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Abstract: The aim of this study was to investigate on an industrial scale the potential of multispectral
imaging (MSI) in the assessment of the quality of different poultry products. Therefore, samples of
chicken breast fillets, thigh fillets, marinated souvlaki and burger were subjected to MSI analysis
during production together with microbiological analysis for the enumeration of Total Viable Counts
(TVC) and Pseudomonas spp. Partial Least Squares Regression (PLS-R) models were developed based
on the spectral data acquired to predict the “time from slaughter” parameter for each product type.
Results showed that PLS-R models could predict effectively the time from slaughter in all products,
while the food matrix and variations within and between batches were identified as significant factors
affecting the performance of the models. The chicken thigh model showed the lowest RMSE value
(0.160) and an acceptable correlation coefficient (r = 0.859), followed by the chicken burger model
where RMSE and r values were 0.285 and 0.778, respectively. Additionally, for the chicken breast
fillet model the calculated r and RMSE values were 0.886 and 0.383 respectively, whereas for chicken
marinated souvlaki, the respective values were 0.934 and 0.348. Further improvement of the provided
models is recommended in order to develop efficient models estimating time from slaughter.

Keywords: poultry products; at-line measurements; multispectral imaging; multivariate data analysis

1. Introduction

In the last decade, meat consumption has rapidly increased while demand for high-quality meat
is expected to continue augmenting as the world population rises. Chicken meat products account for
37% of global meat production due to their low-fat content, affordable price and exclusion of beef and/or
pork meat for religious purposes [1]. However, raw poultry products are susceptible to deterioration
(short shelf life) and to unpleasant organoleptic attributes during spoilage [2,3]. These facts in tandem
with consumers’ demand for fresh meat has led to the development of alternative approaches, such as
Process Analytical Technology (PAT), that are considered efficient in predicting quality and freshness
in meat products during production [4,5].

PAT is a promising approach for the assessment of products’ quality and it is currently implemented
not only in the pharmaceutical industry [6] but also in the food industry [7,8]. The main concept of PAT
is the combination of multivariate data derived through real-time (in-, on-, at- line) analytical methods
to multivariate data analysis for continuous feedback and information build-up [9]. As analytical
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techniques of PAT are considered among others spectroscopic methods such as vibrational spectroscopy
(FT-IR, NIR, Raman) [10–12], hyperspectral and multispectral imaging [13–15] and biomimetic sensors
(e-nose, e-tongue) [16,17]. Moreover, this innovative approach coupled to microbiological analysis,
quality factors and machine learning tools, can permit the understanding of the process, the identification
of Critical Control Points (CCPs) and finally the application of a knowledge base to control the
process [18–20].

According to PAT approach, a potential analysis and sensor have to be able to estimate successfully
and rapidly the critical control parameter of interest without the destruction of the product [7].
These requirements are fulfilled in the case of multispectral imaging [21] that combines an optical
technique (visible and NIR region) to computer vision in an attempt to obtain spectral and spatial data
for the metabolites on the surface of the examined sample. The main advantage over hyperspectral
analysis is the fast image acquisition and the usage of simple algorithms for image processing
(ROI region) and decision-making [13,22].

In recent years, many researchers have recommended this nondestructive method and several
machine learning algorithms for the rapid assessment of meat quality [4,23,24]. Specifically, for poultry
products qualitative models were constructed for the classification of intact chicken breast fillets based
on three quality grades using hyperspectral analysis [25]. Quantitative and/or qualitative models in
the region of visible and near-infrared (400–1700 nm), were able to detect the bacterial population
(TVC, Pseudomonas spp. and Enterobacteriaceae) during spoilage of chicken meat [26–29]. Other studies
involving multispectral imaging were associated with the adulteration of minced beef with chicken
meat [30], the presence of fecal contaminants in a poultry line [31–33], defects [33–35] and tumors on
the surface of chicken breasts [36,37].

So far there are limited studies on the implementation of spectroscopic methods during processing
at meat industries [38] and the majority is focused on the determination of fat and fatty acids in
pork and chicken breast fillets with near-infrared sensors [39–42]. Hence, the aim of this research
was to investigate the potential of multispectral imaging, applied in a poultry processing industry,
to determine the time from slaughter of four different poultry products and develop PLS-R models
assessing the time from slaughter directly from spectral data.

