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The interaction between hypoxia and RNA N6-methyladenosine (m6A) is an emerging
focus of investigation. However, alterations in m6A modifications at distinct hypoxia levels
remain uncharacterized in gastric cancer (GC). Unsupervised hierarchical clustering was
performed to stratify samples into different clusters. Differentially expressed gene analysis,
univariate Cox proportional hazards regression analysis, and hazard ratio calculations
were used to establish an m6A score to quantify m6A regulator modification patterns.
After using an algorithm integrating Least absolute shrinkage and selection operator
(LASSO) and bootstrapping, we identified the best candidate predictive genes. Thence,
we established an m6A-related hypoxia pathway gene prognostic signature and built a
nomogram to evaluate its predictive ability. The area under the curve (AUC) value of the
nomogram was 0.811, which was higher than that of the risk score (AUC=0.695) and
stage (AUC=0.779), suggesting a high credibility of the nomogram. Furthermore, the
clinical response of anti-PD-1/CTLA-4 immunotherapy between high- and low-risk
patients showed a significant difference. Our study successfully explored a brand-new
GC pathological classification based on hypoxia pathway genes and the quantification of
m6A modification patterns. Comprehensive immune analysis and validation
demonstrated that hypoxia clusters were reliable, and our signature could provide a
new approach for clinical decision-making and immunotherapeutic strategies for
GC patients.

Keywords: hypoxia, m6A, gastric cancer, immune infiltration, immune checkpoint blockade
INTRODUCTION

Gastric cancer (GC) is the fifth most malignant tumor worldwide (1). Greater than 1 million new
cases have been identified, and most cases are already advanced at diagnosis, explaining why GC has
the third highest number of cancer-related deaths (2). Based on the Lauren/WHO classification and
the lymph node metastasis [tumor node metastasis (TNM)] staging of tumors, current treatments
org June 2022 | Volume 13 | Article 8600411
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exhibit a poor correlation with the molecular pathology of
cancer. Despite the development of new pathological
classifications, such as The Cancer Genome Atlas (TCGA)
subtypes and Asian Cancer Research Group (ACRG) subtypes,
the clinical predictive value of these classification systems
remains insufficient (3, 4). To identify more molecular markers
that are closely related to GC progression, accurately predicting
developmental trends and providing individualized treatments
for patients has become a troublesome point in current relevant
research fields.

With greater insight into tumor research, changes in the
tumor microenvironment (TME) have drawn more attention,
and hypoxia plays an important role in tumorigenesis (5).
Hypoxia is one of the characteristics of the microenvironment
of solid tumors and one of the greatest obstacles to cancer
treatment (6–8). As a master regulator of cellular adaptation to
hypoxia, hypoxia-inducible factor 1 (HIF1) has been proven to
extensively regulate the expression of hypoxia genes and hypoxia
adaptation–related signal transduction pathways, including
EPO, VEGF, iNOS, and other genes to increase oxygen
transmission and PDK-1, ALDOA, bcl-2, and other genes to
reduce oxygen consumption (5, 9–12). Another feature of the
TME is the change in immune cells, which contributes to
maintaining a complex dynamic interaction with tumor cells
(13, 14). Immunotherapy, especially programmed cell death-1
(PD-1)/PD-1 ligand 1 (PD-L1), and immune checkpoint
blockade (ICB), has made remarkable achievements in recent
years (15, 16). However, sustained clinical responses are only
induced in a minority of cancer patients, indicating that more
studies on this topic should be performed (17, 18).

As the most common RNA modification in eukaryotic cells,
N6-methyladenosine (m6A) not only plays a related role in
immune regulation but also plays a vital role in the occurrence
and development of cancer through various processes, such
as proliferation, migration, and invasion (19, 20). m6A
regulators consist of three types of proteins: “writers” with
methyltransferase activity, “erasers” with demethylase activity,
and “readers” with m6A binding sites (20–22). Recent studies
have demonstrated that the abnormal m6A modification
patterns change the TME and lead to tumor progression,
and hypoxia plays a potential role (23, 24). Recently, several
posttranscriptional modification databases have been established
such as the m6AVar and RMBase databases (25, 26), which
provided important information about m6A-related variants to
explore the molecular mechanisms of m6A modification for
experimental biologists. Moreover, 2 powerful m6A functional
analysis tools ConsRM and m6A2Target (27, 28) were also
developed. However, the specific mechanisms in GC remain
elusive, so a comprehensive analysis of hypoxia and m6A is
urgently needed and indispensable.

In this study, we identified three hypoxia pathway subtypes in
GC. By correlating hypoxia with m6A modification patterns and
defining the m6A score to quantify m6A modification patterns, we
ultimately established a robust signature and prognostic nomogram.
This study provides information on clinicopathological
characteristics and a classification system that are more in line
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with reality and can be used to guide clinical decision-making. In
addition, this study aims to improve GC patient survival.
MATERIALS AND METHODS

Data Collection and Preprocessing
GC patients with survival information were retrospectively
collected from the Gene Expression Omnibus (GEO, http://
www.ncbi.nlm.nih.gov/geo/) and The Cancer Genome Atlas
(TCGA, https://portal.gdc.cancer.gov/), and GC samples without
clinical data were excluded. In total, 1,673 patients from ten
cohorts were enrolled, including The Cancer Genome Atlas-
Stomach Adenocarcinoma (TCGA-STAD), GSE13861,
GSE26899, GSE26901, GSE57303, ACRG Cohort (GSE62254),
Singapore Patient Cohort (GSE15459 and GSE34942), and
GSE84437 (GSE84426 and GSE84433). The TCGA-STAD
cohort (FPKM normalized) was transformed into the transcripts
per kilobase million (TPM) format. For microarray cohorts, the
normalized matrix files with expression data and clinical
information were directly downloaded and log2 transformed.
The remaining cohorts except TCGA-STAD were merged into
one cohort, and the “sva” R package was employed to remove
batch effects (29). The predictive value of the nomogram was
tested using an additional cohort GSE28541. In addition, two
immune checkpoint blockade treatment cohorts (IMvigor210 for
PD-1 treatment and Nathanson2017 for CTLA-4 treatment) were
obtained, and the corresponding normalized data were utilized to
determine whether the m6A-related hypoxia signature could be
used to screen immunotherapy-sensitive patients. Details are
provided in Supplementary Table S1.

