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Abstract
Varied strategies to alleviate the loss of farmland biodiversity have been tested, yet 
there is still insufficient evidence supporting their effectiveness, especially when con-
sidering phylogenetic and functional diversity alongside traditional taxonomic diver-
sity metrics. This conservation challenge is accentuated in the Afrotropics by the rapid 
agricultural expansion and intensification for the production of cash crops and by a 
comparative lack of research. In this study, we assessed how farming practices influ-
ence avian phylogenetic and functional diversity. We conducted point-count surveys 
to assess avian diversity in monocultures of tea and mixed crop farming systems sur-
rounding the Nyungwe rainforest in south-west Rwanda, allowing us to investigate 
the drivers of avian diversity at farm level. Species composition was found to be mod-
erately different between farm types, with mixed crop farms supporting higher phylo-
genetic diversity than tea plantations. There were no significant seasonal differences 
in species composition, functional or phylogenetic diversity. Overall, functional diver-
sity did not differ between farm types, but the dispersion of trophic-related traits was 
significantly higher in mixed crop farms. Both functional and phylogenetic diversity 
were influenced by floristic diversity, vegetation height, tree number, and elevation to 
varying degrees. Our results also (i) highlight the role of farmland heterogeneity (e.g., 
crop species composition, height, and tree cover extent) in encouraging avian func-
tional and phylogenetic diversity in the Afrotropics and (ii) indicate that the generally 
negative biodiversity impacts of monoculture agriculture can be partially alleviated by 
extensive agroforestry with an emphasis on indigenous tree species.
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1  |  INTRODUC TION

Extensive agriculture, practiced at both subsistence and industrial 
levels, is among the leading drivers of biodiversity loss, particularly 
in the tropics and subtropics (Diaz et al., 2019; Malhi et al., 2014). 
The environmental impacts of food production are exacerbated by 
global trade interconnectivity and high consumerism in developed 
countries. For example, Chaudhary et al.  (2016) showed that 95% 
of “biodiversity damage” attributable to Swiss food consumption in 
2011 happened abroad, mostly in the tropics. These impacts were 
evaluated at a global level from estimates of species loss per unit 
area due to a given land-use, and were found to be up to 300 times 
greater than the damage resulting from domestic agriculture. A key 
factor is that tropical cash crops, such as coffee, palm oil, rubber, 
tea, and soybean, may be cultivated on a much smaller area than do-
mestic cereals such as rice, maize, and wheat, yet nonetheless inflict 
disproportionately high damage on biodiversity because they tend 
to be grown in areas supporting substantial numbers of endemic and 
threatened species (Chaudhary et al., 2016).

The production of cash crops contributes to biodiversity loss 
largely through forest clearance, as well as the reduction of crop di-
versity since they are often grown as extensive monocultures (Jiang 
et al., 2019; Lees et al., 2015; Perfecto et al., 2019). For example, Xu 
et al. (2018) reported that from 2010 to 2015, 9335 ha of tea plan-
tations were established in Menghai county, China, representing a 
33.6% increase within five years. One third of the land converted 
was obtained by deforestation. A similar trend was observed in the 
Eastern Himalaya piedmont between 1874 and 2010, where a fall of 
69.5% in forest cover was accompanied by an increase of 30.7% in 
tea plantations, independent of population growth (Prokop, 2018). 
Global tea production is rising, even in small countries, such as 
Rwanda, which registered the highest global annual growth rate of 
26.8% between 2007 and 2016 (IGT, 2018). With the onset of the 
COVID-19 pandemic, tea surpassed tourism as the leading earner 
of export revenues in Rwanda. In a single year (2019–2020), in-
creased tea production in Rwanda generated export revenues of 
US $83,552,108, marking a growth of 12% compared to the previ-
ous fiscal year (NAEB, 2020). The growing “ecological footprint” of 
tea production is thus an important factor contributing to habitat 
change in the tropics, where all the top-producing countries are 
located.

The need to conserve farmland biodiversity has led to the devel-
opment of conservation programs underpinned by the concept that 
heterogeneous landscapes—which comprise diverse habitats (com-
positional heterogeneity), varying in their spatial patterning (config-
urational heterogeneity)—will provide greater and complementary 
resources, facilitate dispersal processes and enable the coexistence 
of species of diverse functional strategies (Batáry et al., 2015; Fahrig 
et al., 2011). In Europe, agri-environment schemes of the European 
Union's Common Agricultural Policy enable farmers within mem-
ber states to access financial support to maintain or adopt mea-
sures that curb biodiversity loss (particularly of bird species) and 
which sustain ecosystem functions (Chamberlain,  2018; Kleijn & 

Sutherland, 2003). In the tropics, the adoption of agroforestry pol-
icies is gaining traction among governments and private stakehold-
ers, with the aim of attaining biodiversity goals, and responding to 
socio-economic needs, such as the need for fuelwood (Mukuralinda 
et al., 2016; Şekercioğlu, 2012).

