcr-1-carrying
bacteria persisted in the 6-day-old biofilms. This might increase the potential of mcr-1
transmission, even under unfavorable survival conditions. Further studies are required to
assess the duration of mcr persistence and its transmissibility in single- and multi-species
biofilms, respectively.

4. Materials and Methods
4.1. Bacterial Isolates

The E. coli strains investigated in this study were isolated between September 2016
and April 2018 and are described in previously published studies [28,38]. Briefly, E. coli
were isolated from chicken carcasses collected from three major hypermarkets in Qatar and
from chicken fecal samples from multiple broiler farms. The isolates were collected using
a stratified random sampling approach under the supervision of the Ministry of Public
Health (MoPH) and the Ministry of Municipality (MM). All the isolates were stored at
−80 ◦C. Eighteen isolates that tested positive for mcr-1 by PCR were randomly selected for
this study.

4.2. Antimicrobial Susceptibility Testing

The susceptibility of the mcr-1-positive E. coli to 17 antibiotics was assessed using
E-test strips. Briefly, each isolate was grown on blood agar plates (BD-Medysinal FZCO,
Dubai, UAE) overnight. Colonies from each plate were suspended in a phosphate buffer
solution to achieve a 0.5 McFarland (McF) as measured by DensiCHEK Plus (bioMérieux,
Marciy-L’Étoile, France), and the suspension was then spread onto Mueller–Hinton (MH)
agar plates (HiMedia, Maharashtra, India). The E-test strips for each antibiotic (Liofilchem,
Roseto delgi Abruzzi, Italy) were applied to the agar surface, and the plates were incubated
at 37 ◦C overnight. The antibiotics tested were ampicillin (AMP), amoxicillin-clavulanic
acid (AMC), piperacillin-tazobactam (TZP), cephalothin (KF), cefuroxime (CXM), ceftri-
axone (CRO), cefepime (FEP), ertapenem (ETP), meropenem (MEM), ciprofloxacin (CIP),
tetracycline (TCY), sulfamethoxazole-trimethoprim (SXT), gentamicin (GEN), amikacin
(AMK), fosfomycin (FOF), nitrofurantoin (NIT), and colistin (CST). The minimum inhibitory
concentrations (MICs) were interpreted following the Clinical and Laboratory Standards
Institute (CLSI) [54]. E. coli strains ATCC 25922 and ATCC 35218 were used as controls.

4.3. Whole-Genome Sequencing

Genomic DNA was extracted from the isolates using the QIAamp® UCP Pathogen mini
kit (Qiagen, Hilden, Germany) and following the manufacturer’s protocol. The DNA was
then quantified with the Qubit dsDNA high-sensitivity assay (Thermo Fisher, Waltham, MA,
USA). Whole-genome sequencing was performed on the BIGSEQ-500 (Beijing Genomics
Institute, Shenzhen, China). Briefly, the genomic DNA was randomly fragmented with the
Covaris instrument (Covaris LLC., Woburn, MA, USA), and 200–400 bp fragments were
selected using the Agencourt AMPure XP beads (Beckman Coulter, Brea, CA, USA). The
fragments were then end-repaired and 3′ adenylated, and adaptors were ligated. PCR
was then performed to amplify the fragments, which were purified using the Agencourt
AMPure XP beads. Lastly, the DNA was circularized and then sequenced using DNA
nano-balls (DNB), resulting in 150 bp paired reads.

4.4. Bioinformatics Analysis

The quality of the raw reads was assessed using Fastqc (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/, accessed on 1 November 2021), and trimming was per-
formed using TrimGalore (https://www.bioinformatics.babraham.ac.uk/projects/trim_
galore/, accessed on 1 November 2021) to remove adaptors and low-quality reads. Con-
tamination was checked using kraken2 v2.1.1 [55]. The trimmed reads were assembled
using SPAdes v3.13.0 and optimized with Unicycler v0.4.9 [56,57]. The final assemblies

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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(n = 18) are available on the NCBI website under BioProject PRJNA786273 (The genome
accessions are listed in Table S1).