2. Materials and Methods

2.1. Experimental Design

Multispectral Imaging (MSI) was performed at-line in a Greek poultry industry on four different
poultry products: (a) chicken breast fillets (n = 104, batches = 5), (b) chicken thigh fillets (n = 97,
batches = 5), (c) chicken burger (n = 131, batches = 3), and (d) marinated chicken souvlaki (n = 144,
batches = 4). At regular intervals, samples from each batch were analyzed microbiologically for the
enumeration of Total Viable Counts (TVC) and Pseudomonas spp. in parallel with MSI spectral data
acquisition. In addition, samples from each product were stored at 4 ◦C for 216 h (9 days), since
this time period is defined by the industry as the shelf-life of the product. In parallel to the spectral
acquisition, the microbiological analysis was performed simultaneously with the other batches.

Sample origins were extensive farming facilities where animals (Gallus domesticus: Ross strain)
were fed from the company with a customized diet. Feeding consisted of grain, wheat, maize, soya bean
oil and meat and premix for broilers (vitamin and mineral supplement). Chickens were slaughtered
after 3 months of age and production was conducted according to the regulations of the EU 823/2004,
824/2004, 834/2004 and 543/2008.

2.2. Microbiological Analysis

From each sample, 10 g was added aseptically to 90 mL of sterile quarter strength Ringer’s
solution (Lab M Limited, Lancashire, United Kingdom) in a stomacher bag (Seward Medical, London,
UK) and homogenized in a stomacher device (Lab Blender 400, Seward Medical, London, UK) for
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60 s at room temperature. For the enumeration of Total Viable Counts (TVC) and the dominant
spoilage microorganism Pseudomonas spp., serial decimal dilutions were prepared in the same diluent
and spread on the following media: a) tryptic glucose yeast agar (Plate Count Agar, Biolife, Milan,
Italy) for TVC incubated at 25 ◦C for 72 h, and b) Pseudomonas Agar Base with selective supplement
cephalothin-fucidin-cetrimide (LabM Limited, Lancashire, UK) for Pseudomonas spp., incubated at
25 ◦C for 48 h. After incubation, colonies were enumerated and microbial counts were logarithmically
transformed (log CFU/g). Poultry samples with TVC counts exceeding 7.0 log CFU/g were considered
spoiled as reported elsewhere [43–45].

2.3. Spectra Acquisition

MSI analysis was performed using a Videometer-Lab instrument (Videometer A/S, Videometer,
2019, Herlev, Denmark) which was installed in close proximity to the production line (at-line
measurement) with the possibility of sample conditioning [46]. Videometer-Lab captures surface
reflectance of samples in 18 different wavelengths (405–970 nm), namely: 405, 435, 450, 470, 505, 525,
570, 590, 630, 645, 660, 700, 850, 870, 890, 910, 940 and 970 nm. Surface reflectance is recorded by a
standard monochrome charged coupled device chip (CCD). The object of interest is placed at the center
of an Ulbricht sphere, which has a matte white coating inside and light-emitting diodes (LEDs) with
narrow-band spectral radiation positioned side by side at spheres rim. The purpose of the coating is to
ensure a diffused and spatially homogenous reflectance of the sample. During instrument performance,
the diodes are turned on successively leading to a monochrome image with 32-bit floating-point
accuracy for each wavelength. The final outcome of MSI analysis is a data cube of spatial and spectral
data for each sample of size m × n × 18 (where m × n is the image size in pixels) [47,48].

A critical point before MSI application is the assurance that the range of LEDs intensity is stable
while phenomena such as shadows and object’s disfiguration are avoided [23,49]. Therefore, a light set
up procedure in which the acquisition captured at zero time of the experiment (auto light) is recalled
and light-emitting diodes (LEDs) intensities are stabilized. Subsequently, geometric and radiometric
calibration is undertaken in the Region of Interest (ROI) area with the aim of prototype target.

In order to exclude non-informative areas such as petri dish surface, fat, connective tissue
etc., a pre-process step is required. The segmentation of ROI on the sample from no relevant
areas and the implementation of Canonical Discriminant Analysis (CDA) areas is conducted via
Videometer-Lab version 2.12.39 (Videometer A/S, Herlev, Denmark). Also known as Fisher (Fisher’s
discriminant analysis), CDA separates pixels to different classes, based on ROI, through the following
Equation (1) [50,51]:

R (a) =
aT ∑

s a
aT∑

N a
(1)

where Σs is the distribution between classes and ΣN is the distribution within a class.

