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that are greater than  the recommended dose can cause liver 
necrosis (McJunkin et al. 1976), liver failure and death (Lar-
son et  al. 2005; Lee 2008). A number of mechanisms have 
been linked to the development of liver injury, including glu-
tathione depletion (James et  al. 2003; Mitchell et  al. 1973; 
Vendemiale et  al. 1996), oxidative stress (Jaeschke et  al. 
2003), formation of reactive oxygen species (ROS) (Hin-
son et  al. 2004; Michael et  al. 1999), formation of reactive 
nitrogen species (RNS) (Hinson et  al. 2004), mitochon-
drial dysfunction (Kon et al. 2004) and disruption of energy 
metabolism (Chen et al. 2009; Coen et al. 2003). In the clini-
cal setting, acetaminophen liver injury covers a spectrum of 
disease severity, ranging from asymptomatic transient hepa-
titis to acute liver injury failure, accompanied by coma and 
death. Acetaminophen is responsible for approximately half 
of the reported cases of acute liver failure (ALF) in the USA 
(Larson et al. 2005); between 1998 and 2013, over half of the 
APAP-induced ALF cases were unintentional (Lee 2008). 
The current diagnosis of APAP overdose is based on eleva-
tion of APAP levels in peripheral blood (Rumack et al. 1981), 
elevation of the clinical chemistry biomarker, alanine ami-
notransferase (ALT) and estimation of APAP ingested (Zyoud 
et  al. 2012). ALT is the most commonly used biochemi-
cal indicator of liver injury, but lacks specificity (Amacher 
1998; Ozer et al. 2008). Patient histories reporting ingestion 
of toxic does of APAP are known to be unreliable (Dough-
erty and Klein-Schwartz 2012; Polson et al. 2008), and many 
patients are unaware of the inclusion of APAP in over-the-
counter medications (Wolf et al. 2012) and prescription pain 
medications. Elevation of APAP levels in peripheral blood 
within the first 24 h of the APAP overdose is used by practic-
ing physicians to assess the risk of liver injury and the poten-
tial need for treatment with the antidote, N-acetylcysteine 
(NAC). A plot of the APAP level in relationship to the stated 
time of APAP overdose is commonly known as the Rumack 
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Introduction

Acetaminophen (APAP), also known as paracetamol and 
N-acetyl-p-aminophenol, is a drug commonly used for pain 
relief and fever reduction. Acetaminophen is generally safe 
at the recommended doses, although large doses of APAP 
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nomogram (Rumack et  al. 1981). While this approach is 
widely used in hospital emergency departments and acute-
care settings, it has numerous limitations, which include its 
reliance on the patient’s recognition of APAP overdose and an 
accurate history of the time of the overdose. In addition, the 
Rumack nomogram was initially designed and intended for 
use within the first 24 h of the APAP overdose and is based on 
anticipated drug clearance following a single, acute ingestion 
of a toxic dose of APAP (Rumack 2002). A significant pro-
portion of APAP overdoses are known to be chronic in nature 
and/or associated with long-term exposure to APAP at doses 
above those recommended by the manufacturer (Daly et al. 
2004; Schiødt et  al. 1997). Thus, the limitations of current 
diagnostic approaches and the wide-spread use of this anal-
gesic make it imperative to discover and validate sensitive 
and specific translational biomarkers of APAP-induced liver 
injury. The development of systems approaches together with 
pioneering “omic” technologies and computational tools will 
lead the way for future translational systems medicine.

Metabolism of acetaminophen

Figure 1 shows the metabolism of APAP. Under normal 
conditions, APAP is primarily metabolized to the sulfated 

or glucuronidated forms and then excreted by the kidneys 
(Bales et  al. 1984; McGill and Jaeschke 2013; Watari 
et al. 1983). A minor portion of the drug is metabolized 
in the liver by the cytochrome P450 enzymes (primar-
ily CYP2E1) to the reactive and toxic APAP intermedi-
ate, N-acetyl-p-benzoquinone imine (NAPQI) (Patten 
et al. 1993). NAPQI can be readily detoxified by conju-
gation to glutathione and excreted in the glutathione and 
N-acetyl-cysteine forms (Potter and Hinson 1986; Shayiq 
et al. 1999). The portion of NAPQI that is not detoxified 
by glutathione can bind to proteins and DNA (Bartolone 
et al. 1988, 1989). NAPQI bound to cysteine residues in 
proteins, hereafter referred to as APAP protein adducts, 
has been observed in tissue and in biofluids (Roberts 
et  al. 1991). APAP adducts have been shown to corre-
late with ALT levels in APAP overdose in both preclini-
cal and clinical studies. Previous reviews have addressed 
early work characterizing the relationship of APAP 
protein adducts to liver injury in nonclinical models of 
APAP liver injury (McGill and Jaeschke 2013; Roberts 
et  al. 1991). APAP protein adducts have been shown to 
correlate with ALT levels in APAP overdose in both pre-
clinical and clinical studies (James et al. 2001; Muldrew 
et al. 2002).

Fig. 1   Cartoon depicting acetaminophen phase II metabolism to APAP-sulfate and APAP-glucuronide. APAP is metabolized by CYP2E1 to 
NAPQI which can be subsequently metabolized to APAP–GSH with the addition of GSH and then metabolized to APAP–NAC
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Definition of biomarker

The FDA defines biomarker as a “characteristic that is 
objectively measured and evaluated as an indicator of 
normal biological processes, pathogenic processes or 
biological responses to a therapeutic intervention” (US  
2006, 2010). The FDA defines a prognostic biomarker as 
a “measured characteristic that reflects a patient’s degree 
of risk of disease occurrence or progression” that is inde-
pendent of treatment while a predictive biomarker catego-
rizes patients by their likelihood to respond favorably or 
adversely to a particular treatment. A diagnostic biomarker 
is something that can be measured, which is an indication 
of certain disease state (Beger and Colatsky 2011). Phar-
macodynamic (PD) biomarkers are defined as the biologi-
cal response to a drug treatment (Sawyers 2008) and either 
are treatment specific or may represent endogenous pheno-
type changes in a subject due to a drug treatment (Beger 
and Colatsky 2011). PD biomarkers can be either diagnos-
tic biomarkers or prognostic biomarkers. Translational bio-
markers can be defined as biomarkers found in nonclinical 
studies using the technologies that can be used in the clinic. 
In this review, we are focusing on translational biomarkers 
that can be detected in biofluids since biofluids can be eas-
ily obtained in the clinic.

Discovery and validation of biomarkers using omics 
technologies

The goal for new predictive translational safety biomarkers 
is to be able to monitor early indications of organ toxicity 
in clinical trials, so better informed clinical and regulatory 
decisions can be made and treatment can be stopped or 
altered before organ injury occurs (Aronson 2005; Matheis 
et al. 2011; Sistare and DeGeorge 2011). The ideal charac-
teristics of translational safety biomarkers of organ injury 
are that they provide more sensitive and specific infor-
mation than current clinical chemistry biomarkers, can 
be detected through robust analytical assays in relevant 
translational species (rat, dog, mouse or monkey) and in 
humans, can be measured noninvasively or in accessible 
fluids like blood or urine, can predict or monitor severity of 
histopathology in nonclinical species, are specific for organ 
injury or mechanisms of toxicity that lead to organ injury, 
are specific to tissue location and are insensitive to non-
toxic perturbations (exercise, diet, age, and other diseases 
and toxicities to other organs) (Amacher 2010; Muller and 
Dieterle 2009; Sasseville et al. 2014; Sistare and DeGeorge 
2011; Mattes personal communication). The translational 
aspect, i.e., the ability of the biomarker to have similar 
responses in different species, enables comparisons of non-
clinical studies with clinical studies. Figure  2 shows the 
process of discovering treatment-specific PD and omics 

biomarkers, followed by analytical verification and test-
ing of the biomarkers in additional clinical and nonclinical 
studies for translational qualification. Biomarkers can be 
discovered in tissue or biofluids in nonclinical studies, but 
generally, the most useful biomarkers in the clinical setting 
are biomarkers detected in biofluids and are directly related 
to a mechanism of liver toxicity or a functional change in 
the liver. This review will focus on biomarkers of APAP-
induced injury that are observed in urine and blood sam-
ples. Biomarkers may be related to the disposition and 
metabolism of the drug (such as APAP protein adducts) or 
to the endogenous response of the host to the drug. Endog-
enous phenotype indicators include changes in RNAs (e.g., 
mRNAs and miRNAs), proteins or metabolites; these can 
now be measured using the transcriptomics, proteomics 
and metabolomics platforms, collectively the omics tech-
nologies. The omics technologies have provided scien-
tists with the ability to better characterize the phenotypes 
of patients and to discover biomarkers of diseases (Wood 
et  al. 2014). When omics studies are applied to define an 
individual’s response to drugs, they are often referred to as 
pharmacogenomics, pharmacoproteomics and pharmaco-
metabonomics or pharamacometabolomics, (Clayton et al. 
2006; Everett et al. 2013; Hess 2013; Kaddurah-Daouk and 
Weinshilboum 2014; Lindpaintner 2002; Nicholson et  al. 
2011). In contrast, when the omics platforms are applied in 
toxicity studies, they are often referred to as toxicogenom-
ics, toxicoproteomics and toxicometabolomics (Bouhifd 
et al. 2013; George et al. 2010; Guerreiro et al. 2003; Wet-
more and Merrick 2004). There are several reviews of the 
omics technologies, the challenges associated with these 
technologies and how they can provide translational mark-
ers (Damia et al. 2011; Yang et al. 2012b).

