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Editorial on the Research Topic

Neuroepigenetics of Neuropsychiatric Disease—Hope, Success and Obstacles for Translational

Findings and Applications

According to the World Health Organization, over one billion people worldwide suffer from
neuropsychiatric diseases (World Health Organization, 2007). The lack of effective treatments is
mainly due to our limited knowledge of the underlying pathogenesis. It has been well-accepted that
besides genetic predispositions, environmental factors play essential roles in developing mental
illness (Caspi and Moffitt, 2006). Indeed, clinical and animal studies have shown that many
environmental factors participate in regulating mood behaviors, including chronic stress (Quello
et al., 2005), major adverse life events (Corrarino, 2008), dietary factors (Owen and Corfe, 2017),
drug or alcohol addiction (Lee et al., 2017; Lees et al., 2020), and endocrine disruptors (Tiffon, 2018;
Rivollier et al., 2019). In addition to direct effects in adulthood, environmental insults can also
influence embryonic and early brain development, thereby increasing the risk of mental disorders
in adulthood (Serpeloni et al., 2019) (Figure 1).

Accumulating studies highlighted the essential role of epigenetics for gene-environment
interactions with its implications for neuropsychiatric disorders (Tsuang et al., 2004; Lin and
Tsai, 2020). Epigenetics refers to heritable changes in gene expression without changing the DNA
sequence of genes. Epigenetic processes including DNA methylation, histone modifications, non-
coding RNAs (ncRNAs), and higher-order chromatin organization. Typically, DNA methylation
and histone modifications alter chromatin accessibility or serve as docking sites to recruit other
functional proteins to turn genes “on” or “off.” ncRNAs work both on the transcriptional and post-
transcriptional level to affect the production and stability of mRNAs. In addition, the organization
of the 3D genome, in which spatial interactions of chromatin help bring linearly distant genes
and regulatory elements into proximity (such as enhancer-promoter loops), has emerged as a
new epigenetic mechanism in recent years (Rajarajan et al., 2016; Sun et al., 2021). In the current
Research Topic, we present seven articles exploring different aspects of epigenetics for multiple
neuropsychiatric conditions (Figure 1).

DNA methylation is one of the well-studied epigenetic mechanisms and collective evidence
supports its role in various aspects of brain disorders (Bakusic et al., 2017). Dysregulation of
excitation and inhibition balance (E/I balance) in the brain circuits is one of the significant
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FIGURE 1 | Graphical abstract shows mechanisms for development of

neuropsychiatric diseases.

neuropsychological changes for manymental illnesses (Sohal and
Rubenstein, 2019; Molina et al., 2020). GABAergic inhibitory
interneurons are essential to keep the E/I balance in the cortex
(Tremblay et al., 2016), and DNA methylation is vital for the
development and function of cortical interneurons. Linde and
Zimmer-Bensch discuss the role of DNA methylation and its
writers, DNA methyltransferases DNMT1 and DNMT3A, in
regulating essential genes for GABAergic neuronal functions,
as well as genes of the endocytosis process critical for
synaptic neurotransmission.

Besides perturbations in neurons, glia pathology also
participates in psychiatric disorders (Cotter et al., 2002).
For example, white matter lesions are observed in brains
of patients with schizophrenia (SCZ) (Höistad et al., 2009).
Oligodendrocytes are the myelinating cells in the central
nervous system (CNS), and their disruption causes white matter
(composed of myelinated nerve cells) damage. DNAmethylation
regulates oligodendrocyte differentiation during normal
development (Moyon and Casaccia, 2017), and dysregulation
of DNA methylation in myelinating glia is involved in aging
and neurologic diseases (Arthur-Farraj and Moyon, 2020).
Chen et al. provide new evidence for oligodendroglial DNA
hypermethylation and SCZ-like behavioral deficits in adolescent
mice with supply of l-methionine (met), a methyl-donor for
DNA methylation. Besides oligodendrocytes, other glia cells,
including astrocytes and microglia are implicated in psychiatric
disorders. It will be interesting to check whether the supply
of met affects other glia or maybe neurons as well, and thus
contribute to the observed behavioral abnormalities.