2.4. Data Pre-Processing and Model Development

For the development of models estimating the time from slaughter, Partial Least Squares Regression
(PLS-R) [52,53] was chosen, where spectral data were the independent variables (n = 36) and time
from slaughter (ts) was the dependent variable. Time from slaughter is considered as the time
elapsed from slaughter until the MSI measurement. For each poultry model, a two-stage model
development approach was followed: (a) calibration and full cross-validation (using leave one out
cross-validation) for model optimization and (b) external validation with samples from different
batches. More specifically, for chicken breast fillets, calibration was performed using a dataset from
three independent batches (n = 82) and external validation was undertaken with two other batches
(n = 22). Similarly, the PLS-R model for chicken thigh fillets was constructed using a training dataset
from three batches (n = 67), whereas two other batches (n = 30) were used to assess the prediction
performance of the model. Concerning the chicken burger, two batches (n = 87) were used in model
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training and one batch (n = 44) in prediction. Finally, for marinated chicken souvlaki, the dataset
consisted of two batches (n = 91) for training and two different batches (n = 43) for external validation.

Prior to analysis, spectral data for each type of poultry product were pre-processed by different
transformation techniques in an attempt to reduce random or systematic variations [22,54]. Reducing
the total volume of data results in effective multispectral imaging systems and image acquisition
with relatively low spatial resolutions in a few important wavelengths [13]. Standard Normal Variate
transformation (SNV) Equation (2) was applied in the case of chicken thigh and burger in order to avoid
collinear and “noisy” data areas [55]. In contrast, spectral data from chicken breast and marinated
souvlaki were pre-processed with baseline offset treatment [56,57] Equation (3). Regarding time from
slaughter (y variable), a logarithmic transformation was considered necessary due to large differences
in the intensities of the raw data [58]. Data pre-treatment, model development and validation were
implemented using the Unscrambler© v.9.7 software (CAMO Software AS, Oslo, Norway).

sSNV
I =

SI −mean(S)
stdev(S)

(2)

where S refers to pixel-wise spectra, Si is the “old” information contained in a specific wavelength and
SiSNV is the “new-transformed” information contained in a specific wavelength [22].

S(x) = x −min (x) (3)

where S denotes pixel-wise spectra for one sample, x is information contained at a specific wavelength,
and min(x) is the minimum variable in the x dataset.

3. Results

3.1. Microbiological Analysis

The range of the microbial population of TVC and Pseudomonas spp. for the different batches
of poultry products and storage time is illustrated in Figure 1. Additionally, the spread of TVC
counts for fresh and spoiled samples is provided for each product case. More specifically, for chicken
breast fillets, the initial number of TVC and Pseudomonas spp. was 5.2 (±0.6) and 4.9 (±0.82) log
CFU/g respectively, whereas in spoiled samples the respective values were 8.4 (±0.46) and 8.3 (±0.47)
log CFU/g. Additionally, for chicken thigh fillets, samples were considered fresh with TVC and
Pseudomonas spp. counts at 5 (±0.83) and 4.5 (±0.98) log CFU/g. Spoiled chicken thigh samples had
TVC and Pseudomonas spp. values at 7.9 (±0.50) and 7.8 (±0.49) log CFU/g, respectively.

For chicken burger samples, TVC and Pseudomonas spp. counts in fresh samples were 5.5 (±0.36)
and 4.8 (±0.75) log CFU/g, respectively, while in spoiled samples the respective counts were 10.7
(±1.9) and 7.8 (±0.25) log CFU/g. Finally, marinated chicken souvlaki fresh samples had TVC and
Pseudomonas spp. counts at 4.6 (±0.50) and 3.6 (±0.71) log CFU/g, respectively. In contrast, TVC and
Pseudomonas spp. values for spoiled samples were 7.9 (±0.95) and 7.5 (±1.00) log CFU/g, respectively.

Results from storage experiments at 4 ◦C showed that chicken breast fillets were determined
as spoiled beyond 168 h of storage (TVC > 7 log CFU/g) with TVC value at 7.76 log CFU/g and
Pseudomonas spp. counts at 7.6 log CFU/g. For chicken thigh fillets, samples were characterized as fresh
until 120 h when TVC and Pseudomonas spp. counts were 7.5 log CFU/g and 7.5 log CFU/g, respectively.
TVC and Pseudomonas spp. counts were 8.8 log CFU/g and 7.7 log CFU/g in spoiled chicken burger
samples (storage time 216 h). Moreover, chicken marinated souvlaki was defined as spoiled after 168 h
of storage in which TVC were 7.3 log CFU/g and Pseudomonas spp. counts were 6.8 log CFU/g.
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Figure 1. Boxplots for microbial counts (log CFU/g) of TVC (1: blue,2: red) and Pseudomonas spp. (3: 
green,4: orange) in fresh (1: blue,3: green) and spoiled (2: red,4: orange) samples of each product. 