Unsupervised Hierarchical Clustering
Reveals Distinct Characteristics of
Different Clusters
We systematically collected a set of hypoxia-related genes (https://
www.gsea-msigdb.org/gsea/msigdb/cards/HALLMARK_
HYPOXIA) and a total of 23 m6A regulators, including 8 writers
(METTL3, METTL14, WTAP, RBM15, RBM15B, ZC3H13,
CBLL1, and VIRMA), 2 erasers (ALKBH5 and FTO), and 13
readers (IGF2BP1/2/3, YTHDF1/2/3, YTHDC1/2, FMR1,
ELAVL1, HNRNPC, HNRNPA2B1, and LRPPRC) (22, 30). To
group hypoxia clusters, we performed principal component
analysis (PCA) for data reduction. According to the Kaiser–
Harris criterion, principal components <1% were considered
noise and removed. After calculating the Euclidean distance, the
ten-combined cohort was grouped using unsupervised
hierarchical clustering with the “ward. D2” linkage criterion.
Target genes for increasing oxygen delivery and reducing
oxygen consumption were obtained from the Hypoxia-inducible
factor 1 (HIF-1) signaling pathway to explore the hypoxic status
between different clusters. Similarly, the hierarchical clustering
method using the “ward.D” linkage criterion divides patients into
high, medium, and low clusters according to m6A regulators.
Furthermore, the results were visualized in clustering
June 2022 | Volume 13 | Article 860041
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dendrograms, PCA, and t-distributed stochastic neighbor
embedding (t-SNE) figures, and Kaplan Meier (KM) curves
were employed to show the trends of overall survival (OS) and
recurrence-free survival (RFS). Additionally, we explored the
connections between the subtypes defined above and previous
molecular stratifications of GC via a percentage stacking diagram
(3, 4, 31).

Pathway Enrichment Analysis and Single-
Sample Gene Set Enrichment Analysis
Using the HALLMARK gene set (downloaded from the MSigDB
database v7.1) as the background pathway, gene set variation
analysis (GSVA) was performed using the “GSVA” R package to
show pathway differences in 3 hypoxiaClusters (32). Moreover,
based on immunity-related gene sets reported in a previously
published article (33), we employed GSVA enrichment analysis
to investigate the distinct response patterns of hypoxiaClusters in
innate and adaptive immunity.

Single-sample gene set enrichment analysis (ssGSEA) was
performed for other gene sets obtained from previously
published studies as follows: the biomarkers of biological
processes according to Mariathasan et al. (34), hypoxia
biomarkers, T-cell dysfunction, and immunotherapy resistance
biomarkers and immunosuppressive cell signatures (Supplementary
Table 2).

Immune Cell Infiltration Estimation
For each sample, the ESTIMATE algorithm was adopted to
assess the tumor purity and population estimation of stromal
and immune cells based on gene expression (35). Twenty-eight
different immune cell infiltration patterns, including cells
executing antitumor reactivity and cells delivering protumor
suppression, were calculated from the gene sets reported in a
previous study via ssGSEA (Supplementary Table 2).
Furthermore, an additional 22 immune cells calculated by the
CIBERSORT deconvolution algorithm, including neutrophils,
eosinophils, mast cells, dendritic cells, macrophages, natural
killer cells, regulatory T cells (Tregs), B cells, CD4+ T cells,
CD8+ T cells, and plasma cells, were assessed to quantify
infiltrating pattern heterogeneity (36).

Quantization of the Modification Pattern of
m6A Regulators
Based on the m6A score construction method of Shen et al. (22),
differentially expressed genes (DEGs) between 3 m6A clusters
were extracted using the “limma” R package (37). Univariate Cox
regression analysis was performed on DEGs with a p-value <0.05;
then, screened genes were employed for the construction of the
m6A score and normalized from -1 to 1 to reduce the effect of the
gene expression value. Afterwards, we calculated the hazard ratio
(HR) of all screened genes and divided them into two groups
based on a cut-off score of HR=1, and the m6A score was defined
as the difference value of the sums in each group. Tumor
mutation burden (TMB) was calculated using “maftools”
according to the somatic mutation data acquired from the
TCGA database (38). Pearson correlation analysis was
employed to reveal the correlation between m6A and TMB.
Frontiers in Immunology | www.frontiersin.org 3
Subsequently, the distribution differences in somatic mutations
between the low and high m6A score groups were analyzed and
visualized using a waterfall diagram.