Core genome alignment of the isolates with E. coli K-12 MG1655 (GenBank accession:
CP014225.1) as the reference strain was performed using the RedDog read mapping pipeline
(https://github.com/katholt/reddog-nf, accessed on 1 November 2021). The maximum-
likelihood phylogenetic tree was constructed using FastTree [58,59]. Phylotyping was
performed using ClermonTyping v20.03 [60]. Multi-locus sequence typing (MLST) and
antimicrobial resistance gene (ARG) identification were performed using SRST2 v0.2.0 [61].
The incompatibility (Inc) types of the plasmids carried by the isolates were identified using
PlasmidFinder v2.1.6 [62]. Virulence genes were identified with VirulenceFinder v2.0,
and the FimH types were determined with FimTyper v1.0 [63,64]. Lastly, the locations
(chromosomal or on a plasmid) of the mcr-1 in each isolate were inferred using mlplasmids
v1.0.0 and MGEfinder v1.0.3 [31,32].

4.5. Plasmid Extraction and Screening for mcr-1 Using PCR Analysis

The 18 colistin-resistant isolates were sub-cultured in Luria–Bertani (LB) broth and
grown overnight (Merck, Dramstadt, Germany). Then, plasmid DNA was extracted using
the QIAprep® spin miniprep kit (Qiagen, Hilden, Germany) as described in the manu-
facturer’s instructions. The concentration and purity of the eluted plasmid DNA were
determined using the NanoDrop™ 2000c (Thermo Fisher Scientific, Waltham, MA, USA).

The presence of mcr-1 in the plasmid extracts was confirmed with PCR. The PCR reac-
tion contained 0.5 µM of each primer (MCR1_22697 F1: cacttatggcacggtctatga, MCR1_22810
R1: cccaaaccaatgatacgcat) [65], 30 ng of DNA, 12.5 µL of A PCR master mix (Hot star Taq
Plus, Qiagen, Hilden, Germany), 1x of gel loading dye (CoralLoad, Qiagen, Hilden, Ger-
many), and DEPC-treated water up to a volume of 25 µL. The reactions were amplified in a
Thermal Cycler using the following program: denaturation at 95 ◦C for 15 min; 25 cycles of
95 ◦C for 30 min, 58 ◦C for 90 min, and 72 ◦C for 1 min; and a final extension at 72 ◦C for
10 min. The amplified PCR products were subjected to electrophoresis in a 1.2% agarose
gel (AgaroseLE, Ambion®, Austin, TX, USA) stained with ethidium bromide (Promega,
Madison, WI, USA). The gel was visualized using a Molecular Imager® Gel Doc™ XR
System 170–8170 (Bio-rad, Hercules, CA, USA).

4.6. Assessing mcr-1 Transmissibility Using the Heat Shock Method

The extracted plasmids were transformed into One shot™ OmniMAX™ 2 T1R chem-
ically competent E. coli cells (Thermo Fisher Scientific, Waltham, MA, USA) by heat
shock [66,67]. Briefly, 50 µL of the chemically competent E. coli were mixed with 3 µL
of the extracted plasmid and incubated on ice for 1 h. The mixture was then heat-shocked
by placing it in a 42 ◦C water bath for 45 s, which was followed by incubation on ice for
2 min. After heat shock, 1 mL of freshly prepared LB broth was added, and the mixture was
incubated at 37 ◦C in a shaking incubator at 200 rpm for 1 h. The mixture was centrifuged
at 3000 rpm for 5 min, and 0.9 mL of the supernatant was removed. The pellet was resus-
pended in the remaining solution. Moreover, transformants were selected by spreading
the suspension on MH agar plates supplemented with 4 µg/mL of colistin. Transformant
colonies were subcultured in LB broth overnight and subjected to plasmid extraction and
mcr-1 PCR analysis to confirm the transmission of mcr-1-carrying plasmids. Chemically
competent E. coli with 3 µL sterile deionized water were used as a negative control.

4.7. Assessing mcr-1 Transmissibility via Conjugation Assays

Conjugation experiments were conducted to assess further the transmissibility of
the mcr-1-carrying plasmids. The mcr-1-positive isolates were used as donors, and the
streptomycin-resistant E. coli K-12 strain IM93B (BEI Resources, Manaas, VA, USA) as the
recipient. Briefly, all isolates were inoculated into 4 mL of LB broth and incubated for 5 h at
37 ◦C with shaking at 200 rpm. The donor strain was then mixed with the recipient strain
at a proportion of 1:3 and incubated for 5 h at 37 ◦C in a shaking incubator at 200 rpm.

https://github.com/katholt/reddog-nf
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The mixture was spread on MH plates containing 2000 µg/mL streptomycin and 2 µg/mL
colistin and incubated at 37 ◦C for 24 h to select transconjugants. DNA was extracted from
the transconjugants and screened by PCR analysis for mcr-1 as described above to verify
that the conjugation occurred. As a control, the recipient and donor were separately plated
on a streptomycin plus colistin plate.