3.2. Spectral Measurements 

For the development of PLS-R models, each wavelength contributed differently to each category 
of poultry product, despite the fact that all these products have the same basic ingredient (i.e., poultry 
meat). This is demonstrated in Figure 2 where differences could be observed in the spectra between 
each type of product during storage at 4 °C, based mostly on their nutrition composition difference 
[59,60]. 

The same figure (Figure 2) confirms also the ability of this spectroscopic method to detect and/or 
separate spoiled from fresh samples for each of the four products. For instance, in the case of chicken 
breast, wavelengths with variations in reflectance for fresh and spoiled samples were located in the 
areas of 470–570 nm and 590–970 nm, respectively. Wavelength range from 660 to 970 nm seemed to 
affect the estimation of spoilage for chicken thigh. Similarly, for marinated chicken souvlaki 
wavelengths above 570 nm deviated between fresh and spoiled samples, whereas for the chicken 
burger 850–970 nm were noticed as different. 

Figure 1. Boxplots for microbial counts (log CFU/g) of TVC (1: blue, 2: red) and Pseudomonas spp. (3:
green, 4: orange) in fresh (1: blue, 3: green) and spoiled (2: red, 4: orange) samples of each product.

3.2. Spectral Measurements

For the development of PLS-R models, each wavelength contributed differently to each category
of poultry product, despite the fact that all these products have the same basic ingredient (i.e., poultry
meat). This is demonstrated in Figure 2 where differences could be observed in the spectra between each
type of product during storage at 4 ◦C, based mostly on their nutrition composition difference [59,60].

The same figure (Figure 2) confirms also the ability of this spectroscopic method to detect and/or
separate spoiled from fresh samples for each of the four products. For instance, in the case of chicken
breast, wavelengths with variations in reflectance for fresh and spoiled samples were located in the
areas of 470–570 nm and 590–970 nm, respectively. Wavelength range from 660 to 970 nm seemed
to affect the estimation of spoilage for chicken thigh. Similarly, for marinated chicken souvlaki
wavelengths above 570 nm deviated between fresh and spoiled samples, whereas for the chicken
burger 850–970 nm were noticed as different.
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Figure 2. Spectra from MSI analysis (405–970 nm) for each poultry product at 24 h (blue line) and 216 
h (red line) of storage at 4 °C. 

3.3. PLS-R Model Performance 

RLS-R models assessing the time from slaughter showed satisfactory performance for each 
category of poultry product as inferred both graphically (Figure 3) and computationally based on 
performance indices such as slope, offset, correlation coefficient (r) and root mean squared error 
(RMSE) (Table 1). 

For chicken breast fillets, time from slaughter was estimated quite accurately despite the 
variations between batches, with rp and RMSEp values for the prediction dataset of 0.886 and 0.383, 
respectively. Differences between batches and ingredients (spices, herbs and sauce) used in 
marinated chicken souvlaki did not affect the prediction performance of the PLS-R model, with rp 
and RMSEp values of 0.934 and 0.348, respectively. Even though chicken thigh muscle has a more 
complex texture, with a higher percentage of fat and connective fat tissue [61,62], no differences were 
observed between batches and subsequently, external validation was performed satisfactorily with 
rp and RMSEp values of 0.859 and 0.160, respectively. Similarly, the presence of vegetables (peppers, 
onions and herbs) and spices in the homogeneous mixture of chicken burgers was not an obstacle for 
the external validation, where rp and RMSEp values were 0.778 and 0.285, respectively. The above-
mentioned RMSE values of prediction indicate satisfactory accuracy of the models used to assess the 
observed data [27,63]. 

Figure 2. Spectra from MSI analysis (405–970 nm) for each poultry product at 24 h (blue line) and 216 h
(red line) of storage at 4 ◦C.

3.3. PLS-R Model Performance

RLS-R models assessing the time from slaughter showed satisfactory performance for each
category of poultry product as inferred both graphically (Figure 3) and computationally based on
performance indices such as slope, offset, correlation coefficient (r) and root mean squared error (RMSE)
(Table 1).