Establishment of an m6A-Related Hypoxia
Signature by Machine Learning
Differential expression analysis was performed to screen
differentially expressed hypoxiaCluster genes between different
hypoxiaClusters. The m6A-related hypoxia pathway genes
(MRHPPGs) were defined based on the following criteria:
correlation r >0.5 and p-value <0.001 between DEHCGs and
the m6A core. Data partitioning and standardization were
processed using the classification and regression training
(caret) package in the R(caret) package (39). First, the entire
dataset was divided into a training and testing cohort at a ratio of
6:4 using a stratified sampling method for each cohort. Then, the
function “preProcess” was used to standardize the training
cohort and other cohorts based on the parameters calculated in
the training cohort. For feature engineering, we used 80% of the
samples randomly chosen from the original sample each time.
After 1,000 bootstrapping replications, genes with a p-value
<0.01 that appeared greater than 900 times in univariate Cox
proportional hazards regression analysis were included in further
analyses. Furthermore, an algorithm integrating LASSO and
bootstrapping was used to identify the best candidate
predictive genes (40, 41). The optimal candidates that were
repeated more than 600 times in 1,000 iterations were
determined through 5 cross-validations. Then, stepwise
multivariate Cox regression analysis was used to build a
prognostic signature, which was determined as follows: risk
score = S expression level of gene Xi × Cox coefficient of gene
Xi. A survival decision tree was used to show the process of
clinical decision-making. The predictive ability of the nomogram
for 3-, 5- and 7-year OS was assessed, and external validation was
performed using cohort GSE28541. A calibration curve was
generated to compare the predicted survival rates with the
observed survival rates (42).

Cell Culture and Quantitative Real-Time PCR
The human gastric epithelial cell line GES-1 and GC cell lines
HGC-27, NCI-N87 were obtained from Shanghai Anwei
Biotechnology Co., LTD, China. GES-1 and NCI-N87 were
cultured in an Roswell Park Memorial Institute (RPMI) 1640
(Gibco, US) medium, and HGC-27 was cultured in a Dulbecco's
modified eagle medium (DMEM) (Gibco, US) medium with 10%
fetal bovine serum (FBS; Gibco) and 1% penicillin/streptomycin
in a humidified atmosphere of 5% CO2 and 20% O2 at 37°C.
Total RNA was extracted using FastPure Cell/Tissue Total RNA
Isolation Kit V2 (Vazyme, RC112-01) and reverse-transcribed
into cDNA using HiScript III All-in-one RT SuperMix Perfect
for qPCR (Vazyme, R333-01). Real-time PCR was performed
using ChamQ Universal SYBR qPCR Master Mix (Vazyme,
Q711-02). The primer pairs used in qRT‐PCR were as follows:
APOD 5′‐AATCGAAGGTGAAGCCACCC‐3′ (forward) and
5′-GTGCCGATGGCATAAACCAG‐3′ (reverse); CCN3 5′‐
AGGCAGAGTTTCAGTGCTCC‐3′ (forward) and 5′‐TGCA
GGTCCCAATGACCATC‐3′ (reverse); DACT1 5′‐TTGAA
June 2022 | Volume 13 | Article 860041
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CTGTTTGAGGCGAAGAG‐3′ (forward) and 5′‐ACTGA
ACACCGAGTTAGAGGAAT‐3′ (reverse); EML1 5′‐CAGTT
CTGCAACGATGACAGC‐3′ (forward) and 5′‐GCCGAA
CCACATCAGCTAGAG‐3′ (reverse); MMP23B 5′‐TAGGC
TTCTACCCGATCAACC ‐ 3 ′ ( f o r w a r d ) a n d 5 ′ ‐
CGCTGTCGTCGAAGTGGAT‐3′ (reverse); RBPMS2 5′‐
AAGACAGCCTGTTGGTTTTGT‐3′ (forward) and 5′‐
CGAATACCGTTCAGCGCATT‐3′ (reverse); TUBB6 5′‐
TGGTGGACTTAGAGCCAGG‐3 ′ ( forward) and 5 ′‐
CCCTTTCGCCCAGTTGTTC‐3′ (reverse).

Western Blotting
The tumor cells were lysed with RIPA buffer containing a
protease inhibitor cocktail. These cells were kept on ice for
approximately 1 h and vortexed every 15 min at 12,000 rpm
and centrifuged for 15 min. The protein concentration in the
lysate supernatant was measured by Bicinchoninic acid (BCA).
The whole lysates were diluted to the same concentration, 80 ml
of lysates were taken and 20 ml of 5×SDS-PAGE loading buffer
were added. The samples were boiled for 15 min. Approximately
10 ml for each sample were loaded when running Sodium dodecyl
sulfate-Polyacrylamide gel electrophoresis (SDS-PAGE). The
protein was fractionated by 12.5% SDS-PAGE. The protein was
transferred to the Polyvinylidene difluoride (PVDF) membrane
at 300 V for 1 h in an ice bath. The membrane was blocked with
5% Milk-TBST for 2 h at room temperature. Then, the
membrane was probed with primary Abs for glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) (1:10,000), and HIF-a
(1:1,000) overnight at 4°C. HRP-conjugated anti-rabbit IgG (1:
20,000) was used as a secondary Ab. After secondary Ab
incubation for 2 h at room temperature, the membrane was
washed for 5 times with PBST and then blotted with an
Enhanced chemiluminescence (ECL) solution. The blots were
imaged in the dark room with an imaging machine.