4.8. Assessing the Persistence of mcr-1 Plasmids in Biofilms

The persistence of mcr-1 plasmids in the biofilm was assessed using the crystal violet
biofilm assay as described by Hassan et al. (2020) [46]. Briefly, mcr-1-positive E. coli were
grown in LB broth. The cultures were diluted 100-fold and incubated at 37 ◦C for 2 h in a
shaking incubator at 200 rpm. The optical density at 600 nm (OD600) was adjusted to 0.05.
Next, 2 mL aliquots of the cultures were transferred to 5 mL sterile borosilicate glass vials.
One set of duplicate vials for each isolate was incubated for 3 days and another for 6 days
in an incubator at 37 ◦C. Then, non-adherent bacterial cells were removed by washing with
2 mL of sterile distilled water. The experiment was performed twice, once to assess the
biofilm formation and the second to assess the persistence of mcr-1-carrying plasmids.

To assess biofilm formation, the glass vials were air-dried after washing the non-
adherent cells and stained with 2 mL of crystal violet solution (Anamol Laboratories Pvt
Ltd., Maharashatra, India) for 15 min at room temperature. The vials were then washed
with 2 mL sterile distilled water several times and dried to remove the excess crystal violet.
Then, 2 mL of acetic acid (Fisher Scientific, Waltham, MA, USA) was added to each vial,
and they were incubated for 1 h at room temperature. The optical density of the suspension
was measured at 570 nm using a LabQuest spectrophotometer (Vernier, Beaverton, OR,
USA). Vials containing only LB broth were used as negative controls.

To assess the mcr-1-carrying plasmids, the biofilms were resuspended in 1 mL of LB
broth after removing the non-adherent bacterial then serially diluted components (10-fold).
Next, 100 µL of each dilution was spread on MH agar plates without and with 4 µg/mL
of colistin. The plates were incubated at 37 ◦C overnight, and colony-forming units (CFU)
were counted.

4.9. Data Analysis

Statistical analyses were performed using R v4.1.0 [68]. Figures were generated with
ggplot v3.3.5, ggpubr v0.4.0, ggtree v3.0.4, and aplot v0.1.1 [69–71]. The differences in
growth in biofilm assays were assessed using a Wilcoxon signed-rank test as the data did
not follow a normal distribution.

5. Conclusions

Antibiotic use in humans and animals facilitates AMR emergence and dissemination
and the interactions between humans, animals, and the environment. Consequently, the
One Health approach is instrumental in tackling AMR, locally and globally. Colistin
resistance, particularly mcr-1-mediated resistance, has been reported in different hosts and
niches and constitutes a prime target for One-Health-based intervention. A few studies
have previously reported mcr-1-mediated colistin resistance in Qatar’s humans, animals,
and food products. In this study, mcr-1-carrying E. coli were subjected to a rigorous analysis
that revealed the mcr-1 (1) was plasmid-borne and transmissible, (2) occurred in diverse
genetic backgrounds along with other important ARGs, (3) persists in biofilms at a cost, and
(4) can pose a significant problem if not tackled appropriately. Consequently, there is a need
to continue investigations and identify and monitor the factors that drive the emergence
and spread of mcr in Qatar. This will be critical to developing a suite of interventions under
a One Health approach.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/antibiotics11060774/s1, Figure S1: (a) Biofilm growth over six days. The
figure shows the absorbance at 570 nm of the crystal violet dye as a proxy for biofilm growth.

https://www.mdpi.com/article/10.3390/antibiotics11060774/s1
https://www.mdpi.com/article/10.3390/antibiotics11060774/s1
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Measurements were taken in duplicates on day 0 (red), day 3 (green), and day 6 (blue) for each isolate.
(b) Representative image of bacterial biofilm growth. #1: mcr-positive E. coli growing in LB broth of
day 0. #2: mcr-positive E. coli growing in LB broth of day 3. #3: Bacterial suspension of day 3 after
being stained with crystal violet stain and measured at 570 nm using a spectrophotometer. #4: mcr-
positive E. coli growing in LB broth of day 6. #5: Bacterial suspension of day 6 after being stained
with crystal violet stain and measured at 570 nm using a spectrophotometer. Table S1: Genome
accessions and sample sources.
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