For chicken breast fillets, time from slaughter was estimated quite accurately despite the variations
between batches, with rp and RMSEp values for the prediction dataset of 0.886 and 0.383, respectively.
Differences between batches and ingredients (spices, herbs and sauce) used in marinated chicken
souvlaki did not affect the prediction performance of the PLS-R model, with rp and RMSEp values of
0.934 and 0.348, respectively. Even though chicken thigh muscle has a more complex texture, with
a higher percentage of fat and connective fat tissue [61,62], no differences were observed between
batches and subsequently, external validation was performed satisfactorily with rp and RMSEp values
of 0.859 and 0.160, respectively. Similarly, the presence of vegetables (peppers, onions and herbs) and
spices in the homogeneous mixture of chicken burgers was not an obstacle for the external validation,
where rp and RMSEp values were 0.778 and 0.285, respectively. The above-mentioned RMSE values of
prediction indicate satisfactory accuracy of the models used to assess the observed data [27,63].
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Figure 3. Comparison of observed (open symbols) and predicted (solid symbols) values of time from 
slaughter (log ts) after the development of the PLS-R model. Solid line depicts the line of equity (y = 
x) and dashed lines are ± 1.6 log ts (i.e., 48 h after slaughter). 

Table 1. Performance indices (slope, offset, r and RMSE) for PLS-R model development and validation 
for each poultry product. 

Poultry Product Stage of 
Modelling 
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Slope Offset r (Correlation 
Coefficient) 

RMSE 

Chicken Breast 
Calibration 82 0.933 0.138 0.966 0.076 

FCV 1 82 0.916 0.173 0.953 0.091 
Prediction 22 1.150 0.055 0.886 0.383 

Chicken Thigh 
Calibration 67 0.953 0.097 0.976 0.065 

FCV 67 0.933 0.136 0.957 0.088 
Prediction 30 0.854 0.243 0.859 0.160 

Chicken Burger 
Calibration 87 0.982 0.035 0.991 0.033 

FCV 87 0.968 0.063 0.987 0.040 
Prediction 44 0.513 1.172 0.778 0.285 

Chicken 
Marinated 
Souvlaki 

Calibration 91 0.962 0.073 0.981 0.067 
FCV 91 0.954 0.092 0.964 0.093 

Prediction 43 1.183 0.650 0.934 0.348 
1 FCV: Full cross-validation. 

The important wavelengths (mean values and standard deviations) reflecting the characteristics 
of spectral data for each poultry product were obtained based on the beta regression coefficients 
(Figures 4–7). 

Figure 3. Comparison of observed (open symbols) and predicted (solid symbols) values of time from
slaughter (log ts) after the development of the PLS-R model. Solid line depicts the line of equity (y = x)
and dashed lines are ± 1.6 log ts (i.e., 48 h after slaughter).

Table 1. Performance indices (slope, offset, r and RMSE) for PLS-R model development and validation
for each poultry product.

Poultry Product Stage of Modelling No of Samples Slope Offset r (Correlation
Coefficient) RMSE

Chicken Breast
Calibration 82 0.933 0.138 0.966 0.076

FCV 1 82 0.916 0.173 0.953 0.091

Prediction 22 1.150 0.055 0.886 0.383

Chicken Thigh
Calibration 67 0.953 0.097 0.976 0.065

FCV 67 0.933 0.136 0.957 0.088

Prediction 30 0.854 0.243 0.859 0.160

Chicken Burger
Calibration 87 0.982 0.035 0.991 0.033

FCV 87 0.968 0.063 0.987 0.040

Prediction 44 0.513 1.172 0.778 0.285

Chicken Marinated
Souvlaki

Calibration 91 0.962 0.073 0.981 0.067

FCV 91 0.954 0.092 0.964 0.093

Prediction 43 1.183 0.650 0.934 0.348
1 FCV: Full cross-validation.
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The important wavelengths (mean values and standard deviations) reflecting the characteristics
of spectral data for each poultry product were obtained based on the beta regression coefficients
(Figures 4–7).
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Figure 5. Spectral data (mean and standard deviation) influence (b coefficients) to PLS-R model
construction for chicken thigh samples. Dashed bars represent data that influenced more the model (1,
19: 405 nm; 2, 20: 435 nm; 3, 21: 450 nm; 4, 22: 470 nm; 5, 23: 505 nm; 6, 24: 525 nm; 7, 25: 570 nm; 8, 26:
590 nm; 9, 27: 630 nm; 10, 28: 645 nm; 11, 29: 660 nm; 12, 30: 700 nm; 13, 31: 850 nm; 14, 32: 870 nm; 15,
33: 890 nm; 16, 34: 910 nm; 17, 35: 940 nm and 18, 36: 970 nm).
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0.081 Xmean,700 nm + 0.012 Xmean,870 nm + 0.023 Xmean,910 nm + 0.040 Xmean,940 nm + 0.039 Xmean, 970 

nm – 0.022 XSD,450 nm – 3.505 XSD,470 nm – 2.462 XSD,505 nm – 0.023 XSD,525 nm                 

(4) 