Statistical Analysis
All data processing was performed using the R 4.0.3 software. For
two groups, statistical significance was estimated via unpaired
Student’s t-tests for normally distributed variables and Wilcoxon
rank-sum tests for nonnormally distributed variables. For more
than two groups, one-way ANOVA tests and Kruskal–Wallis tests
were used (43). The cut-off values of continuous variables, such as
OS, were determined using the “survminer” R package. The area
under the curve (AUC) of time-dependent receiver operating
characteristic (ROC) curves was visualized by the “timeROC” R
package (44), and the ROC curve of the immune checkpoint
blockade therapy response was assessed using the “pROC” R
package (45). Differences with p < 0.05 were considered
statistically significant (*p < 0.05; **p < 0.01: ***p < 0.001: ****p
< 0.0001).
RESULTS

The Hypoxia Status in Gastric Cancer
The flow chart of this study is shown in (Figure 1). After
unsupervised hierarchical clustering, we classified 3 clusters
Frontiers in Immunology | www.frontiersin.org 4
with distinct hypoxia statuses (Figure 2A). Next, we evaluated
how the hypoxia status affected patient prognosis. Both overall
survival (OS) and recurrence-free survival (RFS) prognostic
analysis for the three major hypoxia statuses demonstrated a
particularly prominent survival disadvantage in hypoxiaCluster-
high patients (Figures 2B, C). The expression levels of target
genes involved in increased oxygen delivery and reduced oxygen
consumption varied among the clusters (Figures 2D–F),
confirming that the different hypoxia clusters exhibited distinct
hypoxia statuses. Patients with invasive and Epithelial-
Mesenchymal Transition (EMT) subtypes were classified as
hypoxiaCluster-high, whereas proliferative and TP53-negative
subtypes were classified as hypoxiaCluster-low. We still observed
that cancers classified as hypoxiaCluster-high exhibited poorer
differentiation and were enriched in the diffuse subtype
(Supplementary Figures 1A–D). In GC, the EMT molecular
subtype and diffuse histological type were closely related to a
shorter OS. Our hypoxiaCluster classification was consistent
with other hypoxia characteristics (Supplementary Figure 1E).
These results suggested that there were different hypoxia statuses
with a significant prognostic value and that the GC characterized
by a high hypoxia state was closely correlated with high
malignancy and rapid tumor progression.

TME Landscape in GC Tumors With
Distinct Hypoxia Statuses
A significant difference was found: hypoxiaCluster-high, which had
theworst outcome, had thehighest stromal score, immune score, and
ESTIMATE score but had the lowest tumor purity (Figure 3A).
Moreover, the log‐rank test revealed that patients with high stromal
scores, low immune scores, high ESTIMATE scores, or low tumor
purity had a poor prognosis (Supplementary Figures 1I, J). These
results suggested that hypoxiaCluster-high might be in a stroma
activation state, which is associated with a worse outcome (46).
Moreover, hypoxiaCluster-high was prominently associated with
high T-cell suppression and exhaustion (Supplementary Figure
1F). We conducted GSVA enrichment analysis to investigate the
biological behaviors among these distinct hypoxia clusters. As shown
inSupplementaryFigure 1G, hypoxiaCluster-highwas dramatically
enriched in stromal and metastatic activation pathways, such as
EMT, angiogenesis, myogenesis, hedgehog signaling, and TNFa
signaling via NFkB; hypoxiaCluster-low exhibited enrichment
signaling pathways associated with MYC targets V2, MYC targets
V1, E2F targets, and the G2 M checkpoint. To our surprise, the
subsequent analysis of infiltrating immunocyte populations
suggested that hypoxiaCluster-high was significantly enriched in
innate immunocytes, including natural killer cells, macrophages,
mast cells, MDSCs, and plasmacytoid dendritic cells (Figure 3B;
Supplementary Figure 1H). A previous research reported that the
immune-excluded phenotype also exhibited the presence of a great
number of immunocytes, but the immunocytes remained in the
matrix around the nest of tumor cells rather than penetrating the
parenchyma. Stromal activation in theTMEis considered topromote
T-cell inhibition (15). Moreover, hypoxiaCluster-high was
prominently associated with high T-cell suppression and
exhaustion (Supplementary Figure 3B). Thus, we conjectured that
stromal activation in hypoxiaCluster-high inhibited the antitumor
June 2022 | Volume 13 | Article 860041
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effect of immune cells. In addition, we found that hypoxiaCluster-
high had an increased abundance of immune cell infiltration,
including cells performing antitumor functions (e.g., effector
memory CD4 T cells, effector memory CD8 T cells, natural killer
cells,naturalkillerTcells, and type1Thelpercells) andcells executing
protumor suppression (e.g., immature dendritic cells, macrophages,
MDSCs, neutrophils, plasmacytoid dendritic cells, regulatory T cells,
and type 2 T helper cells) (Figure 3B). Pearson’s correlation analysis
suggested that the abundances of these two categories of
immunocytes were significantly positively associated in the TME
(Figure 3C). This finding indicated the existence of a feedback
mechanism in which the antitumor immune response could
promote the recruitment or differentiation of cells specialized for
immunosuppression. Based on the above inference, we were
surprised to confirm that the three hypoxia clusters had
dramatically distinct TME cell infiltration features.
The m6A Methylation Modification
Patterns Are Distinct Between
Hypoxic Conditions
It is generally accepted that m6A methylation modification is
involved in diverse biological processes, including dysregulated
cell death and proliferation, the degree of tumor malignancy, and
Frontiers in Immunology | www.frontiersin.org 5
immune modifications. Therefore, we similarly classified three
m6Amethylation modification patterns using the same analysis of
hierarchical clustering mentioned above (Supplementary Figure
2A) based on the mRNA expression levels of 21 regulators that
presented high heterogeneity (Supplementary Figures 2D, E). We
defined these patterns as m6Acluster high, medium, and low,
respectively. The Kaplan–Meier survival analysis for the three
m6Aclusters demonstrated that m6Acluster low presented a
remarkable survival advantage (Supplementary Figures 2B, C).
Patients with invasive subtypes, EMT subtypes, or hypoxiaCluster-
high subtypes were also mainly enriched in m6Acluster high
(Supplementary Figures 2F, H). To further explore the
biological functions affected by m6A modification phenotypes in
distinct hypoxia statuses, we performed an unsupervised
clustering algorithm based on hypoxia-related genes in the three
m6A methylation modification patterns. Analysis indicated that
patients with m6Acluster high were mainly concentrated in the
hypoxiaCluster-high group (Figure 4A), which confirmed again
that hypoxiaCluster-high was significantly relevant to stromal
activation. To further illustrate the potential biological process
associated with m6A regulator modification subtypes, we
established the m6A score and further tested the relation
between the known signatures and the m6A score (Figure 4B).
We observed the distribution differences of somatic mutations
FIGURE 1 | Flow chart.
June 2022 | Volume 13 | Article 860041
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between patients with high and low m6A score in the TCGA-
STAD cohort. Patients with a low m6A score had more extensive
TMB, and the Pearson correlation analysis confirmed that low-
m6A-score tumors were significantly negatively related to tumor
mutation burden (Supplementary Figure 3A, B). Moreover, the
m6Acluster high group exhibited a significantly increased m6A
score compared to the other clusters, while the m6Acluster low
group showed the lowest m6A score (Figure 4F). In addition,
patients with invasive subtypes, EMT subtypes, or IV stage had the
lowest m6A score compared to other corresponding molecular/
histological subtypes (Figures 4C, D, G), which was consistent
with previous studies (46). More importantly, this is the first
report that a high hypoxia status was associated with a significantly
increased m6A score (Figure 4E). These results showed that the
m6A score could also be used to evaluate certain clinical features
and was closely linked to hypoxia status.
Frontiers in Immunology | www.frontiersin.org 6
Construction and Validation of the
Prognostic Signature of m6A-Related
Hypoxia Pathway Genes
In total, 8 candidate predictive genes were identified (Figures 5A, B;
Table 1). The formula for the risk score is as follows: risk score =
0.091592596 × APOD expression + 0.111440156 × CCN3
expression + 0.211698352 × DACT1 expression + (-0.418107247)
× EML1 expression + 0.098618533 × MMP23B expression +
0.230005594 × RBPMS2 expression + 0.06395013 × TAC1
expression + 0.224582981 × TUBB6 expression. The analyses for
the biological processes indicated that high-risk scores were
significantly associated with increased activation of stromal
pathways but presented an immunosuppressive state with
decreased immune checkpoints (Figure 5C). KM curve analysis
showed that patients with low risk scores had a better OS in the
trainingcohort,whichwas consistentwith the testingcohort, and the
A B