Fig. 2   Flow chart showing the process of discovering treatment-
specific PD treatment and omics biomarkers, followed by analytical 
verification and testing of the biomarkers in additional clinical and 
preclinical studies for translational validation
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The biomarker discovery phase usually involves collect-
ing transcriptomics, proteomics and/or metabolomics data-
sets and using bioinformatics methods to process and ana-
lyze the data to discover biomarkers. Currently, the omics 
technologies are providing detailed phenotype information 
of a patient (Chen et  al. 2012; Lobenhofer et  al. 2008). 
Analysis of omics data usually involves multivariate statis-
tical analyses such as principal component analysis (PCA), 
partial least squares discriminant analysis (PLS-DA) and 
other bioinformatics statistical methods (Kettaneh et  al. 
2005; Sánchez et al. 2012; Wold et al. 2001). Identification 
and selection of reproducible and translational biomark-
ers from omics datasets is a challenging problem for many 
reasons including small sample size, lack of quality control 
in sample collection and processing and failure to provide 
analytical verification of the biomarker, all of which have 
been addressed in other reviews (Broadhurst and Kell 2006; 
Ghosh and Poisson 2009; Poste 2012; Saeys et  al. 2007). 
It is generally understood that new biomarkers discovered 
after application of bioinformatics analysis of omics data-
sets should be verified using more focused forms of analy-
sis. The data acquired using multiple omics platforms may 
be evaluated individually in each omics dataset to discover 
biomarkers, or multiple omics datasets can be integrated to 
obtain a more comprehensive systems biology biomarker 
of the drug-induced hepatotoxicity (Ilyin et al. 2004). This 
approach allows systems biology biomarkers to be under-
stood in terms of the molecular pathways affected by the 
toxicity (Laaksonen et al. 2006).

Transcriptomics examines the expression level of 
mRNAs in a given cell or tissue (Schena et al. 1998). Cur-
rently, isolated RNA can be used to evaluate both mRNA 
and microRNA (miRNA) (Lizarraga et  al. 2012). MiR-
NAs are short (~22 nucleotide), single-stranded, non-
coding RNA that regulate gene expression. Validation of 
transcriptomics biomarkers is usually accomplished by RT-
qPCR to amplify the mRNA or miRNA to prove a specific 
RNA or DNA sequence was up- or down-regulated in the 
omics dataset (de Planell-Saguer and Rodicio 2011). This 
review will focus only on changes in miRNAs in relation 
to APAP-induced hepatotoxicity. Proteomics is the study 
of the proteome in a cell, tissue or biofluid (Anderson and 
Anderson 1998). Measuring the proteome in a sample can 
be done using several different techniques that include gel-
based approaches such as 1D or 2D gels followed by liq-
uid chromatography–mass spectrometry (Gel LC–MS) and 
gel-free approaches such as two-dimensional LC–tandem 
mass spectrometry (2D-LC–MS/MS). Validation of protein 
biomarkers is usually performed using immunohistochemi-
cal staining, enzyme-linked immunosorbent assay (ELISA) 
or western blot (Whiteaker et  al. 2011). MS-based multi-
ple reaction monitoring (MRM) techniques with peptide 
standards can be used in proteomics to quantify the amount 

of a potential protein biomarker in a sample (Becker et al. 
2012; Gao et al. 2009). Metabolomics has been defined as 
“the measurement of the metabolite pool that exists within 
a cell under a particular set of conditions” (Fiehn 2002), 
while metabonomics was earlier defined as “the quantita-
tive measurement of the dynamic multiparametric meta-
bolic response of living systems to pathophysiological 
stimuli or genetic modification” (Nicholson et  al. 1999). 
Metabolomics typically uses nuclear magnetic resonance 
(NMR) and/or MS to characterize the metabolites in a tis-
sue or biofluid sample (Dunn et al. 2005). The advantages 
and disadvantages of NMR and MS in metabolomics have 
been discussed previously (Dunn and Ellis 2005; Robertson 
2005). Metabolomics usually only reports the confidence of 
a chemical assignment to a peak and seldom reports ana-
lytical verification of a potential biomarker. Recently, sev-
eral metabolomics groups have stated that MS/MS multiple 
reaction monitoring MRMs of reference standard com-
pounds should be done for biomarker verification in LC/
MS metabolomics studies (Kitteringham et al. 2009; The-
odoridis et  al. 2012). Finally, after an omics biomarker is 
discovered and analytically verified, the biomarker or pat-
tern of biomarkers needs to be further evaluated in addi-
tional nonclinical and clinical studies to determine time 
domain, limitations of use and whether they are truly trans-
lational. It is best to test new biomarkers under multiple 
different scenarios to determine the domain of applicability 
of the biomarker (Altar et al. 2008; Matheis et al. 2011).

This review will cover biomarkers of APAP-induced 
liver injury that were discovered in omics nonclinical 
studies (Chen et al. 2008; Clayton et al. 2009; Coen et al. 
2003; Reilly et  al. 2001; Stamper et  al. 2011; Sun et  al. 
2009; van Swelm et al. 2012; Yang et al. 2012b) or multi-
ple omics nonclinical studies (Coen et al. 2004; Prot et al. 
2011; Ruepp et  al. 2002; Sun et  al. 2012), whether these 
biomarkers went through analytical biomarker verifica-
tion and whether these biomarkers have been observed in 
clinical studies (Bhattacharyya et al. 2014a, b; Fannin et al. 
2010; Yang et al. 2015). This review will provide the status 
of APAP protein adducts and systems biology omics bio-
markers (miRNAs, protein biomarkers and metabolite bio-
markers) of APAP liver injury in the clinical setting. It will 
also discuss the role of statistics in discovery and validation 
of translational biomarkers, potential future applications 
of translational biomarkers of APAP liver injury and how 
these translational biomarkers can be used in the clinic to 
help make clinical decisions.

Bioinformatics and statistics

With the rapid development of “omics” technologies, 
novel biomarker discovery in disease or toxicity is now 
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mostly concerned with comprehensive analysis of poten-
tial biomarkers in biological samples such as cells, tissues 
or biofluids in a discovery-based or hypothesis-generat-
ing approach rather than the traditional hypothesis-based 
approach. Discovery-based approaches focus on identify-
ing changes in relative abundances of new or novel molecu-
lar species that are statistically significantly associated with 
a disease or toxicity state. This type of study can often lead 
to subsequent investigations of the function of the candi-
date biomarker and hence is called hypothesis generating. 
Usually, the discovery-based approaches generate large, 
quantitative datasets of differentially expressed mRNAs, 
miRNAs, proteins or metabolites from primarily case–con-
trol experiments. Bioinformatics has a key role in facilitat-
ing the storage, analysis, dissemination and interpretation 
of such data. The basic workflow for analyzing such data 
involves: (1) data processing, (2) statistical analysis and 
validation and (3) high-level functional interpretation of the 
candidate biomarkers identified (Dunkler et  al. 2011; Xia 
and Wishart 2011).

Data processing and normalizations

Proper data cleansing/de-noising and normalizations of 
omics data are important processes in biomarker identifi-
cations. Large, high-throughput, machine-generated data 
often come with substantial numbers of missing values that 
need to be dealt with appropriately prior to statistical analy-
ses. The presence of <1 % missing data points is generally 
considered trivial, and between 1 and 5  % is acceptable. 
However, when 5–15  % is missing, sophisticated meth-
ods to handle the dataset are required, and more than 15 % 
missing may severely impact any kind of interpretation 
(Acuna and Rodriguez 2004). Samples or features with too 
many missing values should be excluded while the rest can 
be imputed by appropriate computational methods that best 
suit the experimental data of interest, including replacement 
by a small value that is half of the minimum positive value 
in the input data table, mean or median, k-nearest neigh-
bor, probabilistic principal component analysis and others. 
Outliers should be identified by boxplots, box-and-whisker 
plots or other methods and removed because many data 
analysis methods are sensitive to outliers. It is often neces-
sary to normalize high-throughput data prior to statistical 
analysis in order to reduce systematic bias or technical var-
iation or often to reduce the variance from more abundant 
features that dominate the variance–covariance matrix (Xia 
and Wishart 2011). Also, the classical statistical algorithms 
usually make the implicit assumption that the biomark-
ers follow a normal (Gaussian) distribution when in fact 
many omics datasets have heavily skewed distributions. In 
these cases, the data should be log-transformed in order to 
approximate the normal curve. There are excellent reviews 

available on normalizations of omics datasets including the 
paper by (van den Berg et al. 2006) for metabolomics data.

Statistical analysis and validation

The main challenges associated with analysis of high-
dimensional omics data for biomarker discovery are inher-
ent bias in the data, small sample size relative to the large 
number of variables, excess false discovery rate due to mul-
tiple hypotheses testing and overfitting due to inadequate 
validation or cross-validation (Broadhurst and Kell 2006). 
The ‘short-and-wide’ structure of the data with the number 
of variables far exceeding the number of samples makes 
the data less conducive to the classical univariate statistical 
methods like t-tests because multiple independent hypoth-
eses testing done in parallel across all the variables can 
result in a large number of false positives. The most com-
mon way to correct for high false-positive rates is to apply 
multiple testing corrections to the p values such as the false 
discovery rate (FDR) described by Benjamini–Hochberg 
(Benjamini and Hochberg 1995), the q value described by 
Storey and Tibshirani (Storey and Tibshirani 2003) or the 
more stringent Bonferroni correction (Dunn 1961). While 
these methods are routinely used in microarray-based stud-
ies, the downside to these methods is that it may result in 
loss of statistical power to detect the true positives. Also, 
univariate methods treat the individual variables as inde-
pendent, which is largely not true in a biological system 
where a high degree of covariance is expected among the 
omics variables. As such, multivariate statistical methods 
that incorporate the covariance inherent in the omics data 
are increasingly being implemented (Wheelock and Whee-
lock 2013).

There are many multivariate algorithms that have been 
applied to omics data for biomarker discovery projects like 
factor analysis, linear discriminant analysis, canonical cor-
relation analysis, multivariate ANOVA and artificial neural 
networks. The two most routinely used methods for explor-
atory analysis of omics data through dimension reduction 
are principal component analysis (PCA) and partial least 
squares discriminant analysis (PLS-DA). In general, mul-
tivariate methods can be broadly grouped into two catego-
ries: supervised methods and unsupervised methods. While 
the later uses no prior group identity to build the models, 
the former class of methods focuses on extracting the vari-
ables important to group separation. In PCA, an unsuper-
vised multivariate method, the data are projected along 
transformed axes that represent orthogonal linear combina-
tions of the original variables, thus maximizing the variance 
in the data. However, the challenge in PCA is to connect 
the observed group separation to the original variables used 
to build the PCA model. Therefore, PCA is used primarily 
as a first step in statistical modeling to assess data quality, 
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detect outliers and provide a preliminary visual assessment 
of the strength of group separation in the data. PLS-DA, on 
the other hand, is a commonly used supervised multivari-
ate method that performs multivariate correlation analysis 
between the predictor variables (the putative biomarker 
candidates) and the response variables (e.g., the group vari-
able in case of case control studies). A major advantage of 
multivariate methods relative to univariate ones is that a 
single model is used to analyze all variables, and thus, the 
problems associated with multiple hypothesis testing are 
absent. However, the power of multivariate methods can 
be substantially diminished if the problem of overfitting 
is not dealt with appropriately (Wheelock and Wheelock 
2013). Overfitting can result if a sufficient number of latent 
components are extracted such that the multivariate model 
results invariably in group separation that is convincing by 
visual inspection. Hence, evaluation of model parameters 
and model validation is of paramount importance in mul-
tivariate modeling. Typically, two parameters are assessed: 
the R2 value that indicates how well the model fits the data 
and the Q2 value that is the correlation based on averag-
ing the results of multiple iterations of cross-validation. Q2 
indicates the predictive power of the model. In general, R2 
and Q2 values are expected to be close. If, however, Q2 is 
substantially lower than R2, the robustness of the model is 
poor implying overfitting. Overfitting can be reduced by 
determining the appropriate number of components, which 
is the cutoff point where Q2 starts decreasing with the addi-
tion of more components. Apart from cross-validation or 
related methods like bootstrapping and permutation tests, it 
is also highly recommended to use an independent dataset, 
the test set, to assess the accuracy of the model to eliminate 
model overfitting.

