
..

..

..

..

..

..

..

Automated lumen segmentation using

multi-frame convolutional neural networks

in intravascular ultrasound datasets

Paulo G.P. Ziemer1,2, Carlos A. Bulant2,3, José I. Orlando3, Gonzalo D. Maso Talou4,
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Aims Assessment of minimum lumen areas in intravascular ultrasound (IVUS) pullbacks is time-consuming and demands
adequately trained personnel. In this work, we introduce a novel and fully automated pipeline to segment the
lumen boundary in IVUS datasets.

...................................................................................................................................................................................................
Methods and
results

First, an automated gating is applied to select end-diastolic frames and bypass saw-tooth artefacts. Second, within a
machine learning (ML) environment, we automatically segment the lumen boundary using a multi-frame (MF) con-
volutional neural network (MFCNN). Finally, we use the theory of Gaussian processes (GPs) to regress the final
lumen boundary. The dataset consisted of 85 IVUS pullbacks (52 patients). The dataset was partitioned at the
pullback-level using 73 pullbacks for training (20 586 frames), 6 pullbacks for validation (1692 frames), and 6 for
testing (1692 frames). The degree of overlapping, between the ground truth and ML contours, median (interquar-
tile range, IQR) systematically increased from 0.896 (0.874–0.933) for MF1 to 0.925 (0.911–0.948) for MF11. The
median (IQR) of the distance error was also reduced from 3.83 (2.94–4.98)% for MF1 to 3.02 (2.25–3.95)% for
MF11-GP. The corresponding median (IQR) in the lumen area error remained between 5.49 (2.50–10.50)% for
MF1 and 5.12 (2.15–9.00)% for MF11-GP. The dispersion in the relative distance and area errors consistently
decreased as we increased the number of frames, and also when the GP regressor was coupled to the MFCNN
output.

...................................................................................................................................................................................................
Conclusion These results demonstrate that the proposed ML approach is suitable to effectively segment the lumen boundary

in IVUS scans, reducing the burden of costly and time-consuming manual delineation.
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Introduction

Intravascular ultrasound (IVUS) is the gold standard imaging modality
for the assessment of coronary artery disease.1 Intravascular

ultrasound provides a highly detailed view of the inner coronary struc-
ture, such as lumen, external elastic membrane (EEM), and plaque.

One of the most arduous tasks when analysing IVUS datasets is the
delineation (segmentation) of the lumen boundary and EEM, for
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which an expert has to manually outline them. This process is per-
formed either one frame at a time using transversal contouring or at
the dataset level by tracing a small number of longitudinal cutting
planes. Given the large intra- and inter-observer variability for draw-
ing tasks and its time-consuming nature, the translation of this pro-
cedure to online diagnosis pipelines is hindered and unreliable. Thus,
a systematic, reproducible and automatic computational technique
would enable a reliable translation for clinical usage.

Throughout the longitudinal view, a typical saw-tooth artefact is
usually observed. This structure hinders the longitudinal analysis of
the IVUS images. Therefore, a gating process is mandatory to ensure
a better depiction of the vessel’s inner structures. However, electro-
cardiogram (ECG)-synchronized images are not always available.
Thus, a consistent and accurate alternative is required to select the
end-diastolic frames automatically.2

In this article, we propose an automated workflow to segment
lumen boundaries in IVUS datasets using a machine learning (ML) ap-
proach. We focus on lumen segmentation due to its clinical relevance
in the definition of minimum lumen area (MLA) and percentage area
of stenosis. Both features are used for decision making, e.g. to decide
if a given lesion must be treated. The proposed pipeline includes an
ECG-free gating procedure, lumen boundary segmentation using a
multi-frame convolutional neural network (MFCNN) and further re-
finement of the lumen contour through a Gaussian Process (GP) re-
gression stage.

Methods

This section describes the proposed pipeline for the automated process-
ing of IVUS datasets (see Figure 1). Stages of the methodology are detailed
in the Supplementary material online, Files.