D

E

F

C

FIGURE 2 | Three hypoxia types with distinct prognosis characteristic and oxygen transport status. (A) Identification of hypoxiaClusters by unsupervised
hierarchical clustering analysis. PCA and t-SNE analysis supported to divide patients into 3 hypoxiaClusters. (B, C) Kaplan–Meier curves were plotted to
demonstrate the difference of prognosis by OS and RFS. (D, E) The oxygen transport status between different hypoxiaClusters was analyzed through increasing
oxygen delivery and reducing oxygen consumption target genes and correlation. The lines in the boxes represented the median value. (F) Between the two
groups, it was revealed that cluster high had the highest increase in oxygen delivery but the lowest reduction in oxygen consumption, while the cluster low had
the opposite. PCA, principal component analysis; t-SNE, t-distributed stochastic neighbor embedding; OS, overall survival; RFS, recurrence-free survival. The
asterisks represented the statistical p-value (*P < 0.05; **P < 0.01; ***P < 0.001; ****p < 0.0001). The Kruskal–Wallis test was used to compare the statistical
difference between three gene clusters.
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entire cohort served as the validation cohort (Supplementary
Figures 3I–K). The prognostic accuracy of the risk score in the
entire set was assessed; the areas under the ROC curve (AUCs) were
0.66 (62.94%–69.17%, 95%CI), 0.68 (65.18%–71.42%, 95%CI), and
0.67 (63.74%–70.74%, 95% CI) at 3, 5, and 7 years, respectively
(Figure 5D). The MRHPPGs and HIF-1a expression was
significantly elevated in gastric cancer. (Figures 5E, F) For
external validation, the prognostic signature also showed a robust
predictive ability (Supplementary Figures 3C–G). Moreover, we
used the clinicopathological variables and risk score to establish a
nomogram quantifying the risk assessment (Figure 5G). The
predicted AUC values were 0.811 and 0.727 in the entire cohort
andGSE28541, respectively (Figure 5H and Supplementary Figure
3H). The calibration curves presented a high credibility of the
nomogram (Figure 5I). To better illustrate the prospect of the
clinical application of the MRHPPG signature, a decision tree was
used to visualize the stratification level, which displayed significant
differences in survival (Supplementary Figure 4). Sankey diagrams
clearly depicted that a high risk score was robustly related to other
stratificationclasseswithpoorprognosis (SupplementaryFigure4).
Next, we assessed the predictive value of the MRHPPG signature in
Frontiers in Immunology | www.frontiersin.org 7
the immunotherapeutic cohort. The AUC values of the IMvigor210
cohort and ICB.Nathanson2017 cohort in response to treatment
were 0.648 and 0.781, respectively (Figures 6A, B, D, E,
Supplementary Figure 3I). Moreover, we particularly investigated
the ability of the risk score to predict the efficacy of anti-PD-L1 and
anti-CTLA-4 immunotherapy, suggesting that low-risk patients
showed a higher response rate to immunotherapy compared with
high-risk patients (Figures 6C, F and Supplementary Figure 3J).
DISCUSSION