Variable selection is an essential step in multivariate 
methods for potential biomarker candidate detection and is 
usually done using the variable importance on the projec-
tion (VIP) parameter that summarizes the importance of 
each variable in deriving the group separation. A VIP score 
>1 is commonly used to select important variables besides 
assessing the loadings of each variable in the loadings plot. 
The variables with the highest VIPs are often evaluated in 
terms as discovered potential biomarkers.

Lastly, it is also worth mentioning that apart from report-
ing R2 and Q2 values as a measure of quality of a model, a 
receiver operating characteristic (ROC) plot of both train-
ing and overlaid test predictions is needed to claim utility 
of a particular predictive model. ROC curves plot the sensi-
tivity of a predictive model against one minus the specific-
ity for all possible values of the model threshold. The area 
under the curve (AUC) in a ROC plot summarizes the sen-
sitivity/specificity trade-off of a predictive model over all 
possible thresholds. The AUC for random guessing is 0.5 
(the diagonal in a ROC plot), while a perfect discrimination 

corresponds to an AUC of 1. ROC plots have been popu-
larly used to assess the utility of biomarkers by comparing 
the AUC for predictive models with and without the bio-
marker (Alemayehu and Zou 2012).

Clinical chemistry and APAP protein adducts

As mentioned above, the initiating events in APAP toxic-
ity have been extensively reviewed (Jaeschke and Bajt 
2006; James et al. 2003). Following a toxic dose of APAP, 
the conjugation pathways of the liver are overwhelmed 
and an increased proportion of APAP is metabolized by 
cytochrome (CYP) P450, predominantly CYP2E1, to the 
highly reactive metabolite NAPQI (Mitchell et  al. 1973). 
While NAPQI is normally detoxified by glutathione, in 
APAP overdose, glutathione is depleted and NAPQI binds 
to cysteine on hepatic proteins as 3-(cystein-S-yl) APAP. 
Studies with antibodies that recognize total APAP protein 
adducts showed that adducts were specific biomarkers of 
APAP toxicity (Potter et  al. 1989; Pumford et  al. 1989, 
1990; Roberts et  al. 1987). The major antigenic determi-
nant recognized by these antibodies consists of a cysteinyl 
sulfhydryl group (on a peptide or protein) covalently bound 
ortho- to the hydroxyl group and meta- to the acetamide 
on 3-(cystein-S-yl) APAP (Potter et  al. 1989). Immunoas-
says performed in the mouse model of APAP toxicity deter-
mined the relationships between tissue adducts and tox-
icity, as measured by pathologic examination of the liver 
tissues and serum ALT levels (Potter et  al. 1989; Roberts 
et al. 1991, 1987). It was shown that hepatocytes undergo-
ing necrosis were the same cells that contained adducts and 
that the presence of adducts in liver cells preceded histo-
logical indication of necrosis and the elevation of serum 
ALT (Roberts et  al. 1991). Immunoassays were also per-
formed on blood samples of patients with acetaminophen 
liver injury and showed the presence of adducts in patients 
with high levels of ALT (James et al. 2001).

The development of a highly sensitive high-pressure 
liquid chromatography with electrochemical detection 
(HPLC–EC) adduct assay (Muldrew et  al. 2002) allowed 
further study of APAP protein adducts in various clini-
cal settings. Serum samples from patients with acute liver 
failure attributed to APAP overdose were found to have 
high levels of APAP protein adducts (Davern et al. 2006). 
Minimal levels of APAP protein adducts were detected in 
patients with ALF of known other etiology (e.g., viral hepa-
titis, autoimmune disease, Wilson’s disease, ischemia). 
In patients with ALF of unknown etiology (i.e., lack of a 
definitive diagnosis despite laboratory testing), up to 18 % 
of samples were shown to have toxic levels of adducts 
(Davern et  al. 2006; Khandelwal et  al. 2011). Moreover, 
the biochemical profiles (hyper-acute elevation of ALT, 
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relatively low levels of bilirubin) and spontaneous recov-
ery rates of these patients were consistent with those of the 
known APAP-induced ALF cases (Khandelwal et al. 2011). 
Thus, data generated by the HPLC-EC assay strongly 
implicated APAP as the etiology of the liver injury. ROC 
analysis of adduct levels in serum from patients known 
to have APAP hepatotoxicity showed that an APAP pro-
tein adduct level ≥1.1 nmol/mL had a high sensitivity and 
specificity (96.8 and 95.0 %, respectively) for patients with 
APAP overdose and ALT levels above 1000  IU/L. Thus, 
a level of 1.1  nmol/mL APAP protein adducts has been 
referred to as the “toxicity threshold level” (James et  al. 
2009). An analysis of the pharmacokinetics of adducts in 
18 adults with APAP-induced liver injury reported an elim-
ination half-life of 41.3 ±  8.3  h (James et  al. 2009). By 
contrast, the elimination half-life of the parent drug APAP 
ranges from 2 to 18 h, depending on the severity of APAP 
liver injury (Bernal et al. 2010; Schiødt et al. 1997). Thus, 
the relatively long elimination half-life of adducts, an indi-
cator of the oxidative metabolism of APAP, suggests that 
this biomarker could be useful in the clinical setting and 
has specificity for APAP-mediated liver injury. Figure  3a 
shows the time response of APAP protein adducts and ALT 
in mice after dosed with 200 mg/kg APAP (Bhattacharyya 
et al. 2013). APAP adducts increase rapidly before ALT and 
stay significantly increased at every time point in the study.

Additional studies have examined the quantitation of 
APAP protein adducts in patients receiving “therapeutic” 
or low-dose exposures of APAP. Adducts were quantified 
in the serum samples of healthy adults who participated 
in a study using a cross-over design to compare two for-
mulations of APAP: the immediate release formulation 
and the sustained release formulation (James et al. 2013). 
Subjects received an 80 mg/kg dose of one APAP formula-
tion, followed by a washout period and subsequent admin-
istration of the second 80 mg/kg formulation of APAP. The 
maximum plasma concentrations (C(max)) of adducts for 
immediate release (IR) and extended release (ER) formu-
lations were 0.108 (±0.020) and 0.100 (±0.028) nmol/
mL serum, respectively, and were two orders of magni-
tude lower than the maximum APAP adduct levels previ-
ously reported in adults with acute liver failure secondary 
to APAP. No changes in ALT levels were observed among 
the study participants. Another study compared the range 
of adduct levels in 24 healthy subjects receiving APAP 
daily doses of 4 g per day for a period of 10 days (Heard 
et  al. 2011). The mean peak level of adducts for subjects 
in this study was 0.4  nmol/mL (±0.2  nmol/mL). Further 
study is needed to characterize adduct profiles in patients 
receiving low doses of APAP with preexisting disease (e.g., 
liver disease) to better understand the potential application 
of this biomarker across a range of APAP exposures. Over-
all, the data published on APAP protein adducts in human 

studies suggest that this biomarker is highly specific and 
sensitive for the detection of APAP liver injury. Figure 3b 
shows the time response of APAP protein adducts and ALT 
in a patient with late NAC treatment (31 h) (Bhattacharyya 
et al. 2014b). The time response of APAP adducts closely 
mirrored temporal changes in ALT for this patient.

MiRNAs as APAP injury biomarkers

MiRNAs are short (~22 nucleotide), single-stranded, non-
coding RNA that regulate gene expression posttranscrip-
tionally by pairing with 3′ untranslated regions (3′-UTR) 
(Bartel 2004, 2009; Doench and Sharp 2004; Lewis et al. 
2003; Turchinovich et  al. 2011; Valadi et  al. 2007; Wang 
et al. 2010). MiRNAs play important roles in basic cellular 
functions related to development, cellular differentiation, 
proliferation, apoptosis, cell-cycle control, metabolism and 
cancer (Iorio and Croce 2012). MiRNAs found in body 
fluids, including blood and urine, represent an important 

Fig. 3   Plots showing time response of APAP protein adducts in 
a mice dosed with 200  mg/kg APAP (Bhattacharyya 2013) and b 
a human APAP overdose patient who was treated with N-acetyl 
cysteine (NAC) 31  h after APAP overdose (Bhattacharyya 2014b). 
APAP protein adducts and ALT data at 0 h reflect control values of 
non-APAP-treated mice (a), while APAP protein adducts and ALT 
values for b reflect control subjects in the clinical study
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advance in biomarker discovery and may be useful nonin-
vasive injury biomarkers in nonclinical and clinical studies. 
Most of these miRNAs are released into extracellular fluid 
via microvesicles, exosomes or protein-RNA complexes 
and are, therefore, highly stable (Yang et al. 2014). It has 
been suggested that miRNA may act not only within cells, 
but also in other tissues as extracellular signals (Cortez 
et  al. 2011). Many miRNAs are expressed tissue-specifi-
cally or enriched in certain cell types. For example, miR-
122 is one of the dominate miRNAs in the liver, account-
ing for 75 % of the total hepatic miRNA population (Wang 
et  al. 2009; Lagos-Quintana et  al. 2002), and has been 
identified as a APAP injury biomarker in animal (Wang 
et al. 2009) and clinical studies (Starkey Lewis et al. 2012). 