Although a wide range of mechanisms to curb biodiversity 
loss have been trialed in different countries, there is still little evi-
dence attesting to their effectiveness. Studies on agri-environment 
schemes have produced contrasting results (Batáry et al.,  2015; 
Hiron et al., 2015; Lee & Goodale, 2018). Although the role of agro-
forestry systems in maintaining avian diversity in tea plantations has 
been demonstrated (Chetana & Ganesh, 2012; Sidhu et al., 2010), 
the basis of assessment has largely been the taxonomic diversity 
of the bird communities, a relatively simplistic metric that provides 
limited information about how ecosystems function and respond 
to environmental disturbances compared to other components of 
avian diversity. For example, components of avian diversity, such as 
functional and phylogenetic diversity, are expected to more closely 
reflect ecosystem function and resilience (Cadotte et al.,  2011; 
Hordley et al., 2021; Sheard et al., 2020). Previous studies focusing 
on the impacts of tropical agriculture on functional and phylogenetic 
diversity have mainly focused on the impact of pasture, palm oil, and 
coffee (e.g., Cannon et al., 2019; Chapman et al., 2018). As a result, 
the impacts of tea agricultural practices remain poorly understood, 
particularly in the Afrotropics.

This study was conducted in Rwanda, a country whose vision 
to attain a “green” economy is challenged by a high population den-
sity (477 people per km2), with more than 80% of the population 
carrying out subsistence farming (NISR, 2018). We focused on birds 
due to their diverse ecological niches, the range of farmland services 
they contribute to (e.g., pollination, pest control, and seed disper-
sal), their value as ecosystem health indicators (Catterall et al., 2012; 
Şekercioğlu, 2012; Sinu, 2011), and the availability of data on their 
diversity in the study area. Due to the marked differences in the 
vegetation composition characterizing tea and mixed-crop farms, we 
hypothesized that: (i) distinct avian communities will be associated 
with the two farming systems; (ii) the greater structural and compo-
sitional complexity of mixed crops will result in higher functional and 
phylogenetic diversity values for mixed crop farms compared to tea 
farms; and (iii) functional and phylogenetic diversity will be driven by 
different habitat attributes, with crop heterogeneity and tree cover-
age being key factors.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

The study was conducted in agricultural areas surrounding Nyungwe 
National Park, hereafter Nyungwe NP, a tropical montane rainfor-
est located in south-west Rwanda (Figure 1). Mean annual rainfall 
is 1500–2500 mm, and annual temperature varies between an aver-
age minimum of 10.9°C and an average maximum of 19.60°C (Sun 
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et al., 1996). Two major farming types could be distinguished from 
the field. Monocultures of tea (Camellia sinensis) grown by tea com-
panies and individual farmers, and farms containing mixed crops, 
mainly maize, beans (Phaseolus vulgaris), sweet potatoes, and cas-
sava. Outside the forest, farming was the predominant land-use, 
followed by settlements, which increased in density with distance 
from the forest. Tea estates were established after government-
supported forest clearance in the 1960s. In addition to plantations 
owned by the government and private factories, farmers have been 
encouraged to grow tea on their own lands to increase the total pro-
duction. On lands owned by private farmers, tea was often grown 
close to other subsistence crops. Due to the reinforced protection 
of the forest since 2004, and scarcity of land, the average house-
hold farm size around Nyungwe NP is around 1  ha (Masozera & 
Alavalapati,  2004). To encourage improved economic viability of 

land use, the Rwandan government introduced the land use consoli-
dation act in 2007, which urged farmers with adjacent lands to grow 
a single priority crop in a given season. Although, mixed-crop farms 
mostly contained at least two crops, adjoining farms in the study 
area tended to grow the same crops, making it difficult to distinguish 
individual farms.