GC is a common malignant tumor with a high recurrence rate (1).
Despite great advances in surgery, radiation, and chemotherapy
over the past decade, the outcome for advanced GC remains poor
(2). The TNM cancer staging system is currently the gold standard
for the assessment of the prognosis of cancer, but this system does
not consider geneheterogeneity (47).Moreover, since the prognosis
of patientswithGCvaries greatly (48), the establishment of a robust
classifier to stratify patients with precise prognosis prediction and
risk stratification is urgently needed at present and is essential to
A

B

C

FIGURE 3 | Landscape of the TME between distinct hypoxia status in GC. (A) The boxplots of the ESTIMATE method were used to explore the TME characteristics
among these distinct hypoxia clusters, suggesting that hypoxia-cluster high had the highest stromal score, immune score, and ESTIMATE score but the lowest
tumor purity (all P-values < 0.0001). The lines in the boxes represented median value. (B) The heatmap depicted the infiltrating difference of 28 immune cell types in
3 hypoxiaClusters. HypoxiaCluster-high had a higher abundance of immune cell infiltration, including cells performing an anti-tumor function (e.g., effector memory
CD4 T cells, effector memory CD8 T cells, natural killer cells, natural killer T cells, and type 1 T helper cells) and cells executing pro-tumor suppression (e.g., immature
dendritic cells, macrophages, MDSCs, neutrophils, plasmacytoid dendritic cells, regulatory T cells, and type 2 T helper cells). Moreover, hypoxia-cluster high was
significantly rich in innate immunocyte infiltration including natural killer cells, macrophages, mast cells, MDSCs, and plasmacytoid dendritic cells. (C) The correlation
between pro-tumor suppression and anti-tumor immunity was analyzed according to 3 hypoxiaClusters, respectively. Pearson’s correlation analysis suggested that
the abundances of these two categories of immunocytes have a significant positive association in TME (all P-values < 0.001). The asterisks represented the statistical
p-value (****p < 0.0001). The Kruskal–Wallis test was used to compare the statistical difference between three gene clusters.
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maximize the benefits produced by individual therapy and a timely
follow-up. A large amount of convincing evidence has suggested
that various malignancies are the result of complex interactions
between tumor cells and nonmalignant cells in the TME, including
fibroblasts,myofibroblasts, endothelial cells, and immune cells (49),
which collectively contribute to the formation of a particular niche
that promotes tumor growth and metastasis (3, 50, 51). In this
research,using thebioinformatics analysis technology,we identified
three distinct hypoxia clusters, which exhibited significantly
different m6A methylation modifications and immune cell
infiltration by comprehensively mining the public transcriptional
data of GC. Moreover, a risk score model was constructed on the
Frontiers in Immunology | www.frontiersin.org 8
basis of 8 MRHPPGs to predict the outcome of GC patients. These
findings provide a new perspective for treatment strategies to
improve the prognosis and risk stratification of patients by
considering the TME characteristics and transcriptomics.

As a tumor hallmark, hypoxia (reduced oxygen availability) is
caused by an imbalance between increased oxygen consumption
and insufficient oxygen supply, and the clinical significance of
hypoxia has been widely reported in cancer therapy (52).
Although the vigorous metabolism and rapid proliferation of
cancer cells can stimulate the formation of a novel vasculature
system that is disorderly, only a vascular system with accurate
distribution in normal tissue can facilitate the delivery of
A

B

D

E F G

C

FIGURE 4 | Comprehensive analysis of distinct hypoxia status between 3 m6A methylation modification patterns. (A) The heatmap of gene set variation analysis
(GSVA) was drawn on the basis of 25 immunity-related gene sets. m6Acluster high, leukocyte migration, myeloid leukocyte cytokine immune response, and
mastocyte activation were mainly concentrated in the hypoxia-cluster high, which suggested hypoxia-cluster high might be in a immunosuppressed and stromal
activation state. (B) The correlation analysis between m6Ascore and the known signatures. Orange indicates an R value > 0, blue indicates an R value < 0. (C–F)
Calculation of the m6Ascore in different cohorts and the correlation in different subtypes, including (C) Singapore patient cohort (GSE15459 and GSE34942), (D)
ACRG cohort (GSE62254), (E) hypoxiaCluster, (F) m6Acluster, (G) Stage. The upper and lower ends of the boxes meant the interquartile range of values. The lines in the
boxes represented the median value. MSI, microsatellite instability. The Kruskal–Wallis test was used to compare the statistical difference between three gene clusters.
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oxygenated blood (53). Here, we identified three distinct hypoxia
clusters with significantly different prognoses, including cluster low
with the worst prognosis and cluster high with the best prognosis,
using hierarchical clustering analysis based on principal
components (removing principal components less than 1%). The
immune-inflamed phenotype, which is also referred to as a hot
tumor, exhibited abundant immunocyte infiltration in the TME
(13, 15). Although the immune-excluded phenotype also exhibited
Frontiers in Immunology | www.frontiersin.org 9
the presence of a great number of immunocytes, the immunocytes
remained in the matrix around the nest of tumor cells rather than
penetrating the parenchyma. The matrix was restricted to the
capsule of the tumor, or it penetrated the tumor itself, illustrating
that the immune cellswere indeed inside the tumor (54).Consistent
with the above statement, we revealed that hypoxiaCluster-high
presented a significant stroma activation status and was
substantially enriched in carcinogenic pathways, including EMT,
A