Since DNA methylation is critically implicated in many
neuropsychiatric diseases, it presents a potential target for
treatment (Sales and Joca, 2016; Shirvani-Farsani et al., 2021).
However, the development of specific therapeutic reagents is
quite a challenge. Instead, researchers use DNA methylation
to predict drug response in psychiatric disorders. Zhou et al.
contribute a systematic review on published data of drug

response-related DNA methylation in SCZ, bipolar disorder
(BD), and major depressive disorder (MDD). Among all these
studies, only the correlation between methylation at the BDNF
gene locus and antidepressant effects in MDD was reproduced
by multiple groups (Januar et al., 2015; Zhou et al.). Since
the antidepressant effect of BDNF is well-established in animal
studies (Lee and Kim, 2010), this provides evidence for using
current animal models (stress-induced depressive-like behaviors
in mice and rats) as valid tools for studying mental disorders.
Meanwhile, cell-type specificity of epigenetic signatures may
explain the limited agreement of current studies as they
commonly collect complex peripheral tissue such as blood to
profile DNA methylation.

Histone acetylation is another classic epigenetic mark
for transcriptional activation (Hebbes et al., 1988). Histone
deacetylases (HDACs) remove acetylation and thus exert
transcriptionally repressive effects (Milazzo et al., 2020). Previous
work from Cui et al. (2013) identified a missense mutation
in HDACA786T that increases the risk for eating disorders
(EDs). In the current topic, Davis et al. generated a transgenic
mouse model carrying this mutation and revealed gender- and
circadian-related behavioral deficits associated with EDs. This
work provides evidence for Hdac4 in EDs and generates a
valuable model for future studies on the neuropsychiatric basis
of EDs.

In addition to changes at the level of genomic DNA and
histone modifications, long non-coding RNAs (ncRNAs) serve
as another layer of epigenetic regulatory mechanism (Cao,
2014). Circular RNAs (circRNAs) are a novel set of ncRNAs
and highly expressed in the CNS, particularly important for
regulating synaptic functions (Kocerha et al., 2015) and involved
in psychiatric disorders (Yoshino and Dwivedi, 2020). Paudel
et al. reported gender-specific changes of circRNAs after prenatal
alcohol exposure (PAE) in the embryonic brain, and the
expression of some circRNAs was correlated with neuronal and
glial gene expression.

MDD is becoming one of the most severe health problems
globally (Otte et al., 2016). Besides chronic stress that is
well-accepted as top one risk factor for MDD (Breslau and
Davis, 1986), other environmental factors, including dietary
influences, contribute to the neuropathogenesis of depression
(Firth et al., 2020). In this topic, Aly and Engmann reviewed
current knowledge on some of these dietary factors, such
as vitamins, fatty acids, and minerals, associated with MDD
and may serve as potential antidepressant targets. Many
nutritional factors are also reported to affect epigenetic events,
especially for enzymes involved in DNA methylation and
histone modifications (Maugeri and Barchitta, 2020). For
example, vitamin B3 is one of the precursors for nicotinamide
adenine dinucleotide (NAD), the essential cofactor for type
III histone deacetylases (HDACs). In addition, S-Adenosyl
Methionine (SAM), a methyl donor for DNA methylation
and histone methylation, can be found in most dietary
proteins. Vitamin B12 serves as a cofactor of methionine
synthase, and vitamin B9 (also known as folic acid) participates
in the vitamin B12-mediated SAM metabolic pathway once
biologically activated in vivo (Crider et al., 2012). It would be
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interesting to provide direct evidence for connections between
these essential nutritional components, epigenetic events, and
depressive behaviors.

In recent years, the 3D configuration of chromatin has been
recognized as one of the important strategies of epigenetic
regulation. The linear genome is highly compacted and well-
organized via chromatin loop interactions inside the nucleus
(Zhao et al., 2019). Disturbance of the 3D genome is now
considered an intriguing mechanism for psychiatric disorders
(Rajarajan et al., 2018). Clustered protocadherin genes (cPcdh)
encode a subfamily of cell adhesion molecules, predominantly
expressed in the brain. The combination of different cPcdh
expressions serves as an identity code for individual neurons
(Wu and Maniatis, 1999). The cPcdh locus is one of the best-
studied examples for regulating stochastic and combinatorial
expression patterns via 3D chromatin organization (Wu and
Jia, 2021). Previous seminal studies of Dr. Qiang Wu’s group
reported complex regulatory mechanisms for cPcdhs. More
importantly, it described the role of chromatin organizer CTCF

for the 3D chromatin organization at this locus (Wu et al.,
2020). In the current topic, Jia and Wu provided a detailed
review summarizing the biological function and regulatory

mechanism for the cPcdh locus and its implications for various
neuropsychological disorders.

The work presented in this Research Topic spans a
variety of neuropsychiatric conditions, covering most of the
important epigenetic mechanisms, including DNA methylation,
histone modification, circRNAs, and higher-order chromatin
organizations. Together, they would advance our understanding
of neuroepigenetics in mental disorders and inspire the
hope and efforts for successful translation to clinical care in
the future.
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