Table 1 lists miRNAs reported in animal and clinical stud-
ies and includes the biofluid used, discovery and verifica-
tion and validation methods for the miRNA.

MiRNA profiling and data normalization

Compared to tissue samples, biofluids are difficult matrices 
to work with due to the limited amount of miRNAs. Real-
time polymerase chain reaction (qPCR) and microarrays 
are the two well-established miRNA-profiling approaches 
for miRNA detection; next-generation sequencing (NGS) 
is another new method based on direct sequencing. The 
qPCR platform provides a larger dynamic range of miRNA 
detection and therefore requires less sample volume and 

Table 1   Translational microRNA biomarkers of acetaminophen liver injury

a  Plasma miR-122 down-regulation at the 12-h time point of this study
b  22 subjects with ALT elevations exceeding 3 × baselines ALT compared to 22 matched patients without ALT
c  (Wang et al. 2009)
d  (Starkey Lewis et al. 2011)
e  (Bala et al. 2012)
f  (Antoine et al. 2013)
g  (Su et al. 2012)
h  (Thulin et al. 2014)
i  (Ward et al. 2012)
j  (Ward et al. 2014)
k  (Yamaura et al. 2012)
l  (Krauskopf et al. 2015)
m  (Starckx et al. 2013)

microRNA 
biomarker

Nonclinical Clinical

Gender and spe-
cies

Biofluid Discovery 
method

Verification method
footnote for refer-
ence

Human subjects 
(# of control; # 
of APAP)

Biofluid (nor-
malizer)

Validation 
method
footnote for 
reference

miR-122 Male BALB/c 
mice

Plasma Microarray TaqMan® qPCRc 25; 53 Plasma (U6 
snRNA)

TaqMan® qPCRd

miR-122 Female C57BL/6 
mice

Serum/
plasma

Protein-rich 
fraction

TaqMan® qPCRe 0; 129 Plasma (let-7d) TaqMan® qPCRf

miR-122 Male Sprague–
Dawley Rat

Serum TaqMan®-based 
PCR array

TaqMan® qPCRg 22; 22b Plasma (cel-39 
spike-in)

TaqMan® qPCRh

miR-122a Female C57BL/6 
mice

Plasma SYBR® green-
based PCR 
array

SYBR® green-
based PCR arrayi

12; 37 Serum/plasma (a 
set of 20 stable 
miRNAs)

SYBR® green-
based PCR 
arrayj

miR-122 Male Sprague–
Dawley rat

Plasma TaqMan®-based 
PCR array

TaqMan® qPCRk 6; 6 Serum (miR-7i) LNA™ based 
qPCRl

miR-122 Male Sprague–
Dawley rat

Plasma N/A TaqMan® qPCRm

miR-192 Male BALB/c 
mice

Plasma Microarray TaqMan® qPCRc 25; 53 Plasma (U6 
snRNA)

TaqMan® qPCRd

miR-192 Male Sprague–
Dawley rat

Serum N/A TaqMan® qPCRg 6; 6 Serum (miR-7i) LNA™-based 
qPCRl

miR-192 Male Sprague–
Dawley rat

Plasma TaqMan®-based 
PCR array

TaqMan® qPCRk
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provides more sensitive quantification. The advantages of 
NGS are its high-throughput detection of novel miRNAs 
and high accuracy in distinguishing miRNA isomers (Wang 
et al. 2014). Detailed discussions of the strengths and pit-
falls can be found within a previous review (Pritchard et al. 
2012).

Data normalization is a big challenge for biofluid 
miRNA analysis. Currently, there is no accepted standard 
to be used for miRNA normalization. Endogenous miR-
NAs have been proposed as powerful standards in terms of 
normalizing for some of the clinical variability. However, 
the levels of some commonly used normalizers (e.g., U6 
snRNA) were different between control and disease sub-
jects, because U6 expression profiles from young, aging 
and different disease conditions are variable (Qi et  al. 
2012). Exogenous spiked-in miRNAs were more consistent 
between samples; however, it only corrected the variations 
after the RNA purification. In the absence of a gold stand-
ard normalization method, it appears to be good practice to 
use multiple normalizers showing low variation within the 
samples.

MiRNAs in animal models

Using the APAP-induced liver injury mouse model, the 
first study on circulating miRNAs as liver injury biomark-
ers was published in 2009 (Wang et al. 2009). Wang et al. 
(2009) reported that the level of many plasma miRNAs 
inversely correlated with the level of hepatic miRNAs, 
indicating that for these miRNAs, hepatic injury caused 
the release of the miRNAs into circulation. Specifically, 
miRNA-122 and miRNA-192 (Table 1), which are predom-
inantly expressed in the liver, increased in the plasma with 
concurrent decreases in the liver. In addition, the increases 
in both miRNAs were detected earlier than the increase in 
ALT at 1 h post-treatment. At the later time points, 3 and 
6 h after APAP, both plasma miR-122 and ALT started to 
increase, while the fold change of miR-122 is larger than of 
ALT (Fig. 4a; Bala et al. 2012). The peak values of ALT at 
different times (6, 24 and 72 h) are shown in Fig. 4a–c, and 
this is because dosing and genetic differences change the 
toxicokinetics in the nonclinical and human studies. Table 1 
shows that several independent groups soon provided con-
firmatory and additional data supporting that miR-122 and 
miR-192 were elevated in APAP-induced hepatotoxicity. In 
APAP-overdosed mice (Table 1), another study confirmed 
the significant increase in miR-122 plasma and discov-
ered three new potential biomarker miRNAs: miR-155, 
miR-146a and miR-125b (Bala et  al. 2012). Moreover, 
this group identified 40 miRNAs in the plasma that were 
dysregulated among lethally and sub-lethally dosed mice 
(Ward et  al. 2014). Significant alterations at 12 h with an 
APAP lethal dose were observed for ALT levels and 12 

miRNAs: 574-5p, 135a*, 466 g, 1196, 466f-3p, 877, 342-
3p, 195, 375, 29c, 148a and 652.

Similarly, the significant increase in miR-122 has 
been reported in rats (Starckx et  al. 2013; Su et  al. 2012; 
Yamaura et  al. 2012), whose susceptibility to APAP-
induced hepatotoxicity is less than that of the mouse, but 
is still a commonly used animal model. Using the miRNA 
qPCR array-based profiling approach, Su et  al. (2012) 
found that serum miR-122, miR-192 and miR-193 levels 
were increased at 3 h while biochemical parameters [e.g., 
ALT and aspartate aminotransferase (AST)] remained at 
baseline in APAP-overdosed rats. However, both ALT and 

Fig. 4   Plots showing time response of serum miR-122 versus ALT in 
a mice dosed with 500  mg/kg (approximation of Fig.  3b, c in Bala 
et al. 2012), b rats dosed with 1250 mg/kg APAP (Yang 2012a; unre-
ported data) and c human APAP overdose patient (Yang et al. 2015). 
The miR-122 and ALT data shown at 0  h represent mean values of 
non-APAP-treated mice (a) or rats (b). Time 0 for figure c reflects 
mean values of parameters for non-APAP-treated children
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miR-122 showed peak elevation between 12 and 24 h after 
APAP overdose, and they returned to baseline at 3  days 
post-treatment in a similar pattern (Fig.  4b). In summary, 
the level of nonclinical circulating miR-122 appears to rise 
earlier than of ALT and then follow the response of the 
translational biomarker ALT.

Urine as a biofluid to evaluate miRNA biomarkers in 
APAP overdose situations has not been extensively uti-
lized or directly compared to serum or plasma. Yang 
et al. (2012a) explored urinary miRNAs profiles for drug-
induced liver injury in rat models. It was found that urinary 
miRNA profiles were altered in rats after administration 
of a toxic dose of APAP. The levels of 10 common urinary 
miRNAs (miR-185, miR-296, miR-20b-3p, miR-484, miR-
330*, miR-434, miR-433, miR-34C*, miR-291a-5p and 
miR-664) were increased in both APAP-treated and carbon 
tetrachloride-treated rats (Yang et al. 2012a).

The above nonclinical studies laid the foundation to test 
miR-122 and miR-192 in clinical samples as stable diag-
nostic biomarkers in APAP overdose in humans (Table 1). 
Using the qPCR technique, Starkey Lewis and coworkers 
(Starkey Lewis et  al. 2011) examined miR-122 and miR-
192 in APAP-induced acute liver injury patients (n =  53) 
and showed that both miRNAs were elevated (Table  1). 
Both miRNAs are liver specific, and miR-122 is a marker 
of hepatocyte-specific differentiation and lipid metabolism. 
Starkey Lewis et  al. (2011) reported that miR-122 corre-
lated with ALT levels in the APAP cohort and had a much 
faster return to baseline than ALT. A recent study looked 
at circulating miRNAs by miRNA PCR array in patients 
with APAP-induced hepatotoxicity (n = 37) and ischemic 
hepatitis (n = 7) (Ward et al. 2014). APAP patients showed 
dramatic increase in some miRNAs (miR-122-5p, miR-
27b-3p, miR-21-5p, miR-125b-5p, miR-194-5p, miR-
193a-5p and miR-1290) before the ALT elevations above 
1000 IU/L. A set of 11 miRNAs was shown to discriminate 
patients with APAP hepatotoxicity receiving the antidote 
NAC, from patients with ischemic hepatitis. A majority 
of the elevated miRNAs showed recovery with NAC treat-
ment, but miR-1290 remained elevated for at least 2 days. 
This study was able to corroborate the previously reported 
elevations of miR-122, but failed to replicate the earlier 
report for miR-192 (Starkey Lewis et al. 2011). In addition, 
the validity of miR-122 as an APAP injury biomarker was 
supported in two recent investigations (Antoine et al. 2013; 
Thulin et al. 2014).