B

D
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C

FIGURE 5 | Construction and validation of signature and nomogram. (A) The best candidate predictive genes were selected to construct the signature according to
the frequency of genes by Lasso-bootstrapping that was defined more than 600 times in 1,000 times replications. (B) The coefficient value of the 8 selected genes
came from the stepwise multivariate Cox regression analysis. (C) The difference of core biological processes was evaluated between high- and low-risk patients that
were divided according to the optimal cut-off value. The lines in the boxes represented the median value. (D) The area under the ROC curves (AUC) of the entire
data were 0.66 (62.94%–69.17%, 95%CI), 0.68 (65.18%–71.42%, 95%CI), and 0.67 (63.74%–70.74%, 95%CI) at 3, 5, and 7 years, respectively. (E) qRT-PCR
results of MRHPPG expression level in GSE-1 and GC cell lines. (Data are presented as mean ± SD., **P < 0.01). (F) Western blot analyses of HIF-a protein levels in
total cell lysates from paired clinical specimens of normal (N) and tumor (T) tissues from 12 patients with GC. (G) A survival nomogram of 3-, 5-, and 7-year OS was
drawn in view of the risk score and stage. (H) AUC for risk score, stage, and nomogram reached at 0.659, 0.779, and 0.811, respectively, which mean a high
accuracy to be a reliable method. (I) The calibration curve of nomogram showed a favorable result in 3, 5, and 7 years. (***P < 0.001,****p < 0.0001).
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angiogenesis, the Kirsten rat sarcoma viral oncogene homolog
(KRAS) signaling pathway, myogenesis, and TGF beta signaling
pathways, which are considered T-cell suppressive. Moreover, this
finding further confirmed that the hypoxia cluster high was in an
obvious T-cell exhaustion state. Hence, through adequately
exploring the characteristics of TME cell infiltration induced by
distinct hypoxia states, it was not surprising that hypoxiaCluster-
high had activated innate immunity but the poorest prognosis.

m6A methylation is the most common intracellular
modification and is ubiquitously present in eukaryotic mRNA
(19). Accumulating evidence supports a close link between m6A
regulators and hypoxic states. A recent study reported that tumor
hypoxia leads to the epigenetic remodeling of m6A (55). Qing
et al. (56) reported that HIF-1a-induced YTHDF1 expression
was closely related to hypoxia-induced autophagy-related HCC
progression. However, the biological function of m6A
Frontiers in Immunology | www.frontiersin.org 10
methylation modification in distinct hypoxia-induced immune
states remains unknown. Herein, we defined three m6A subtypes
with different clinical outcomes via the same analysis of
hierarchical clustering, which further confirmed that m6A
methylation dysregulation plays a critical role in the
tumorigenesis and progression of various neoplasms.
Specifically, m6Acluster high comprised the worst prognosis
and was related to the highest hypoxic state; m6Acluster low
was associated with the best prognosis and correlated with the
lowest hypoxic state. By clarifying m6A gene signatures and
establishing the scoring system, we could further precisely assess
the effect of m6A modification patterns on GC. Patients with
invasive, EMT, m6Acluster high, and IV stage subtypes were
significantly associated with a higher m6A score, which
demonstrated that the m6A score was a reliable and robust
tool for comprehensively evaluating m6A modification patterns
A B

D E F

C

FIGURE 6 | Validation of signature through two immune-checkpoint blockade treatment cohorts. (A, D) Kaplan–Meier curves were plotted in (A) IMvigor210 cohort
and (D) Nathanson2017 cohort to confirm the credibility of the signature. (B, E) the AUC in IMvigor210 cohort and ICB.Nathanson2017 cohort were 0.648 and
0.781, respectively. (C, F) The response of immune-checkpoint blockade treatment could be connected with high- and low-risk scores, especially in anti-CTLA-4
(c2 test). SD, stable disease; PD, progressive disease; CR, complete response; PR, partial response.
TABLE 1 | Information of 8 m6A-related hypoxia pathway genes

id coef HR HR.95L HR.95H pvalue

APOD 0.091593 1.095918 0.953976 1.258979 0.195593
CCN3 0.11144 1.117887 0.992896 1.258612 0.065457
DACT1 0.211698 1.235775 1.074642 1.421068 0.002979
EML1 -0.41811 0.658292 0.550826 0.786723 4.27E-06
MMP23B 0.098619 1.103645 0.983001 1.239096 0.094981
RBPMS2 0.230006 1.258607 1.070618 1.479604 0.005325
TAC1 0.06395 1.066039 0.957504 1.186878 0.24309
TUBB6 0.224583 1.251801 1.066052 1.469914 0.006135
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and an independent prognostic biomarker for predicting patient
survival in GC. Detailed associations between the m6A score and
clinicopathological characteristics were found in our research.
Our data also suggested a substantially negative relationship
between the m6A score and tumor mutation burden (TMB).
Moreover, we found that the high hypoxia cluster had a higher
m6A score and that the low hypoxia cluster had a lower m6A
score. Based on these results, we hypothesize that the immune-
excluded phenotype of GC patients was accompanied by the
activation of the m6A-related hypoxia pathway and the
acquisition of other biological abilities, such as EMT and
angiogenesis. Previous studies reported that EMT- and TGFb-
related signaling pathway activation led to a weakened transport
of T cells into tumors as well as decreased tumor cytotoxicity
(34, 57).