2.2  |  Bird surveys

Bird communities were sampled using standard methods of point-
count sampling commonly applied in tropical systems (Bibby 
et al.,  2000; Leach et al., 2016; Vollstädt et al.,  2017). Although 
surveying birds in tropical landscapes is challenging (Robinson 
et al.,  2018), we focused on relatively open farmland habitats, 

F I G U R E  1 Geographic location of 100 
point counts (20 samples) in tea and mixed 
crops farms around the Nyungwe National 
Park, Rwanda. The Nyungwe forest 
adjoins Kibira National Park, Burundi. 
Each point was sampled twice, once in the 
wet and once in the dry season between 
November 2017 and August 2018. 
Basemap and satellite image sources: 
National Geographic, and Google Earth
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where most bird species are fairly detectable. To choose sam-
pling sites, we organized consultative meetings with key people 
engaged in the management and monitoring of Nyungwe NP and 
surrounding areas. The sites were selected based on safety and 
accessibility. For further information on the study design, see 
Rurangwa et al. (2021).

We established 100 point-count stations (50 in tea plantations; 
50 in mixed crops farms). The starting point was randomly selected, 
and each point was separated by an interval of 200 m from the pre-
vious point to increase statistical independence by minimizing dou-
ble counting (Ralph et al., 1995). At each point, birds seen or heard 
within a 20-m radius were recorded for 10 min. Observations were 
replicated in two seasons, producing a total of 200 point counts for 
the whole study. We sampled in both dry and wet seasons, from 
November 2017 to February 2018, and then from June to August 
2018. Surveys began at 6 a.m. and ended by 10 a.m., with slightly 
later start-times for sites located far from the main road. No sur-
veys were undertaken during rain. Survey data were recorded by 
one observer with more than 20 years of local experience.

2.3  |  Avian functional traits collection

Functional traits of birds in the study area relating to morphology 
and habitat use were extracted from a published dataset (Tobias 
et al., 2022). Morphological measurements were taken in the field 
and from specimens housed at museums and collections worldwide, 
mainly the Natural History Museum at Tring (for the sampling pro-
tocol, see Tobias et al., 2022). Beak length (measured along culmen 
and from nares), as well as width and depth measured at the nares, 
were included as an index of the trophic niche (Pigot et al., 2020; 
Schoener, 1965); wing length, and Kipp's distance (the linear dis-
tance between the tips of the longest primary and the first sec-
ondary measured on a folded wing), as well as tarsus length, were 
included to represent dispersal capabilities and locomotion re-
lated to foraging behavior (Pigot et al., 2020; Sheard et al., 2020). 
Biometric measures were taken where possible from two adult male 
and two adult female specimens per species. Foraging strata were 
directly recorded from the field and supplementary information was 
obtained from Vande weghe and Vande weghe (2011). The foraging 
strata were categorized as lower (3 m and below), middle (4–7 m), 
and upper (>7 m). Dietary data for each species were retrieved from 
Wilman et al. (2014), who compiled proportions of the diet of each 
species in terms of major food categories, including: fruit, inverte-
brates, nectar, omnivores, plant matter, vertebrates, and seeds.

2.4  |  Farm assessment

We established sampling points in tea and mixed crop farms. Tea 
farms were often characterized by monoculture, while in mixed crop 
farms at least two crops were grown, and at times plots were sepa-
rated by houses.

For each point we sampled, we assessed the floristic diver-
sity to represent the vegetation composition, and crop height and 
the number of trees to represent the vegetation structure. We 
included elevation since it has been found to influence different 
components of the avian diversity, albeit to varying degrees (Ding 
et al., 2021; Hanz et al., 2019; Rurangwa et al., 2021). Differences 
in elevation also underpin patterns of variation in farming prac-
tices, such as the classification of agro-ecological zones in Rwanda. 
For instance, tea plantations are established on acidic soils in 
mountainous areas (1500–2500 m). We also recorded tempera-
ture, relative humidity, and soil moisture due to the relationship 
between microclimatic and edaphic factors and the conditions for 
habitat use by birds, such as the abundance of prey, and suitable 
nesting sites (Cifuentes-Croquevielle et al.,  2020; Sutherland & 
Green,  2004; Visco et al.,  2015). We recorded the distance be-
tween plots and the Nyungwe forest, since proximity to forests 
has been found to permit the persistence of forest-affiliated 
avian communities in agricultural landscapes (Cannon et al., 2019; 
Socolar et al., 2019).

We recorded the number and species identity of all plants within 
the radius of each point count, and the number of trees with stem 
Diameter at Breast Height >5  cm. The crop height (including non-
crop species) was measured with a three-meter folding rule. We 
measured the temperature and humidity using a portable data log-
ger, and soil moisture using a soil moisture probe. The application 
of agro-chemicals was not assessed due to the low-intensity farm-
ing methods practiced and the sporadic documentation of agro-
chemicals when applied (Appendix S1). Measurements at each point 
were taken once per season by two field botanists with more than 
15 years of experience.