Yts,chicken thigh = −1.287 + 1.823 Xmean,405 nm + 1.596 Xmean, 435 nm – 2.277 Xmean, 470 nm – 1.835 
Xmean,505 nm + 0.774 Xmean,645 nm + 0.901 Xmean, 660 nm + 1.407 Xmean, 700 nm – 0.888 Xmean, 910 nm – 

0.754 XSD, 660 nm – 1.135 XSD, 700 nm 
(5) 

Figure 6. Spectral data (mean and standard deviation) influence (b coefficients) to PLS-R model
construction for chicken burger samples. Dashed bars represent data that influenced more the model
(1, 19: 405 nm; 2, 20: 435 nm; 3, 21: 450 nm; 4, 22: 470 nm; 5, 23: 505 nm; 6, 24: 525 nm; 7, 25: 570 nm; 8,
26: 590 nm; 9, 27: 630 nm; 10, 28: 645 nm; 11, 29: 660 nm; 12, 30: 700 nm; 13, 31: 850 nm; 14, 32: 870 nm;
15, 33: 890 nm; 16, 34: 910 nm; 17, 35: 940 nm and 18, 36: 970 nm).
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Figure 7. Spectral data (mean and standard deviation) influence (b coefficients) to PLS-R model
construction for chicken marinated souvlaki samples. Dashed bars represent data that influenced more
the model (1, 19: 405 nm; 2, 20: 435 nm; 3, 21: 450 nm; 4, 22: 470 nm; 5, 23: 505 nm; 6, 24: 525 nm; 7, 25:
570 nm; 8, 26: 590 nm; 9, 27: 630 nm; 10, 28: 645 nm; 11, 29: 660 nm; 12, 30: 700 nm; 13, 31: 850 nm; 14,
32: 870 nm; 15, 33: 890 nm; 16, 34: 910 nm; 17, 35: 940 nm and 18, 36: 970 nm).

Based on these beta regression coefficients, equations were constructed for the assessment of time
from slaughter for each product (Equations (4)–(7)).

Yts,chicken breast = 2.016 + 0.063 Xmean,405 nm + 0.033 Xmean,435 nm − 0.042 Xmean,450 nm − 0.134
Xmean,470 nm − 0.057 Xmean,505 nm + 0.103 Xmean,570 nm + 0.015 Xmean,630 nm + 0.027 Xmean,645 nm −

0.081 Xmean,700 nm + 0.012 Xmean,870 nm + 0.023 Xmean,910 nm + 0.040 Xmean,940 nm + 0.039 Xmean, 970 nm

− 0.022 XSD,450 nm − 3.505 XSD,470 nm − 2.462 XSD,505 nm − 0.023 XSD,525 nm

(4)
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Yts,chicken thigh = −1.287 + 1.823 Xmean,405 nm + 1.596 Xmean, 435 nm − 2.277 Xmean, 470 nm − 1.835
Xmean,505 nm + 0.774 Xmean,645 nm + 0.901 Xmean, 660 nm + 1.407 Xmean, 700 nm − 0.888 Xmean, 910 nm −

0.754XSD, 660 nm − 1.135 XSD, 700 nm

(5)

Yts,chicken burger = 3.042 + 5.092 Xmean,405 nm − 2.948 Xmean,435 nm − 1.332 Xmean,450 nm − 2.205
Xmean,525 nm + 10.153 Xmean,570 nm − 15.754 Xmean,590 nm+ 1.397 Xmean,630 nm + 4.716 Xmean,645 nm +

1.982 Xmean,660 nm − 4.230 Xmean,700 nm + 2.344 Xmean,850 nm − 2.989 Xmean,890 nm + 2.237 Xmean,910 nm-
3.283 XSD,405 nm +2.382 XSD,505 nm + 2.161 XSD,525 nm + 2.304 XSD,570 nm − 1.799 XSD,590 nm −

1.402 XSD,660 nm − 1.874 XSD,700 nm +1.558 XSD,850 nm + 1.112 XSD,870 nm −2.188 XSD,970 nm

(6)

Yts,chicken marinated souvlaki = 3.071 − 0.205 Xmean,405 nm + 0.180 Xmean,435 nm + 0.255 Xmean,450 nm −