Recent developments in high-throughput NGS have ena-
bled miRNA profiling in biofluids. A recent study using the 
NGS platform (Krauskopf et  al. 2015) on a small number 
of samples (n = 6) from APAP-overdosed patients showed 
that 36 miRNAs were significantly enriched in the serum 
and returned to the baseline levels with NAC treatment. Sig-
nificantly higher levels of miR-122, miR-483, and miR-23a 

were observed in APAP overdose subjects. This study was 
able to substantiate the findings of Starkey Lewis et  al. 
(2011) for miR-122 and miR-192 in APAP overdose sam-
ples. The authors compared the miRNA data to a publicly 
available small RNA sequencing dataset across eight tissues 
(Faghihi et  al. 2010) and found 12 miRNAs responsive to 
APAP overdose enriched in different tissues. Five miRNAs 
were enriched in liver: hsa-miR-122-5p, hsa-miR-192-5p, 
hsa-miR-483-5p, hsa-miR-194-5p and hsa-miR-210-3p, 
whereas other enriched tissue-specific miRNA were as 
follows: muscle-enriched miRNAs hsa-miR-193 b-5p, 
hsa-miR-378c and hsa-miR-378a-3p, frontal orbital gyrus-
enriched miRNAs miR-125b-3p and hsa-miR-125b-5p, and 
pancreas-enriched miRNAs hsa-miR-148a-3p and hsa-miR-
130b-3p. This enrichment analysis showed that besides liver 
injury, APAP also has effects on other organs such as mus-
cle, pancreas and brain. A recent clinical study (Yang et al. 
2015) using small RNA sequencing analysis identified eight 
serum miRNAs (miR-122, miR-375, miR-423-5p, miR-
30d-5p, miR-125b-5p, miR-4732-5p, miR-204-5p and miR-
574-3p) which were increased more than twofold in APAP 
overdose samples (n = 8). Interestingly, the time-dependent 
change in serum miR-122 is similar to the ALT change 
(Fig.  4c) and shows in this APAP overdose patient the 
elevated serum miR-122 levels returned to baseline before 
serum ALT. Yang et  al. (2015) also made use of the urine 
as biofluid and detected in APAP overdose samples sig-
nificantly increased levels of miR-375, miR-940, miR-9-3p 
and miR-302a. These different miRNA expressions sug-
gest specific functional significance in fine-tuning the target 
mRNA levels at various stages of the APAP toxicity. When 
using these three high-throughput platforms (Krauskopf 
et  al. 2015; Ward et  al. 2014; Yang et  al. 2015), the com-
mon miRNAs in APAP overdose patients were miR-122 and 
miR-125b-5p. Because of very short complementarity to 
the target mRNA, individual miRNAs can repress large sets 
of mRNAs (Giraldez et al. 2005; Lim et al. 2005) primar-
ily through interaction with 3′-UTR. For example, studies 
with miR-122 has also shown it as key regulator of multiple 
pathways involved in sepsis and coagulation (Wang et  al. 
2014), inflammatory diseases (Roderburg et al. 2015), hepa-
tocarcinogenesis (Hsu et al. 2012; Tsai et al. 2012) and lipid 
metabolism (Esau et al. 2006). Our review of the miR-122 
in APAP overdose clinical studies highlights the challenges 
inherent in comparing miRNA abundance in different clini-
cal samples. The relationship between miRNA-122 eleva-
tion and mechanisms of APAP toxicity remains unclear. 
Thus, future studies are needed in this area, as well as bet-
ter characterization of kinetics and elucidation of target 
mRNAs.

In summary, recent studies have shown the presence of 
miRNAs in biofluids and their potential as biomarkers of 
organ injury.
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Proteomics APAP injury biomarkers

Proteomics and toxicoproteomics methods have been used 
to discover biomarkers of acetaminophen liver injury. The 
first studies focused on biomarkers in liver tissue, but recent 
studies have begun looking for injury biomarkers in urine 
and blood samples. The field of proteomics has benefitted 
from rapid increases in analytical and computational capa-
bilities since the field was initiated in 1992 and, at the time, 
relied primarily on large 2D gels to separate the proteins. 
The different analytical methods currently used in clinical 
proteomics have been detailed (Boja et  al. 2010; Frantzi 
et  al. 2014). Generally, there is an untargeted discovery 
process involving control and dosed samples from nonclin-
ical or clinical studies (Amacher 2010). Since it is hard to 
obtain clinical samples in overdose cases that control the 
many genetic and environmental variables that can affect 
protein expression, it is often easier to discover proteom-
ics biomarkers in nonclinical toxicity studies and then set 
up clinical sample collection strategies to further evaluate 
the potential toxicity biomarkers. Another factor for prot-
eomics is that it is of relatively low throughput compared 
to other omics technologies in all three phases of discovery, 
verification and validation and, therefore, fewer biomark-
ers have been discovered and validated in proteomics. The 
two major untargeted approaches in proteomics discovery 
are gel-based and gel-free methods to identify differentially 
expressed proteins in biological samples (Boja et al. 2010). 
There are many mass spectrometry-based proteomics 
analytical methods (Boja et  al. 2010) that include matrix-
assisted laser desorption/ionization time of flight (MALDI-
Tof), surface-enhanced laser desorption/ionization time of 
flight (SELDI–Tof) and electrospray ionization liquid chro-
matography tandem mass spectrometry (ESI LC–MS/MS). 
There are several chemical labeling methods including 
isotope-coded affinity tag (ICAT), isobaric tags for relative 
and absolute quantitation (iTRAQ), mass differential tags 
for relative and absolute quantification (mTRAQ) and sta-
ble isotope labeling by amino acids in cell culture (SILAC) 
to aid the analytical process. Other proteomics analyti-
cal platforms include flow cytometry and enzyme-linked 
immunosorbent assay (ELISA). For quicker results, protein 
arrays such as forward-phase protein array (FPPA) using 
antibodies, reverse-phase protein array (RPPA) that meas-
ures only protein with one antibody but multiple samples 
and nucleic acid-programmable protein array (NAPPA) are 
used. There is a big push for quantitative proteomics meth-
ods that will make it easier to make interlaboratory com-
parisons (Abdallah et al. 2012; Gao et al. 2009). The iden-
tified proteins are then statistically analyzed for statistical 
significance and used in pattern recognition algorithms to 
identify a pattern of proteins associated with the disease or 
drug effect. Often, the proteins with the highest potential to 

be biomarkers are then verified using other analytical tech-
niques such as multiple reaction monitoring (MRM) using 
a triple quadrupole (TQ) MS, western blots or ELISAs. 
Additional studies are needed to validate the biomarkers 
in a clinical setting; this is often done by ELISA or MRM 
(Marx 2013).

Table 2 lists 11 potential protein translational biomark-
ers of acetaminophen-induced liver injury. Three of the bio-
markers were found in urine while the remaining 8 were 
found in serum or plasma. The table lists the biomarkers 
followed by four columns with relevant nonclinical infor-
mation about the discovery process, and the last three col-
umns have relevant information about the current status 
of clinical validation of the potential protein biomarker of 
liver injury. The first three protein biomarkers in Table  2 
were identified in an APAP study with male FVB mice 
using MALDI-Tof MS open profiling and MALDI linear  
ion trap MS for peptide and protein identification (van 
Swelm et al. 2012). Analysis of the MALDI data resulted 
in 12 differentially expressed proteins that correlated with 
liver injury as measured by ALT. Three of the proteins, 
superoxide dismutase 1 (SOD1), calmodulin (CaM) and 
carbonic anhydrase (CA3), were then analytically verified 
using western blots. CaM was reported to increase before 
ALT was increased in blood. Evaluation of these three bio-
markers was performed in urine samples from 24 control 
patients, one severe APAP overdose patient and 10 addi-
tional patients suspected of drug-induced acute liver injury 
(ALI) where eight of the 10 ALI patients were linked to 
APAP ingestion. Western blot analysis of SOD1 and CA3 
showed that these proteins were present in APAP over-
dose patients and were not observed in the pooled control 
sample. ELISA analysis of CaM showed that it increased 
in samples from subjects with liver injury and correlated 
with increasing APAP concentration; CaM also increased 
prior to ALT increase. SOD1 has been previously reported 
as a biomarker of liver injury (Agarwal et al. 2012; Smyth 
et al. 2008). CaM plays a role in maintaining Ca2+ balance 
which can be disrupted when NAPQI binds to mitochon-
drial proteins (Ray et  al. 1990). High levels of Ca2+ are 
brought to the nucleus by CaM where it will cause DNA 
fragmentation and lead to necrosis (Nicotera et  al. 1989). 
Limitations of these studies are that they were observed in 
urine where most urinary proteins are from the kidney, the 
multitude of dilution factors that can affect the concentra-
tion of urinary markers and only one time point (24 h) was 
evaluated. Therefore, additional studies are needed to fur-
ther evaluate the potential of urinary SOD1, CA3 and CaM 
as sensitive and specific markers of liver injury biomarkers 
due to acetaminophen and other causes of liver injury.

Keratins are responsible for cell structure and integ-
rity. Full-length keratin-18 (FL-K18) and caspase-cleaved 
keratin-18 (cK18) are necrosis and apoptosis markers, 
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respectively (Caulín et  al. 1997; Schutte et  al. 2004), that 
are released into the blood. The high-mobility group box-1 
(HMGB1) protein is a pro-inflammatory nuclear protein 
that is passively released and targets Toll-like receptors 
(TLR) to alert the immune system of dying cells (Lotze and 
Tracey 2005; Scaffidi et al. 2002). The analysis of HMGB1 
and K18 by gel LC/MS/MS in a nonclinical study in mice 
showed that they both increased significantly at early time 
points after APAP exposure (Antoine et al. 2009). A clini-
cal study of HMGB1 and K18 measured by ELISA and 
immunoblot (Antoine et al. 2012) found that FL-K18 and 
cK18 were highly correlated with ALT for up to 24 h after 

APAP exposure. ROC scores of 0.90 for FL-K18, 0.84 for 
cK18 and 0.87 for HMGB1 were all higher than the ROC 
score for ALT (0.80) in the nonclinical study (Antoine et al. 
2009). The clinical study showed that K18 and HMGB1 are 
translational blood protein markers of necrosis and immune 
response in acetaminophen overdose patients (Antoine 
et al. 2012). Additional studies are needed to further deter-
mine the limitations of the translational protein markers in 
other conditions such as liver disease during APAP-induced 
liver injury.