2.5  |  Statistical analysis

We performed a Detrended Correspondence Analysis (Hill, 1979) to 
explore avian community composition within tea and mixed crops 
farming systems. We further conducted the analysis of similarity 
(ANOSIM) test using the CAP program (Seaby et al., 2014) to de-
termine if samples within each farming type had a greater similarity 
than that occurring by chance. Statistical analyses were conducted 
at a sample level. Where seasonal effects were to be investigated, a 
sample comprised 5 contiguous points within the same area, sam-
pled the same day in each season, amounting to 40 samples per 
study. Otherwise, the values of the two seasons were averaged to 
avoid pseudo-replication, giving 20 samples.

We used the near tool from ArcGis 10.5.1 (ESRI, 2019) to calcu-
late the nearest geodesic distance between the sample centroid and 
the Nyungwe forest. The sample centroid was calculated using the 
Mean Center tool from ArcGIS, which averages the longitude and 
latitude coordinates of the five points.

To compare functional diversity and phylogenetic diversity be-
tween farm type, we used metrics that provided complementary 
information and incorporated abundances.
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Functional dispersion (FDis)—Measures the spread of spe-
cies traits by quantifying the mean distance of each species to 
the centroid of all species weighted by abundance (Laliberté & 
Legendre,  2010). One benefit of FDis as a metric is that it allows 
retention of samples with fewer than three observations, which can 
occur at finer scales of sampling.

Phylogenetic diversity (qPD[T])—The total diversity of branches 
of a phylogeny based on Hill numbers. q denotes the order of magni-
tude of abundance (q = 0 excludes abundance, and only species rich-
ness is considered, q = 1 considers common species, q = 2 includes 
only the most abundant species (Chao et al., 2010).

Standardized effect size of Mean Pairwise distance (sesMPD)—
The average pairwise phylogenetic distances among individuals in a 
community, adjusted for species richness. Higher values indicate that 
the community is composed of species which are evenly distributed 
across clades, while lower values indicate a community constituted 
of species that are phylogenetically clustered (Webb et al., 2002).

Standardized effect size of Mean nearest Taxon distance 
(sesMNTD)—The average phylogenetic distance between an individ-
ual and its closest relative. The metric reveals phylogenetic struc-
turing at the tips of the tree. A community that does not contain 
closely related individuals will have higher sesMNTD values, and the 
opposite is true for lower sesMNTD values (Webb et al., 2002).

Due to the high correlation of avian morphological traits (caused 
largely by body mass), and high intraspecific variations, a series of 
Principal Components Analyses (PCA) were performed, and resul-
tant axes were used as indices of body size, trophic processes, loco-
motory abilities, and flight and dispersal capabilities, following Trisos 
et al. (2014). FDis was then computed from a matrix containing the 
obtained indices, diet, and foraging strata information using the R 
package FD (Laliberté et al., 2014). Quantitative traits were first res-
caled (mean = 0, s.d. = 1) prior to the computation of FDis.

To analyze phylogenetic diversity, we downloaded 1000 trees 
from a global avian phylogeny (Jetz et al., 2012; www.birdt​ree.org 
accessed 20 June 2019) based on the Ericson backbone (Ericson 
et al.,  2006), and calculated PD(T) metrics using HillR packages 
(Li, 2018), and the sesMPD, and sesMNTD, using the picante pack-
age (Kembel et al., 2010).

Univariate type III repeated-measures ANOVA were used to 
compare diversity metrics across farm types and within seasons and 
t-tests were used to investigate variations in ses.MNTD, ses.MPD, 
and differences in subsets of trophic-related traits across farm types. 
To analyze the effects of farm attributes on PD and FD, two differ-
ent multiple linear regression models were performed for 1PD(T) and 
FDis containing floristic diversity, crop height, the number of trees, 
humidity, soil moisture, elevation, and distance to the Nyungwe 
forest from the sample centroid as explanatory variables. Floristic 
diversity was computed as the exponential Shannon-Wiener index 
based on raw abundances of all crop and noncrop plant species 
found in each point station. Temperature and tree height were not 
included in the models due to their high correlation with humidity 
and vegetation height, respectively (Pearson's R > = 0.7, Table S1).