0.442 Xmean,630 nm + 0.189 Xmean,645 nm + 0.223 Xmean,660 nm − 0.168 Xmean,700 nm − 0.122 Xmean,850 nm +

0.119 Xmean,870 nm + 0.196 Xmean,940 nm − 0.150 XSD,435 nm − 0.185 XSD,450 nm + 0.232 XSD,505 nm +

0.184 XSD,525 nm − 0.319 XSD,590 nm + 0.091 XSD,645 nm + 0.131 XSD,870 nm − 0.165 XSD,910 nm − 9.849
XSD,940 nm

(7)

4. Discussion

Microbiological analysis demonstrated variations between batches for each category of poultry
product even though the examined samples were obtained by the same farming conditions, slaughter
process and production. For chicken breast and thigh samples, differences occurred at the initial
microbial load (TVC and Pseudomonas spp.) based mostly on animal strain and fat content [62].
Furthermore, in the case of processed poultry products, the presence of additional ingredients such as
vegetables and herbs seemed to influence the initial and final load of microorganisms.

MSI acquisition showed variations in reflectance at many wavelengths between the four poultry
products due to their differences in the food matrix (chicken breast and chicken thigh) and the
supplementary ingredients used in the production process of different chicken products (i.e., burger
and marinated souvlaki). Moreover, spectra figures for fresh and spoiled samples (Figure 2) provided
by MSI application indicated reflectance differences at several wavelengths, which are firmly linked to
biochemical alterations and metabolic compounds produced by the spoilage microbiota on the surface
of meat and poultry products. More specifically, reflectance at 570–700 nm is related to respiratory
pigments such as myoglobin (570 nm), oxymyoglobin (590 nm) and metmyoglobin (630 nm) [23,24,59].
In the NIR region, absorption bands at 910 nm are linked to denaturation of proteins [60,64] while at
750 and 970 nm, O-H second overtones are related to the moisture content in the samples [26,38,53].
In addition, absorption bands observed in the NIR region (928 and 940 nm) are correlated to the
presence of fatty acids and fat within the sample matrix [14,60,65].

PLS-R models predicted satisfactorily the time from slaughter for each poultry product (Table 1)
where the chicken thigh model showed the lowest value of RMSE followed by the chicken burger
model. RMSE and r values of prediction were in the range of 0.160–0.348 and 0.778–0.943 respectively,
for all PLS-R models. Model performance was gradually deteriorated from the calibration to the
prediction stage. As illustrated in Figure 3, batches used in external validation differed from the
calibration dataset in all products and especially in the case of the chicken breast. These findings
indicate the importance of performing validation with independent datasets (batches at different time
points) and to include as much variability as possible in the developed model [64,66,67]. Additionally,
the developed model addressed for at-line implementation must be validated by an independent
dataset in order to construct an accurate and robust model [24,52]. Despite this variation in batches,
both calibration and prediction datasets in Figure 3 are situated within the limit area of ±1.6 log ts

resulting in acceptable PLS-R models. For chicken marinated souvlaki and burger models, variations
between batches and higher RMSE values could be explained due to different types of ingredients
such as spices, chopped vegetables and marinade employed in the production process.

Beta regression coefficients revealed the influence of each wavelength on the assessment of time
from slaughter for each poultry product. According to Figures 4–7, wavelengths with high positive
or negative values have an important contribution to the model and convey useful information.
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The comparison of these findings with the raw spectra shown in Figure 2 confirms the significant
role of reflectance bands in the range 570–700 nm and 700–970 nm for the development of PLS-R
models [38,68]. As mentioned above, absorption bands at NIR region of 910 nm seemed to be associated
with proteins, which are in abundance in chicken meat, especially in chicken breast [61]. The influence
of muscle pigments and water content on the classification of chicken breast fillets was also highlighted
by Yang et al., where samples were successfully classified in different quality grades [25].

In conclusion, the performance of the developed PLS-R models showed an efficient prediction
of the time from slaughter (ts) for each poultry product. The food matrix (muscle type, spices and
marinade) had a great impact on the prediction of time from slaughter with marinated chicken souvlaki
and chicken thigh models showing satisfactory performance. The prediction was also influenced by
the variations between batches. Furthermore, the selection of different datasets (batches) as external
validation assures the efficient prediction of models. Additional measurements and continuous
information feedback could ameliorate the existing models and result in a more successful prediction
of time from slaughter.
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56. Engel, J.; Gerretzen, J.; Szymańska, E.; Jansen, J.J.; Downey, G.; Blanchet, L.; Buydens, L.M. Breaking with
trends in pre- processing? Trends Anal. Chem. 2013, 50, 96–106. [CrossRef]

57. Rinnan, A.; Berg, F.; Engelsen, B. Review of the most common pre-processing techniques for near-infrared
spectra. Trends Anal. Chem. 2009, 28, 1201–1222. [CrossRef]