Argininosuccinate synthetase (AS) represents a poten-
tial translational protein liver injury biomarker that was 

Table 2   Translational protein biomarkers of acetaminophen liver injury

a  78 APAP high ALT and six APAP normal ALT
b  13 APAP high ALT and nine APAP normal ALT
c  (van Swelm et al. 2012)
d  (Antoine et al. 2009)
e  (Antoine et al. 2012)
f  (Svetlov et al. 2006)
g  (McGill et al. 2014a, b)
h  (Hu et al. 2014)

Protein  
biomarker

Nonclinical Clinical

Gender and 
species

Biofluid Discovery method Analytical verifica-
tion method
footnote for refer-
ence

# of control; 
# of APAP 
patients

Biofluid Analytical Vali-
dation method
footnote for 
reference

Superoxide dismutase 1 
(SOD1)

Male FVB mice Urine MALDI-Tof MS Western blotc 24; 11 Urine Western blotc

Calmodulin (CaM) Male FVB mice Urine MALDI-Tof MS Western blotc 24; 11 Urine Western blot and 
ELISAc

Carbonic anhydrase 3 
(CA3)

Male FVB mice Urine MALDI-Tof MS Western blotc 24; 11 Urine Western blotc

Keratin-18 (FL-K18)  
and (cK18)

Male CD-1 mice Serum Gel LC MS/MSd 31; 84a Serum  
or Plasma

LC MS/MS and 
ELISAe

High-mobility group 
box-1 (HMGB1)

Male CD-1 mice Serum Gel LCMS/MSf 31; 84a Serum  
or Plasma

LC MS/MS and 
ELISAe

Argininosuccinate  
synthetase (AS)

Male C57 Bl6 
mice

Plasma Gel LC MS/MSf ELISAg 6; 21b Plasma ELISAg

Betaine–homocysteine 
S-methyltrans (BHMT)

Male C57 Bl6 
mice

Plasma Antibody and/or 
iTRAQ LC–MS/
MS

Western bloth 4; 4 Plasma Western bloth

Fumarylacetoacetate 
hydrolase (FAH)

Male C57 Bl6 
mice

Plasma Antibody and/or 
iTRAQ LC–MS/
MS

Western bloth 4; 4 Plasma Western bloth

Fructose-1,6-bisphos-
phatase 1 (FBPI)

Male C57 Bl6 
mice

Plasma Antibody and/or 
iTRAQ LC–MS/
MS

Western bloth 4; 4 Plasma Western bloth

Dihydropyrimidinase 
(DPYS)

Male C57 Bl6 
mice

Plasma Antibody and/or 
iTRAQ LC–MS/
MS

Western bloth 4; 4 Plasma Western bloth

Hydroxyphenyl-pyruvate 
dioxygenase (HPD)

Male C57 Bl6 
mice

Plasma Antibody and/or 
iTRAQ LC–MS/
MS

Western bloth 4; 4 Plasma Western bloth
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initially observed by Svetlov et  al. (2006) as a biomarker 
of liver perfusion injury and then further evaluated in non-
clinical and clinical APAP overdose studies by McGill 
et  al. (2014a). AS catalyzes the formation of argininosuc-
cinate from citrulline and aspartate and is degraded in 
the liver during liver injury and released into the circula-
tion. AS was identified using immunoblotting and cation–
anion exchange chromatography/reversed-phase liquid 
chromatography–tandem mass spectrometry (Svetlov 
et  al. 2006). In mice, AS increased fivefold at 2  h after 
300 mg/kg APAP exposure, prior to the elevation of ALT 
at 6 h. AS was then evaluated by ELISA in APAP overdose 
patients by ELISA (McGill et  al. 2014a). Thirteen APAP 
overdose patients with liver function tests [ALT  >  1000 
U/L and evidence of coagulopathy as indicated by a pro-
thrombin time (PT  >  18  s)] were classified as “abnormal 
LT” while nine APAP overdose patients who had liver test 
(peak ALT  <  100 U/L and PT  <  18  s) were classified as 
“normal LT.” There were six healthy control patients in 
the study. There was a 5000-fold increase in AS versus a 
156-fold increase in ALT in humans with abnormal LT. The 
increase in humans was a bigger response than the increase 
observed in mice. AS increased more rapidly than ALT and 
decreased more rapidly than ALT in both mice and humans, 
making it a potential translational biomarker of liver injury. 
More studies are needed to determine specificity of AS and 
how much earlier AS increases before ALT in nonclinical 
and clinical studies.

The last five potential translational protein biomarkers 
of liver injury listed in Table 2 were recently reported (Hu 
et  al. 2014) using multiple proteomics technologies. This 
study used label-free antibody array surface plasmon reso-
nance technology, targeted iTRAQ MS and quantitative 
western blots to discover 20 potential protein biomarkers 
of liver injury in a nonclinical study of APAP-dosed mice 
using two APAP doses and seven time points. Membrane-
bound catechol-O-methyltransferase (MB-COMT) and 
retinol binding protein 4 (RBP4) were two protein liver 
injury markers that were altered before ALT changes were 
observed in the nonclinical study. Quantitative western 
blots were used to monitor the potential protein liver injury 
biomarkers in a small clinical population of four control 
patients and four APAP overdose patients. Five of the 20 
proteins discovered in the nonclinical study were observed 
by western blots in the clinical study. The five proteins 
observed in the clinical study were betaine–homocyst-
eine S-methyltransferase 1 (BHMT), fumarylacetoacetate 
hydrolase (FAH), fructose-1,6-bisphosphatase 1 (FBP1), 
dihydropyrimidinase (DPYS) and 4-hydroxyphenylpyru-
vate dioxygenase (HPD). BHMT is involved in oxidative 
stress, FBPI is involved in glycolysis, while FAH and HPD 
are involved in tyrosine catabolism pathway, and these are 
known to be involved in APAP liver injury. It is noteworthy 

that all five proteins observed in the clinical study are 
located in the cytoplasm and these proteins may be more 
abundant than proteins at other cellular locations that 
were not observed in the clinical study. Also, in this study 
BHMT, FAH, FBP1 and HPD were shown to be primarily 
liver-specific proteins while DPYS was liver enriched and 
observed in liver and kidney. BHMT, FAH, FBP1, DPYS 
and HPD need to be evaluated in larger clinical APAP 
overdose and acute liver injury studies using other protein 
detection methods besides western blots to better determine 
their sensitivity and specificity before they can be validated 
as translational and mechanistic biomarkers of liver injury.

Metabolomics for evaluation of APAP injury 
biomarkers

The liver is the major organ for the synthesis of endog-
enous compounds and for the metabolism of exogenous 
compounds. Therefore, it is reasonable to hypothesize that 
the introduction of exogenous compounds to the biosystem 
would alter the endogenous metabolic profile in the liver 
and in biofluids and that these changes could occur prior 
to changes in standard clinical parameters such as ALT 
and precede overt liver injury (O’Connell and Watkins 
2010). Changes in metabolite biomarkers are expected to 
be observed earlier than those liver injury protein biomark-
ers because proteins/enzymes are only released from dead 
cells after injury occurs (McGill et al. 2012). From APAP 
nonclinical studies, metabolic biomarkers including those 
related to oxidative stress, mitochondrial function and liver 
function have been reported with these changes occurring 
at early time points after dosing and prior to overt liver 
injury (Bhushan et al. 2013; Chen et al. 2008, 2009; Coen 
et al. 2003; Sun et al. 2008, 2009). Among these proposed 
metabolite biomarkers, few have been further tested in 
clinical studies (Table 3). In this section, the focus will be 
on acylcarnitines, bile acids and pyroglutamic acid, which 
have been evaluated in both rodents and humans as poten-
tial markers related to APAP-induced liver injury.

Acylcarnitines as biomarkers of APAP‑induced liver 
injury

Acylcarnitines are intermediate forms of fatty acids that 
can be transported into the mitochondria for fatty acid 
β-oxidation. Fatty acid β-oxidation involves three reac-
tions: (1) activation of fatty acids to long-chain fatty acyl-
CoA catalyzed by acyl-CoA synthetase in the cytosol; (2) 
transport into mitochondria after conversion of the fatty 
acyl-CoA to acylcarnitines catalyzed by carnitine acyl-
transferase I in the inner mitochondria membrane; and (3) 
degradation to acetyl CoA catalyzed by enzymes in the 
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mitochondrial matrix. APAP has been reported to cause 
mitochondrial dysfunction (Kon et  al. 2004) and disrup-
tion of energy metabolism (Chen et  al. 2009; Coen et  al. 
2003) with resulting accumulation of blood levels of acyl-
carnitines. The mitochondrial damage will result in acyl-
carnitine accumulation in blood. Chen et al. (2009) utilized 
LC/MS-based metabolomics to profile serum samples from 
control, APAP-treated wild-type and Cyp2e-1-null mice. 
They reported accumulations of long-chain acylcarnitines, 
triglycerides and free fatty acids in the serum of APAP-
treated wild-type mice (compared with control) after APAP 
treatment, consistent with disruption of fatty acid oxida-
tion. Palmitoyl carnitine was also increased in the wild-type 
mice and slightly lower in the Cyp2e1-null mice. Recently, 
Bhattacharyya et al. (2013) found increased levels of acyl 
carnitines in sera, which is consistent with disruption of 
fatty acid oxidation. Palmitoyl carnitine was also increased 
in the wild-type mice and slightly lower in the Cyp2e1-
null mice. Figure 5a shows the concentration of palmitoyl 
carnitine and level of ALT at multiple time points after 
exposure of mice to APAP. Similar to the rat study, pal-
mitoyl carnitine was at a maximum prior to the maximum 
of ALT, indicating that palmitoyl may represent an early 
marker of APAP-induced hepatotoxicity. Similar results 
were observed in a previous study (Sun et al. 2013) listed 
in Table  3. In this study, both open metabolomics profil-
ing and broad metabolic profiling were employed to evalu-
ate metabolome changes in serum from rats dosed with 
100 mg APAP/kg body weight or 1250 mg APAP/kg body 
weight. Palmitoyl carnitine and fatty acid levels (including 
palmitic acid, palmitoleic acid, stearic acid, oleic acid, ara-
chidonic acid and docosahexaenoic acid) were increased at 
6 h post-dosing with 1250 mg APAP/kg body weight (Sun 
et al. 2013). Figure 5b shows the plots of the ratio of palmi-
toyl carnitine in APAP-treated rats to control and the corre-
sponding ALT levels over four time points. The plots indi-
cate that palmitoyl carnitine is at a maximum value prior to 
the maximum of ALT.