We further employed a stepwise model selection procedure, 
based on the Akaike information criterion adjusted for sample size 
(AICc) using the MuMin package (Anderson & Burnham,  2004; 
Barton, 2019). The final model was obtained from averaging models 
within ΔAICc < 2 of the model with the lowest AICc value. Spatial au-
tocorrelation was evaluated on both model residuals using Moran's 
I test and it was found to be nonsignificant for both 1PD(T) and FDis 
(p =  .082 and .44, respectively). All analyses were conducted in R 
3.5.3 (R Core Team, 2019).

3  |  RESULTS

3.1  |  Community structure

We recorded 755 individuals belonging to 63 bird species, includ-
ing three sunbirds endemic to the Albertine Rift region: Nectarinia 
purpureiventris, Cinnyris regius, and C. stuhlmannii (Table  S2). Fifty 
species were found in mixed crops, 33 in tea farms: 20 species were 
found in sites from both farm categories. The most abundant species 
were Crithagra citrinelloides and Psalidoprocne pristoptera, which con-
stituted 11.7% and 9.4% of total abundances, respectively, across 
the two sampling periods. The dominant guild was the insectivores, 
with 27 species out of 63. Within farm type, the pattern persisted: 

TA B L E  1 Raw abundances of feeding and size guilds of birds recorded in farms around Nyungwe NP, Rwanda. Sunbirds are classified 
as omnivores because they consume both invertebrates and nectar. The dietary classification follows Wilman et al. (2014). Small: <44 g; 
medium: 45-200 g; large: > 201 g. numbers given in brackets are the percentage of abundances computed within each farm type

Invertebrates FruitNect Omnivore Plant/seed VertFishSc

Mixed crops

Small 20 (32.7) 4 (8.5) 5 (15.91) 10 (35.8)

Medium 1 (1.27) 1 (1.63) 2 (0.36)

Large 1 (0.72) 2 (1.27) 1 (0.36) 3 (1.45)

Tea

Small 12 (40.1) 2 (1.49) 8 (11.89) 4 (30.2)

Medium 1 (0.5) 2 (4.46) 2 (1.49)

Large 1 (6.93) 1 (2.97)

Note: FruitNect denotes birds feeding on fruits and/or nectar, while VertFishSc denotes birds feeding or scavenging on vertebrates, including fish.

http://www.birdtree.org
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small insectivores were the most commonly recorded guild in terms 
of species richness, while granivores dominated in terms of abun-
dances in mixed crop farms (Table 1). The Nyungwe NP provided the 
source for some forest species that strayed into the more open ag-
ricultural habitats, including the endemic birds we have mentioned. 

The majority of these species were generalists. In total, 11 species 
were shared between the forest and tea farms, and 31 species be-
tween the forest and mixed crop farms.

The turnover of species among samples per season was high, as 
evidenced by the length of the DCA axes being above four standard 

F I G U R E  2 Biplot of Detrended 
correspondence analysis axes 1 and 2, 
showing bird species composition in 
40 samples (each comprising 5 point 
counts sampled on the same day in close 
proximity) within tea and mixed crop 
farms around Nyungwe National Park, 
Rwanda in 2017–2018. The data comprise 
20 such samples from November 2017 
to February 2018, and the same sites 
resampled between June and August 
2018. For readability, in cases of overlap, 
only the species with a higher occurrence 
value is displayed. For full species names, 
the reader is referred to Table S2. The 
outlying species Columba arquatrix (C.AR) 
was recorded at an unusually high number 
of 12, while Tchagra australis (T.AU) was 
the only species in its sample
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deviation units (Jongman et al., 1995), with the first and second axes 
mostly reflecting elevation (Figure 2; Figure S1). The DCA shows a 
degree of overlap among the farm types. This was confirmed by the 
ANOSIM test, which revealed samples within the farm types were 
moderately distinct (ANOSIM sample statistic R = 0.299, Table S3), 
however, the differences were not statistically significant between 
seasons (Figure 3, Table S3). Tea samples were more spread out, but 
the extremes were dominated by samples characterized by few spe-
cies (in terms of encounter rate), particularly those normally affili-
ated to gallery forest, scrub, and other habitats adjacent to forest, 
including montane grasslands, such as Columba arquatrix, Cisticola 
ayresi, and Cossypha caffra.