58. Berrueta, L.A.; Alonso-Salces, R.M.; Héberger, K. Supervised pattern recognition in food analysis. J.
Chromatogr. A 2007, 1158, 196–214. [CrossRef] [PubMed]

59. Cozzolino, D.; Murray, I. Identification of animal meat muscles by visible and near infrared reflectance
spectroscopy. LWT-Food Sci. Technol. 2004, 37, 447–452. [CrossRef]

60. Kamruzzaman, M.; Sun, D.W.; El Masry, G.; Allen, P. Fast detection and visualization of minced lamb meat
adulteration using NIR hyperspectral imaging and multivariate image analysis. Talanta 2013, 103, 130–136.
[CrossRef] [PubMed]

61. Lin, C.Y.; Lin, L.C.; Hsu, J.C. Effect of caponization on muscle composition, shear value, ATP related
compounds and taste appraisal in Taiwan country chicken cockerels. Asian-Australas. J. Anim. Sci. 2011, 24,
1026–1030. [CrossRef]

62. Amorim, A.; Rodrigues, S.; Pereira, E.; Valentim, R.; Teixeira, A. Effect of caponisation on physicochemical
and sensory characteristics of chickens. Animal 2016, 10, 978–986. [CrossRef]

63. Sant’Ana, A.S.; Franco, B.D.; Schaffner, D.W. Modeling the growth rate and lag time of different strains of
Salmonella enterica and Listeria monocytogenes in ready-to-eat lettuce. Food Microbiol. 2012, 30, 267–273.
[CrossRef]

64. Ropodi, A.I.; Panagou, E.Z.; Nychas, G.J.E. Rapid detection of frozen-then-thawed minced beef using
multispectral imaging and Fourier transform infrared spectroscopy. Meat Sci. 2018, 135, 142–147. [CrossRef]

65. Alomar, D.; Gallo, C.; Castaneda, M.; Fuchslocher, R. Chemical and discriminant analysis of bovine meat by
near infrared reflectance spectroscopy (NIRS). Meat Sci. 2003, 63, 441–450. [CrossRef]

66. Boulesteix, A.L.; Strimmer, K. Partial least squares: A versatile tool for the analysis of high-dimensional
genomic data. Brief. Bioinform. 2006, 8, 32–44. [CrossRef] [PubMed]

67. Ropodi, A.I.; Panagou, E.Z.; Nychas, G.J. Data mining derived from food analyses using
non-invasive/non-destructive analytical techniques; determination of food authenticity, quality & safety in
tandem with computer science disciplines. Trends Food Sci. Tech. 2016, 50, 11–25. [CrossRef]

68. Park, B.; Lawrence, K.C.; Windham, W.R.; Chen, Y.R.; Chao, K. Discriminant analysis of dual-wavelength
spectral images for classifying poultry carcasses. Comput. Electron. Agric. 2002, 33, 219–231. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0169-7439(01)00155-1
http://dx.doi.org/10.1016/j.aca.2010.03.048
http://dx.doi.org/10.1002/cem.2609
http://dx.doi.org/10.1016/j.aca.2016.01.010
http://dx.doi.org/10.1016/j.trac.2013.04.015
http://dx.doi.org/10.1016/j.trac.2009.07.007
http://dx.doi.org/10.1016/j.chroma.2007.05.024
http://www.ncbi.nlm.nih.gov/pubmed/17540392
http://dx.doi.org/10.1016/j.lwt.2003.10.013
http://dx.doi.org/10.1016/j.talanta.2012.10.020
http://www.ncbi.nlm.nih.gov/pubmed/23200368
http://dx.doi.org/10.5713/ajas.2011.10068
http://dx.doi.org/10.1017/S1751731115002876
http://dx.doi.org/10.1016/j.fm.2011.11.003
http://dx.doi.org/10.1016/j.meatsci.2017.09.016
http://dx.doi.org/10.1016/S0309-1740(02)00101-8
http://dx.doi.org/10.1093/bib/bbl016
http://www.ncbi.nlm.nih.gov/pubmed/16772269
http://dx.doi.org/10.1016/j.tifs.2016.01.011
http://dx.doi.org/10.1016/S0168-1699(02)00010-8
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Experimental Design 
	Microbiological Analysis 
	Spectra Acquisition 
	Data Pre-Processing and Model Development 

	Results 
	Microbiological Analysis 
	Spectral Measurements 
	PLS-R Model Performance 

	Discussion 
	References