To further evaluate the use of acylcarnitines as clini-
cally relevant markers of APAP-induced hepatotoxicity, 
several studies have been initiated to measure acylcarniti-
nes levels in human sera (Bhattacharyya et al. 2014b; Fan-
nin et al. 2010; McGill et al. 2014b). In one clinical study 
(Bhattacharyya et  al. 2014b), the levels of long-chain 
acylcarnitines (palmitoyl, myristoyl and oleoyl carnitines) 
were measured in serum collected from three groups of 
children as follows: children receiving therapeutic doses of 
APAP (n = 187), children hospitalized for an APAP over-
dose (n = 62) and children without APAP exposure in the 
preceding 14 days (controls; n = 23). Significant increases 
in long-chain acylcarnitines (palmitoyl, myristoyl and ole-
oyl carnitine) were observed in subjects with APAP expo-
sure compared with control, but no differences between 

the therapeutic and overdose group were noted. Figure 5c 
shows the concentration plots of palmitoyl carnitine and 
ALT levels over multiple time points in a single patient. 
Palmitoyl carnitine shows the same trend noted in the 
rodent studies with palmitoyl carnitine elevated before the 
maximum of ALT is achieved. The mouse, rat and human 
data indicate the potential of palmitoyl carnitine to serve 
as a translational biomarker of APAP-induced hepatotox-
icity. Significant increases in serum long-chain acylcar-
nitines were observed in overdose subjects who received 

Fig. 5   Plots showing time response of blood palmitoyl carnitine ver-
sus ALT in a mice dosed with 200 mg/kg (Bhattacharyya et al. 2013), 
b rats dosed with 1250 mg/kg APAP (Sun et al. 2013) and c human 
APAP overdose patient (Bhattacharyya et  al. 2014a). Palmitoyl and 
ALT data at 0 h are mean values of non-APAP-treated mice or rats. 
Time 0 for the patient reflects mean values for non-APAP-treated 
children from the clinical study
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delayed (>24 h after overdose) treatment with the antidote 
NAC. The lack of elevation of serum levels of acylcarniti-
nes in some patients with APAP overdose was likely due 
to early treatment with the antidote NAC. McGill et  al. 
(2014) provided further evidence that the serum acylcar-
nitines levels (Table 3) were influenced by antidote treat-
ment in patients. This report also examined acylcarnitines 
levels in APAP-treated mice that received NAC. Elevations 
of acylcarnitines were blunted in mice that received NAC 
1.5  h after APAP, compared to mice that did not receive 
NAC. No significant increases in plasma acylcarnitine lev-
els were observed in patients with APAP overdose after 
NAC treatment. Therefore, the acylcarnitines as biomark-
ers alone are not sufficient to predict APAP-induced hepa-
totoxicity, but can serve as complimentary biomarkers in 
combination with the current clinical markers. They may 
also serve as indicators for mitochondrial dysfunction if 
NAC or another antidote is not provided to the patient after 
overdose.

Bile acids as biomarkers of APAP‑induced liver injury

Bile acids (BAs) are important molecules for many pro-
cesses in the liver and gastrointestinal tract including 
maintenance of energy homeostasis, activation of nuclear 
receptors and cell signaling pathways, cell proliferation and 
inflammation (Hylemon et  al. 2009; Trauner et  al. 2010). 
While the BAs have many important roles, they can also 
cause apoptosis, necrosis and oxidative stress (Allen et al. 
2011; Copple et  al. 2010; Fang et  al. 2004; Gupta et  al. 
2004; Jaeschke et al. 2002). They have also been shown to 
be involved in the stimulation of liver regeneration (Borude 
et al. 2012; Chen et al. 2011; Meng et al. 2010). The pri-
mary bile acids are synthesized in the hepatocytes. Circula-
tion of the BAs is highly dependent on transporting from 
the hepatocytes into biliary tracts, a process that is highly 
susceptible to perturbation from even minor liver damage 
indicating that they may be sensitive biomarkers of liver 
injury (Yamazaki et  al. 2013). Total BAs were first noted 
to be altered in APAP toxicity in the clinical setting in the 
1970s and were noted to be more sensitive than the clini-
cal measures at that time (Hamlyn et al. 1977; James et al. 
1975; Kaplowitz et al. 1973; Korman et al. 1974). Gener-
ally, the clinical measurement of BAs is of total BAs, which 
represent over 20 BAs in most species (Luo et al. 2014). It 
has been proposed that the measurement of individual BAs 
may be more predictive of the type of liver injury (Alnouti 
et al. 2008; Bentayeb et al. 2008; Ducroq et al. 2010; Tur-
ley and Dietschy 1978). Recent nonclinical and clinical 
studies indicate that the bile acids may play a critical role 
in liver injury and regeneration in response to APAP and 
may prove useful as biomarkers of these events in a clinical 
setting.

In a study designed to evaluate the role of bile acids in 
APAP overdose, C57BL/6 mice were divided into three 
groups and fed different diets for 1  week, after which 
time the mice received a single dose of APAP (Bhushan 
et  al. 2013). Mice were killed at multiple time points up 
to 24  h after APAP treatment. An enzymatic method was 
used to evaluate total bile acids in the serum and liver tis-
sue while a targeted UPLC/MS method was also employed 
to evaluate select hepatic bile acids. The results indicated 
that in mice on the diet supplemented with cholestyramine, 
which depletes bile acids, APAP toxicity was exacerbated, 
whereas those on a diet supplemented with cholic acid had 
a more rapid recovery from APAP. While this study did 
not seek to identify biomarkers related to injury progres-
sion and recovery, it is important in that it demonstrated 
the critical role of bile acids in APAP-induced liver injury. 
A UPLC/MS-based metabolomics study was employed 
to evaluate urinary biomarkers of hepatotoxicity in rats 
dosed with known hepatotoxins including APAP (Kumar 
et  al. 2012). APAP was administered for five consecutive 
days, and urine collected at 24 and 48 h after the last dose. 
Compared to the control mice, urinary levels of cholic acid, 
lithocholic acid and α-muricholic acid were significantly 
elevated in mice treated with APAP, while ursodeoxycholic 
acid and β-muricholic acid were significantly decreased. 
Lithocholic acid has previously been implicated in liver 
injury since the hydrophobic bile acids are inherently cyto-
toxic (Deo and Bandiera 2008). In a study of drug-induced 
perturbations in bile acid homeostasis, Yamazaki et  al. 
(2013) evaluated 13 chemical compounds including APAP. 
Plasma, urine and liver tissues were profiled using untar-
geted MS methods, which detected both primary and sec-
ondary bile acids. Eight BAs were evaluated in urine, 15 
in liver tissue extracts, and 17 in plasma samples. Similar 
changes were noted in the liver tissue extracts and plasma 
with an increase in the glycine conjugated BAs [glycocholic 
acid (GCA) and glycochenodeoxycholic acid (GDCA)] and 
cholic acid (CA) after APAP dosing. CA was also signifi-
cantly increased in the urine samples and the increase was 
noted prior to visible histological changes and increases in 
ALT. Taurine-conjugated BAs were generally decreased 
after APAP treatment; the taurocholic acid (TCA) concen-
tration in the high-dose APAP group on day 2 was elevated 
although not significantly. The decrease in TCA and the 
taurine conjugates could be related to decreases in taurine 
in the liver due to altered glutathione metabolism by APAP 
treatment. A systems biology study of APAP-induced hepa-
totoxicity in rats evaluated numerous serum biomarkers 
including bile acids by LC/QTof-MS and LC/TQ-MS (Sun 
et al. 2013). In general, the bile acids were decreased com-
pared to control 6 h after dosing and then increased through 
24–72 h, after which they tended to return to control values. 
CA, DCA and GCA were significantly elevated at 24 h after 
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dosing in serum. Both TCA and TDCA had strong Pear-
son’s correlations to both log2ALT and hepatic necrosis 
scores. The authors hypothesized that a panel of bile acids 
including the plasma glycine and taurine conjugates and 
urinary CA may be able to detect drug-induced liver injury 
in rats. Select BAs, CA, GCA and taurocholic acid (TCA) 
were evaluated in the serum from rats dosed with various 
hepatotoxicants, including APAP and nonhepatotoxicants 
(Luo et  al. 2014). The individual BAs were chosen based 
upon prior reports of CA, GCA and TCA as potential bio-
markers of liver injury in clinical and nonclinical stud-
ies (Tribe et al. 2010; Trottier et al. 2011; Yamazaki et al. 
2013). Rats were given a single dose of 1000  mg APAP/
kg body weight; the dose was chosen to induce liver injury. 
Blood was collected at necropsy and processed to serum, 
which was analyzed using a LC/MS/MS method. APAP 
treatment resulted in significantly increased total serum 
BAs, CA, TCA and GCA. Yamazaki et al. (2013) similarly 
reported elevated CA and GCA as noted above. In con-
trast, the levels of TCA reported by Yamazaki et al. (2013) 
were generally decreased relative to control except on day 
2 in the high-dose group. Since the current study collected 
serum on day 1, this may indicate that the increase in TCA 
occurs early and then cysteine is utilized for glutathione 
synthesis rather than for taurine biosynthesis, which results 
in decreased concentrations of the taurine conjugates. The 
serum from rats treated with APAP, which causes hepato-
cellular damage, showed the largest increase in CA, there-
fore leading the authors to hypothesize that a large increase 
in CA may be a potential marker for hepatocyte damage. 
Marked increases in TCA and GCA, conversely, may be 
markers of biliary injury. This study indicated the potential 
for total serum BA levels along with patterns of individ-
ual BAs is related to various types of liver injury. Table 3 
reports seven BAs including CA, DCA, GCDC, GDCA, 
GCA, TDCA and TCA identified in the urine and blood of 
rats using MS methods (Kumar et al. 2012; Sun et al. 2013; 
Yamazaki et al. 2013) and further evaluated in clinical stud-
ies as described below.