3.2  |  Phylogenetic and functional diversity 
between farm types

Phylogenetic diversity 1PD(T) differed between farm types 
(Figure  4). It was significantly higher in mixed crops than in 
tea farms (F[1, 18]  =  11.31, p  =  .003). Varying the importance of 
abundances, the difference between farm types was more pro-
nounced with 0PD(T), which accounts only for species richness 
(F[1, 18] = 15.56, p =  .001), and moderate for 2PD(T), which places 
more emphasis on the most abundant species (F[1,18]  =  5.3410, 
p = .0329). Overall FDis did not differ significantly between farm 
types. There was no effect of season, or of the interaction with 
farm type, on either PD(T) or FDis. A focus on a subset of traits 
revealed higher FDis values in trophic traits in mixed crops than 
in tea farms (Figure 5, t[17.11] = 3.8854, p =  .0012). Differences in 
ses.MNTD values between the farm types were not statistically 
significant (t [18] = 0.841, p ≥ .05), however, ses.MPD were close to 
significance with higher values exhibited by mixed crops than tea 
farms (t[18] = 2.08224, p = .0519).

3.3  |  Effects of habitat descriptors on 
phylogenetic and functional diversity

The most parsimonious model showed crop height and elevation 
to be important drivers of phylogenetic diversity, while floristic di-
versity was important for functional diversity. Averaging support-
ing models within delta AICc <2 of the model with the lowest AICc 
revealed floristic diversity, crop height, elevation, and tree number 
to be predictors with the most influence (Table 2a). The same predic-
tors were also found to drive functional diversity, with tree number 
considered the most important factor (Table 2b). Humidity and soil 
moisture did not have a significant effect on either 1PD(T) or FDis.

4  |  DISCUSSION

There was moderate support for the hypothesis that bird species 
composition differed between tea plantations and mixed crops. Our 
prediction that avian diversity was higher in mixed crops than in tea 
plantations was strongly supported for phylogenetic diversity, but 
not for functional diversity. Analyzing subsets of traits separately 
revealed less diversity of trophic-related traits in tea plantations. 
Floristic diversity, crop height, elevation, and the number of trees 
were found to be major attributes influencing, to varying degrees, 
both functional and phylogenetic diversity.

4.1  |  Avian diversity varies with farming practice

Although there was moderate overlap between bird species encoun-
tered in tea and mixed crop farms, species in tea farms comprised 
a high number of rare species in terms of encounter rate, particu-
larly of those species normally associated with forest and forest 

F I G U R E  4 Comparison of (a) avian phylogenetic diversity (1PD(T)), and (b) avian functional dispersion (FDis) values across two seasons in 
tea and mixed crop farming systems around Nyungwe NP, Rwanda. Seasons 1 and 2 denote the dry and wet season, respectively. MC: mixed 
crops. Sample size (N = 40 samples) was equal between the two farm types. Each sample comprised 5 adjacent point counts. Statistical 
differences were tested using a univariate type III repeated-measure ANOVA. The error bars are based on the model and represent 95% 
confidence intervals
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edge habitats. These birds may have been attracted by the remnant 
trees and for the case of the afromontane endemic sunbirds, also 
by Eucalyptus woodlots, whose flowers are increasingly important 
nectar sources, especially outside forests (Vande weghe & Vande 
weghe, 2011).

Mixed crops farms harbored twice the number of common bird 
species (those of ≥10 records) found in tea plantations. Since no 
significant changes were registered in the community phylogenetic 
structure as shown by ses.MPD and ses.MNTD values, the loss of 
phylogenetic diversity in tea farms compared to mixed crops can be 
explained by the reduction of species. Bird families that were not 
present in tea plantations, but were associated with mixed crops 
included Threskiornithidae, Accipitridae, Laniidae, Bucerotidae, and 
Gruidae. Our findings concur with Frishkoff et al.’s  (2014) study in 
Costa Rica, which found intensive monocultures presented greater 
probability of species extirpation than more heterogenous agricul-
tural systems.

The maintenance of overall functional diversity in tea plantations 
relative to mixed crop farms can partly be attributed to the func-
tional redundancy in the latter, which mirrors that often found in nat-
ural ecosystems across a range of taxa (Cooke et al., 2019; Edwards 
et al., 2014; Prescott et al., 2016). For instance, both farm types were 
dominated by small-sized insectivorous birds. On the other hand, the 
absence of functional differences between the farming types can be 
explained by compensatory dynamics, where disturbance-tolerant 
species replace habitat specialists, resulting overall in the mainte-
nance of comparable functional diversity at the community level 
(Morante-Filho et al., 2018; Supp & Ernest, 2014). For instance, some 
of the species only recorded in mixed crop farms had substitutes in 
tea farms with equivalent functional trait values, among them were: 
swallows, Hirundo rustica, substituted by Psalidoprocne prisoptera; 

pigeons, Streptopelia semitorquata by Turtur tympanistra; and shrikes, 
Lanius mackinnoni and L. collaris replaced by a cuckooshrike, Coracina 
caesia and a tchagra, Tchagra australis. These results highlight the 
value of analyzing different aspects of avian diversity in response 
to habitat variation. However, the compensatory dynamics reported 
in this study cannot always be generalized to other human-modified 
habitats, as shown by a range of studies that recorded alterations of 
the functional trait structure of birds that occupy simplified habitats 
(Bregman et al., 2016; Cannon et al., 2019; Rocha et al., 2019). Such 
alterations were also found in this study at a finer scale of analysis, 
as discussed below.

