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ABSTRACT We report a draft genome sequence for Microcystis aeruginosa KLA2. The
total draft genome size is 5,213,465 bp with a GC content of 42.5%. The genome does
not have genes indicative of microcystin production but does contain genes indicative
of production of several other secondary metabolites.

Strain KLA2 of the unicellular colony- and bloom-forming cyanobacterium Microcystis
aeruginosa was isolated from the Copco Reservoir on the Klamath River, California

(41.984N, �122.325W), in July 2007. Water was spread on BG11 agar (1) with a reduced
nitrate content of 1.76 mM (BG11N�), and plates were grown under a 15-h/9-h light/dark
cycle. Picked colonies were subsequently grown in liquid BG11N�. The strain was consid-
ered a non-microcystin producer, as the mcyA gene (encoding part of the microcystin gene
cluster) did not amplify (2) and microcystin was never detected in multiple tests conducted
during the years before and after genome sequencing (enzyme-linked immunosorbent
assay [ELISA] kit; Envirologix, Portland, ME, USA).

Strain KLA2 was first purified using fluorescence-activated cell sorting (BD Influx; Beck-
ton Dickinson, USA). To prepare the culture for sequencing, cells were agitated briefly in a
bead beater in tubes without beads to break up colonies and to collapse gas vacuoles. Cells
were then filtered through a 10-�m filter to reduce aggregation. Cells (10,000 total) were
then flow-sorted to nuclease-free water and frozen. The sorted cells directly underwent
whole-genome amplification as described previously (REPLI-g midikit; Qiagen, USA) (3).
Library preparation and sequencing were conducted at the University of California Santa
Cruz Genome Sequencing Center on the Roche 454 Titanium platform (�450-bp reads),
and a subsequent SOLiD mate pair run was conducted to improve the assembly (sequenc-
ing was conducted in 2009 and 2010, respectively). The 659,000 454 reads (246 Mb total)
were assembled with Newbler (454 Life Sciences, Branford, CT, USA), producing 810 contigs
(497 contigs of �500 bp). The SOLiD mate pair sequencing yielded 76 million reads (2 � 50
bp per read, 2- to 3-kb insert size); these reads were mapped to the 454 contigs using
LifeScope 2.5.1 (Thermo Fisher) with default parameters (Life Technologies Bioinformatics
Service). PCR duplicates likely resulting from library generation were filtered out during the
alignment, with only the primary alignment with mapping quality of 10 or greater consid-
ered. The mapping resulted in 15 million reads (7.5 million mate pairs). Application of MIPS
Scaffolder 0.6 (4) resulted in 251 scaffolds of �500 bp with a total length of 5,213,465 bp,
an N50 value of 30,960 bp (5), and a GC content of 42.5%. For scaffolding, the inferred
median insert size (2,167 � 581 bp [interquartile range, 1,586 to 2,748 bp]) determined
from the data was used for the mate pairs that mapped to different contigs.

Annotation was conducted with the Prokaryotic Genome Annotation Pipeline (PGAP) (6)
on the version submitted to NCBI. The annotation indicated 5,215 and 4,634 total and
protein-coding genes, respectively; 1 each of 5S, 16S, and 23S rRNA; and 41 tRNAs. A
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comparative annotation using Rapid Annotation of microbial genomes using Subsystems
Technology (RAST) 2.0 (7) identified 5,841 coding sequences and 263 subsystems. Based on
both annotations, genes homologous to nitrate and urea ABC transporters and urease
alpha-, beta-, and gamma-units were present, suggesting the capacity for using these
nitrogen sources. Both annotations also identified genes homologous for gas vesicle
production, suggesting a capacity for surface bloom formation.

A total of 9 Cas gene clusters and 35 CRISPR spacer regions with up to 8 CRISPR spacer
repeats per region were detected with the CRISPRCasFinder (8). The KLA2 draft genome
sequence has 95.96 and 97.12% average nucleotide identity (two-way) (9) with the ge-
nomes of M. aeruginosa NIES-843 (10) and PCC 7806 (11), respectively, which both contain
the microcystin gene cluster. Microcystin genes were not found in KLA2. Several other
entire or partial secondary metabolite biosynthetic gene clusters were found using anti-
SMASH 5.0 with default parameters (Table 1) (12). The potential for secondary metabolite
production in a non-microcystin-producing strain should contribute to investigations of the
evolution and roles of secondary metabolites in cyanobacteria (13) and their potential
impacts on aquatic ecosystems (14).

Data availability. This whole-genome shotgun project has been deposited at DDBJ/
ENA/GenBank under the accession number VTRR00000000. The version described in this
paper is version VTRR01000000. The study has been deposited under BioProject
number PRJNA561215 and BioSample number SAMN12611847. The raw sequence
reads are in the Sequence Read Archive under the numbers SRR10053317 and
SRR10079464.
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TABLE 1 Secondary metabolite biosynthetic gene clusters in the M. aeruginosa KLA2 draft
genome sequence

Product typea Most similar known cluster Similarity (%)

Cyanobactin Piricyclamide 58b

Cyanobactin Piricyclamide 25b

Cyanobactin, LAP Aeruginosamide 100
Lanthipeptide, bacteriocin NAc NAb

Bacteriocin Yersiniabactin 2b
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T1PKS Cylindrocyclophane 1b

T1PKS Puwainaphycins 30b

T1PKS Bartoloside 2/bartoloside 3/bartoloside 4 27b

T3PKS, T1PKS Merocyclophane C/merocyclophane D 44b

NRPS Aeruginosin 85b

NRPS Micropeptin 100b

NRPS, beta-lactone Anabaenopeptin 100b

Resorcinol Bartoloside 2/bartoloside 3/bartoloside 4 45
Terpene NA NAb

Terpene NA NA
Terpene NA NAb

a LAP, linear azol(in)e-containing peptides; hglE-KS, heterocyst glycolipid synthase-like PKS; T1PKS, type 1
polyketide synthase; NRPS, nonribosomal peptide synthetase cluster.

b Region of the gene cluster was on the contig edge, which may have reduced the similarity values of
�100%.

c NA, not available.
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