Finally, our study focused on the MRHPPG signature that
demonstrated a prognostic value. In the training group, we
initially recognized 25 MRHPPGs correlated with a prognosis
and established a prognostic signature comprising 8 MRHPPGs
via multivariate Cox regression and bootstrap-based univariate
analysis with LASSO. Kaplan–Meier analysis suggested that the
overall survival of patients with low risk scores was better than that
of patients with high risk scores. A dramatically distinct risk score
existed between nonresponders and responders, suggesting that we
could more accurately predict the GC patients’ clinical response to
anti-PD-1/CTLA-4 immunotherapy through the MRHPPG risk
score. In addition, the analyses of the biological activity of the gene
signature indicated that high risk scoreswere significantly related to
lower CD8-positive effector T-cell activity, lower immune
checkpoint responses, and higher EMT, further demonstrating
that the activation of the m6A-related hypoxia pathway played an
important role in immune states, especially in the immune-
excluded phenotype. Next, we built a nomogram to calculate a
score representing the OS of GC patients. The calibration plot
suggested that the model has a satisfactory fitting curve and better
clinical application than the traditional staging system.

Several limitations in this research should be noted. First,
several independent external validations were conducted in our
research, but it was still difficult to include all of the diverse
features of patients from different geographic regions when cases
and materials were gathered retrospectively from public
databases. Second, the microenvironment features of distinct
tumor spatial regions might be different; however, the samples
used for analysis were all from the tumor core. Additionally, our
study was not completed enough to cover related bioinformatics
analysis focusing on m6A RNA modification (e.g., databases like
m6AVar and RMBase and functional tools like ConsRM and
m6A2Target) (25, 28, 58). Therefore, further investigations based
on well-designed, prospective, multicenter studies are required.
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Supplementary Figure 1 | The characteristics of 3 hypoxiaClusters. (A–D) The
different proportion of (A) Singapore patient cohort subtype, (B) ACRG subtype,
(C) stage and (D) Lauren subtype were calculated via 3 hypoxiaClusters,
respectively. (E) The comparison of hypoxiaCluster and previously hypoxia clustering
characteristics. (F) A boxplot of cell composition in different hypoxiaCluster indicated
hypoxiaCluster high was associated with high T-cell suppressive and exhaustion.
(G) The heatmap was performed to reveal the difference of gene enrichment in 3
hypoxiaClusters. (H) The result of CIBERSORT deconvolution algorithm was
described to assess the immune cell composition in 3 hypoxiaClusters. Only red
name with “*” means statistical significance. (I–J) Kaplan–Meier curves to display
prognostic difference after dividing patients into high and low groups. The log‐rank
test revealed that patients with high stromal score, low immune scores, high
ESTIMATE score, or low tumor purity related to poor prognosis.

Supplementary Figure 2 | Hierarchical clustering of m6A methylation
modification regulators. (A) Unsupervised hierarchical clustering analysis for m6A
regulators with “ward.D2” linkage criterion was exhibited by cluster dendrogram,
PCA and t-SNE. (B, C) Kaplan–Meier curves were plotted to demonstrate the
difference of prognosis by overall survival (OS) and recurrence-free survival (RFS).
(D) The difference of mRNA expression level of 23 m6A regulators was plotted in a
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boxplot. (E) the heatmap was drawn to display the relationship of 23 m6A
regulators and m6A clusters. (F–H) The different subtypes proportion of (F)
Singapore patient cohort subtype, (G) ACRG subtype and (H) hypoxiaCluster
showed specific connection with m6A clusters.

Supplementary Figure 3 | Further analysis on m6Ascore and validation of the
signature and nomogram. (A).Relationship between m6Ascore and tumor
microenvironment burden (TMB) was plotted after student-t test, and rPerson was -0.50
and CI95% [-0.58, -0.42]. (B) The waterfall plot depicted tumor somatic mutation with
lowm6Ascore. The numbers and bar plot on the right showed the mutation frequency
of each gene and the proportion of each variant type, respectively. (C) Kaplan–Meier
curves of TCGA cohort to be for validation. (D) The AUC in TCGA-STAD cohort
achieved 0.60 (53.66%-66.89%, 95%CI), 0.65 (57.03%-72.31%, 95%CI), and 0.61
(47.81%-73.75%, 95%CI) at 3, 5, and 7 years respectively. (E)Different proportions of
TCGA cohort subtype were influenced by high- and low-risk score. (F) An external
validation cohort of GSE28541 showed significant difference of m6A. (G) the AUC
Frontiers in Immunology | www.frontiersin.org 12
95% CI were 0.66 (57.27% - 74.76%, 95%CI), 0.64 (56.35% - 72.46%, 95%CI), and
0.64 (55.95% - 71.49%, 95%CI) at 3, 5, and 7 years respectively. (H) AUC for
riskscore, stage and nomogram attained 0.646, 0.704 and 0.727, respectively,
according to the m6Ascore. (I–K) Kaplan–Meier curves to show the OS difference
were depicted on training cohort, testing cohort, and the entire cohort (P < 0.0001,
log-rank test).

Supplementary Figure 4 | Decision tree. (A) Simulating clinical decision of
ACRG cohort subtypes. (B) Alluvial diagram was performed on hypoxiaCluster,
m6Ascore, ACRG subtypes, decision cluster result, and risk clusters to analyze
the mutual connection. (C) Kaplan–Meier curves for the decision cluster result
from the ACRG decision tree. (D) Simulating clinical decision of Singapore patient
cohort subtypes. (E) Alluvial diagram was performed on hypoxiaCluster,
m6Ascore, Singapore patient, decision cluster result, and risk clusters to analyze
the mutual connection. (F) Kaplan–Meier curves for decision cluster result from
Singapore patient decision tree.
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