The main difference in functional diversity was found in trophic 
trait values. Bird communities in tea plantations contained reduced 
diversity of functional traits, reflecting reduced sources of fruits 
and grains. This limited the occurrence of frugivores and granivores, 
including small mammals, and presumably reduced populations of 
raptors preying on them. Large-sized birds are often reported to be 
the first to disappear in agricultural systems, particularly in mono-
cultures, due to greater exposure to hunting (Frishkoff et al., 2014; 
Thiollay,  2006). The lack of difference in the size traits in our 
study could be explained by the fact that the hunting of birds in 
Rwanda has not been a substantial tradition (Vande weghe & Vande 
weghe, 2011).

4.2  |  Similar habitat attributes drive phylogenetic  
and functional diversity

We found that avian diversity increased with floristic diversity and 
height on farmlands as more complex habitat structure and variabil-
ity permits the coexistence of bird species of diverse lineages and 
functional traits (Huang et al.,  2014; Karr & Roth,  1971; Vollstädt 
et al., 2017). These findings concur with those of other studies con-
ducted in tropical agricultural systems, which have described how 
the low niche-breadth of monocultures restricts understorey birds, 
affecting diet and foraging stratum traits (Almeida et al., 2016; Azhar 
et al., 2013; Prescott et al., 2016). The proportion of noncrop vegeta-
tion in a farm also positively influences avian diversity and beneficial 
insects (Carvell et al., 2015; Grass et al., 2016; Lee & Goodale, 2018). 
In our study, the most diverse farms had the tallest species of non-
crop plants, growing on uncultivated strips, resting land, as weeds, 
or for farm demarcation and medicinal use. The noncrop plants were 
dominated by the Asteraceae, whose floral morphology attracts 
large numbers of insects and other invertebrates. Plants grown for 
farm demarcation also constituted different tree species and shrubs, 
particularly Dracaena afromontana, which provided variation of verti-
cal layers for birds with different strata affinities.

The number of trees was particularly important for avian func-
tional diversity. Some of the fruit-bearing trees were remnants of the 
cleared montane rainforest. Such forest remnants are crucial for the 
maintenance of frugivores and nectivores and thus enhance land-
scape connectivity and maintain seed dispersal and pollination pro-
cesses in agricultural systems (Şekercioğlu et al., 2019; Tscharntke 

F I G U R E  5 Effects of farming practice on morphological traits of 
birds found in the Nyungwe NP agricultural matrix, Rwanda (N = 20 
samples). Functional diversity is calculated as functional dispersion 
(FDis). MCR: Mixed crops; TEA: TEA plantations. Disp: Dispersal, 
Locom: Locomotory, Troph: Trophic. Error bars show the standard 
error of the mean. Statistical differences were tested using a Welch 
two sample t-test. Asterisks denote significant pairwise differences 
at *p < .1, **p < .05, and ***p < .01 within the model
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et al., 2008). Trees also complement crops by providing upper sto-
rey habitats, which are used by canopy dwellers, perching birds, 
and tree-nesting birds, hence permitting complementary functional 
strategies (Kupsch et al., 2019; Şekercioğlu, 2012). The proximity of 
farms to forests in the tropics has been reported to contribute to the 
maintenance of avian diversity (Cannon et al., 2019; Raman, 2006), 
we thus expected to see a negative relationship between phylo-
genetic and functional diversity and distance from the adjacent 
1019 km2 Nyungwe forest. The lack of evidence for this effect could 
be attributed to the extreme loss of forest species in agrosystems 
and colonization of lineages from a nonforest species pool.