Several clinical studies of the effects of APAP on total 
BA levels and individual BAs have also been reported. 
Table  3 reports the translation bile acid biomarkers of 
APAP-induced hepatotoxicity including the number of 
human subjects, biofluid and method validation method. 
James et  al. (1975) noted that in 51 of 54 patients over-
dosed with APAP, the total serum BAs were elevated and 
the BAs appeared to be more sensitive to mild liver dam-
age than the serum transaminase levels. A recent study 
employed a UPLC/MS method to evaluate the serum and 
plasma bile acids in patients hospitalized following APAP 
overdose (Woolbright et al. 2014). Total plasma bile acids 
were found to peak around day 1 after hospitalization and 
decreased over 6  days, but remained elevated compared 

to the control group. Six bile acids were evaluated in the 
plasma samples and followed the same trend noted for 
the total BAs, peaking on day 1 and subsequently declin-
ing although staying elevated compared with control. This 
suggested that these BAs could be predictive of the course 
of APAP-induced liver injury. GCA and TCA were meas-
ured as part of the panel of six BAs, and the results were 
consistent with the nonclinical data showing significant 
increases in the concentrations of these metabolites in the 
APAP patients compared to the control patients. The same 
bile acids measured in plasma were then measured in the 
serum of a more select cohort of the patients: patients with 
advanced drug-induced liver failure. Included in this group 
were survivors and nonsurvivors. Receiver operating char-
acteristic (ROC) analysis was used to evaluate the ability 
of the individual bile acids to predict outcome. GDCA was 
significantly higher in the serum of nonsurvivors, and ROC 
analysis indicated that GDCA on the day of admission was 
somewhat predictive of death (area under the curve (AUC) 
of 0.70). ALT, on the other hand, was not significantly dif-
ferent between the two groups and did not predict severity 
of outcome after overdose. The authors also found that the 
glycine-amidated conjugates of the BAs and deoxycholic 
acid (DCA) increased more than the taurine conjugates, 
resulting in a more hydrophobic pool of BAs, which as 
noted above are more cytotoxic (Deo and Bandiera 2008). 
Bile acids have also been evaluated in serum samples from 
children and adolescents to discover APAP-induced hepa-
totoxicity biomarkers (Bhattacharyya et  al. 2014a). Three 
subgroups were evaluated: a therapeutic APAP dose group, 
a control group and an APAP overdose group. A UPLC/
TQ-MS method was employed for targeted analysis of nine 
serum BAs. Significant differences were found for six of 
the nine BAs measured in the APAP overdose group com-
pared with control, while four of nine were significantly 
altered in the therapeutic dose group compared with con-
trol. Correlation analysis was performed to compare the 
BAs to the peak APAP protein adducts. Of the BAs meas-
ured, the highest correlation was found for GDCA, which 
was noted above to be the most predictive of outcome in 
the study by Woolbright et  al. (2014). Both the therapeu-
tic group and overdose group had significant elevations 
in GDCA compared to the control group. GDCA levels 
were also reported to be higher in those patients who had 
delayed treatment with NAC. Strong correlations were also 
noted for taurochenodeoxycholic acid (TDCA) and glyc-
ochenodeoxycholic acid (GCDC). TDCA was significantly 
elevated in both APAP groups, while GCDC was only sig-
nificantly elevated in the overdose group. GCDC in the 
therapeutic group was elevated relative to control although 
not significantly. The results indicated that measurement of 
the total BA levels, GDCA, TDCA and GCDC, may serve 
as potential clinical markers of APAP hepatotoxicity.
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Pyroglutamic acid as biomarker of APAP‑induced liver 
injury

Acute APAP hepatotoxicity has been reported as a com-
mon cause of metabolic acidosis, which sometimes occurs 
prior to liver injury (Flanagan and Mant 1986; Gray et al. 
1987). The accumulation of pyroglutamic acid was recently 
reported as a rare and uncommon reason for metabolic aci-
dosis in adults. In a previous study (Sun et al. 2013), pyro-
glutamic acid was increased at 24 h in both urine and serum 
from rats dosed with 1250  mg APAP/kg body weight. In 
1990, Pitt et  al. (1990) reported a pyroglutamic acidosis 
case which could be related to APAP use. Pitt el al. (1990) 
proposed that APAP consumption may have depleted GSH 
stores, which causes accumulation of pyroglutamic acid. 
Most recently, Duewall et  al. (2010) also reported that a 
39-year-old white woman had increased levels of pyroglu-
tamic acid in urine, which could be related to chronic APAP 
use. In 2006, Fenves et al. (2006) reported four cases with 
pyroglutamic acidosis, and research of the literature identi-
fied 18 adult patients with the same syndrome. Twenty-one 
out of the 22 patients, all of whom had markedly elevated 
levels of pyroglutamic acid documented in urine and/or 
plasma, had taken APAP (only one was acute exposure 
to APAP). Table  3 reports the evaluation of pyroglutamic 
acid in a nonclinical study of APAP-induced hepatotoxicity 
(Sun et al. 2013) and its translational nature in two clinical 
studies (Duewall et  al. 2010; Fenves et  al. 2006). Similar 
cases with small number patients have also been reported 
(Dempsey et  al. 2000; Foot et  al. 2005; Humphreys et  al. 
2005; Pitt and Hauser 1998; Tailor et  al. 2005; Yale and 
Mazza 2000). Although it is hard to ascertain the cause of 
pyroglutamic acidosis because most of the reported patients 
had multiple medical comorbidities and/or kidney dysfunc-
tion or kidney failure, all of the patients were using APAP. 
Resolution of pyroglutamic acidosis occurred after discon-
tinuation of APAP. Lactic acidosis, another organic acid 
causing metabolic acidosis, has been reported at the early 
stage of or prior to APAP-induced liver injury in patients 
overdosed with APAP (Shah et  al. 2011; Vichot and Ras-
tegar 2014; Zein et al. 2010).

Metabolomics APAP‑induced liver injury biomarkers 
summary

It is well established that translation of metabolic biomark-
ers from animal studies to humans is challenging due to 
the species difference as well as the confounding factors in 
humans including diet, age, lifestyle, overall health, drug–
drug interaction and others, all of which will influence the 
metabolome profile. Both long-chain acylcarnitines and 
BAs are sensitive to many of these other factors. Therefore, 
future research is needed to further validate acylcarnitines 

and BAs as clinical biomarkers of APAP toxicity. The non-
clinical and clinical studies reported to date indicate that 
they could be predictive of the severity of APAP-induced 
injury, especially when measured in conjunction with other 
transcriptomics and proteomics biomarkers as well as the 
standard parameters.

Final discussion and conclusions

Acetaminophen is the most widely studied hepatotoxic 
drug. As such, studies of APAP toxicity using clinical sam-
ples have the potential to generate data that will be of rel-
evance to other studies of drug-induced liver injury. The 
recent introduction (Aronson 2005) of “omic” technolo-
gies allows for exploration of miRNA, protein and metabo-
lites and represents a potentially promising approach for 
the evaluation of new biomarkers of drug toxicity and will 
refine translational systems medicine. This review was 
limited to biomarkers that have been examined to some 
extent in the clinical setting (Bailey et  al. 2012; McGill 
and Jaeschke 2014) and to biomarkers that are amenable 
to measurement within biofluids that are easy to obtain in 
humans (e.g., blood and urine). While several biomarkers 
may represent strong potential candidates as early indica-
tors of liver injury, the existing literature is limited by stud-
ies that have relatively small sample numbers and relatively 
sparse sampling strategies. Clinical toxicology studies 
are particularly challenging to conduct due to the signifi-
cant variability in the clinical characteristics of the study 
patients. For example, accurate documentation of the dose 
of APAP ingested is extremely difficult, and APAP poison-
ings may be associated with ingestions of other medica-
tions. Furthermore, most studies are limited to daily sam-
pling and thus were not designed to address rapid changes 
that may occur within the endogenous metabolome of the 
individual in response to high-dose ingestion of APAP. In 
addition, inclusion of information on treatment with NAC 
is an important component of these types of studies.

Despite the above challenges, recent publications sug-
gest that the application of omics technology to the clinical 
setting of acute APAP toxicity can generate candidate bio-
markers for further examination in future studies conducted 
with more optimized study designs. More frequent sam-
pling, particularly in the early stages of the hospitalization, 
may generate more meaningful data that can compare the 
temporal profiles of candidate biomarkers to one another. 
It is important that biomarker samples are matched to sam-
ples that provide concurrent measurement of ALT and AST 
as well. In addition, APAP cases that did not develop liver 
injury, as well as patients who are receiving APAP at thera-
peutic doses are important controls that should be included 
in future clinical studies. Inclusion of patients with 
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preexisting liver disease who are receiving low-dose APAP 
is also a comparison group for which little data exist. It is 
important to note that few studies have examined omics 
biomarkers in relationship to existing clinical criteria, such 
as coma or a constellation of clinical and laboratory find-
ings (i.e., King’s College Criteria) currently in use by clini-
cal practitioners as a prognostic indicator. Future studies 
should also consider the impact of nontoxic perturbations 
(exercise, diet, age, and other diseases and other organ tox-
icities) on biomarker performance.

The temporal response of potential translation biomark-
ers of liver injury such as acyl carnitines, miR-122 and 
proteins described in this review are dependent on toxi-
cokinetics of APAP in each species. The toxicokinetics 
of APAP can be altered by genetics, dose, diet, age, alco-
hol and other factors, and these factors make translating 
biomarkers discovered in omics nonclinical studies to the 
clinic challenging. The response of translational biomark-
ers can be compared the current “gold standard” transla-
tional biomarker ALT for better understanding the limita-
tions and potential application in clinical setting. APAP 
adducts are increased early and maintained at higher levels 
for longer times because kinetics of APAP adducts clear-
ance from the subject is very slow. The kinetics of serum 
miR-122 appears to be closely following the response of 
the translational biomarker ALT, but more work is needed 
to determine this. The increase in palmitoyl carnitine lev-
els in blood occurs before the maximum response in ALT 
and then palmitoyl carnitine usually decreases or is near 
normal during ALT maximum. Examination of transla-
tional biomarkers in clinical samples has the potential to 
elucidate mechanisms of drug toxicity that have not been 
previously identified. For example, the report of palmitoyl 
carnitine elevation as an acylcarnitine increased in APAP 
toxicity in mice led to clinical studies to measure this and 
other acylcarnitines in peripheral blood samples of APAP 
overdose subjects. The elevation of acylcarnitines provides 
some of the first data to demonstrate the clinical relevance 
of previous preclinical studies reporting a role for mito-
chondrial injury as a mechanism of APAP toxicity. Further 
examination of this and other metabolite profiles in the 
setting of chronic APAP exposures is indicated to better 
understand the potential impact of chronic drug therapy 
to disease expression and/or to alterations in endogenous 
metabolism. Finally, studies of miRNAs have the poten-
tial to provide new knowledge about drug-induced mecha-
nisms of gene regulation that may have future relevance 
for translational systems medicine. If further testing con-
tinues to support the utility of these biomarkers to iden-
tify hepatotoxicity in other drugs besides acetaminophen 
in nonclinical species and in humans, the concept of bio-
marker qualification could be pursued for regulatory utility 
(US 2010).
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