Elevation negatively influences vegetation composition and struc-
tural configuration in natural ecosystems (Jankowski et al.,  2013; 
Peters et al.,  2016), hence, high negative correlation between 

elevation and both floristic diversity and crop height should be ex-
pected. However, we suggest that human manipulation of agricul-
tural systems, by for instance pruning tea plants at a certain height, 
or choosing the type and number of crops grown, may have limited 
this expected effect (Table  S1). Furthermore, elevation is factored 
into the decision-making processes on the species and number of 
trees planted on a farm. A study by Mukuralinda et al.  (2016) on 
tree-based systems in Rwanda found that farmers in high elevation 
areas preferred planting trees that could supply stakes for climbing 
beans, for timber, and to help control soil erosion. As a result, trees 
planted in our study area were dominated by nonindigenous species 
of Eucalyptus, Grevillea, and Persea. Nonnative trees in Rwanda are 
known to support less avian diversity compared to indigenous spe-
cies (Rurangwa et al., 2021; Vande weghe & Vande weghe, 2011), thus 

TA B L E  2 (a and b) Best supported models with ΔAICc <2 of the model with lowest AICc, analyzing the influence of farm attributes on (a) 
1PD(T), and (b) FDis of birds sampled in farmlands around Nyungwe NP, Rwanda (N = 20 sites). The model average is calculated taking into 
consideration all initial predictors. The relative importance is obtained by summing the Akaike weights over all models in which the predictor 
variables appear. Only predictor variables retained in model selection are shown in the Table. 95% confidence intervals (CI) are also given. 
The small coefficients in b are due to the use of the Gower distance in the computation of FDis scores, which is the recommended distance 
for mixed variables. Model order (i.e., model no.) is determined by AICc values

1PD(T)

Model no.
Floristic 
diversity Crop height Elevation Tree number AICc ΔAICc Weight

1 28.48 −22.43 205.31 0.00 0.089

2 27.67 17.86 205.45 0.14 0.083

3 39.29 0 205.52 0.21 0.080

4 35.01 0 14.02 205.56 0.25 0.079

5 22.68 −23.22 13.5 205.78 0.47 0.070

6 16.63 20.47 −13.89 207.03 1.72 0.038

7 26.94 13.91 10.78 207.14 1.83 0.036

8 25.44 0 −13.39 15.84 207.28 1.97 0.033

Average 20.93 13.56 −9.07 5.83

CI-2.5% 5.54 −0.39 −40.65 −4.13

CI-97.5% 55.49 43.99 0.71 31.33

Importance 0.69 0.62 0.45 0.43

b. FDis

Model no. Tree number
Floristic 
diversity Elevation Crop height AICc ΔAICc Weight

1 0.02 −64.67 0.00 0.26

2 0.02 −0.02 −64.07 0.60 0.19

3 0.01 0.02 −63.82 0.84 0.17

4 0.021 −63.44 1.23 0.14

5 0.02 −63.15 1.52 0.12

6 −0.02 −63.11 1.56 0.12

Average 0.01 0.01 −0.06 0.002

CI-2.5% −0.01 −0.02 −0.03 −0.01

CI-97.5% 0.03 0.03 0.01 0.02

Importance 0.48 0.43 0.31 0.14

Note: Bold values indicate averages of parameter estimates for each predictor variable.
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their intentional displacement within high elevation areas could con-
tribute further to elevation effects on the avian diversity.

4.3  |  Landscape management implications

Although the use of electrical fencing might help in deterring ani-
mals and in reducing human–wildlife conflicts, the high frequency 
of forest animals raiding subsistence crops that bear fruits, grains, 
and tubers in areas around rainforests, encourages the planting of 
less palatable, commercially valuable monoculture crops, such as 
tea. Moreover, there are other ongoing incentives to adopt intensive 
agriculture in Afrotropical landscapes. For example, in Rwanda, since 
2008, the “crop intensification program,” has promoted the cultiva-
tion of single crops and the application of pesticides and inorganic 
fertilizers. The expansion of monoculture estates generates detri-
mental effects on avian diversity and threatens important ecosys-
tem services such as predation, pollination, and seed dispersal, which 
directly influence farm productivity and cost, as evidenced by re-
search in different parts of the tropics (Gurr et al., 2016; Sinu, 2011). 
Our research suggests that where tea monoculture is nonetheless 
a favored agricultural option from an economic perspective, prac-
ticing agroforestry guarantees maintenance of good levels of avian 
diversity, and the meeting of restoration goals pledged by Ministers 
of African Countries (2016) and their representatives in the “Kigali 
declaration on forest landscape restoration in Africa.” In the context 
of conflicting policy desiderata, the impact of agricultural intensifi-
cation programs and of mitigation schemes to reduce their impact 
on farmland biodiversity are topics that future studies should inves-
tigate for improved agricultural policy guidance.
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