IVUS dataset and ground truth generation
All transversal images have the same resolution of 512� 512 pixels (256
� 256 in the intrinsic polar space), and all pullbacks were performed with
the same speed (0.5 mm/s). Figure 1A depicts a longitudinal slice of an
IVUS pullback from our dataset. Ground truth (GT) lumen contour was
manually delineated using four longitudinal slices (spaced by 45�) and
smoothed polylines (cubic splines) to define the lumen contour in the
transversal IVUS frames.

Automatic image processing and

segmentation
The automatic ML segmentation consists of three stages, namely: gating,
segmentation, and filtering. The automated ECG-free gating is performed
as reported in ref.,3 by locating the minimum of a motion signal con-
structed by a combination of inter-frame inverse correlation and intra-
frame intensity gradients. Figure 1B illustrates the motion signal and
Figure 1C depicts the outcome of an automatic end-diastolic gating. The
segmentation is performed by a U-Net convolutional neural network4

with image frames ordered in layers [stacked multi-frame (MF)], which
allows us to feed the network not only with a single IVUS frame but also
with its neighbouring frames. We term our network MFCNN (see
Figure 1D). As usual, the stack of frames is given in a system of coordinates
in which each point is determined by a distance from a centre point and
an angle from a reference direction (polar coordinates), and the output
(also in polar coordinates) is a binary segmentation, denoted by MFX,
being X the number of frames employed in the stack. We tested different

MFCNN scenarios: a 1-frame approach (no neighbours) and MF strat-
egies using 3- to 11-frames (all odd numbers in the range so neighbours
are placed symmetrically to the frame under analysis). Finally, a GP
regressor5 is connected to the MFCNN output to convert the binary
image into a lumen contour, filtering intrinsic noise from the high-
dimensional image domain and adding periodic consistency. We denote
the combined method simply as MFX-GP. The relationship between in-
put and output can be observed in Figure 1E.

The outcome of this process is the segmentation of the lumen bound-
ary, as observed in Figure 1F and G. An in-house software was developed
to implement the complete workflow illustrated in Figure 1.

Comparison metrics
The predictive performance of the MFCNN is assessed with the
intersection-over-union metric6 of the lumen area (see Figure 2A and B).
Here, we term this metric as degree of overlapping, since it measures the
degree of coincident pixels present in the automatic ML segmentation
and the GT segmentation mask (see Figure 2A and B).

With the GP regression algorithm, we move from image to contour
domain (see Figure 1E). The performance in the contour domain is
assessed through the mean and maximum distances between points
belonging to the MFCNN-GP and GT contours (see Figure 2A and B for
the definition of the metrics). In turn, the accuracy of the lumen area
obtained by MFCNN-GP is characterized through relative area error and
analyses of agreement with GT lumen area (see Figure 3A and B). Frames
containing side branches or where the lumen is partially out of the field of
view were excluded.

The reported statistical analysis includes mean, standard deviation, me-
dian and interquartile ranges (IQRs) for the different metrics. In all cases,
the lumen area refers to the lumen area of individual frames, noting that
the outcome of the ML algorithm is the segmentation of the central frame
within the stack of IVUS frames given as input.

Results

The dataset consisted of 85 IVUS pullbacks (52 patients). The dataset
was partitioned at the pullback-level using 73 pullbacks for training
(20586 frames), 6 pullbacks for validation (1692 frames), and 6 for
testing (1692 frames). The study population consisted of mostly male
patients 44 (84.6%) and the average age was 63.7 ± 10.2. The majority
of imaged vessels were left anterior descending 48 (56.5%), followed
by left circumflex artery 17 (20%), right coronary artery 14 (16.5%),
and other secondary branches such as diagonal, marginal or ramus
intermedius 6 (7%).

Table 1 reports the statistical analysis of the degree of overlapping,
relative distance error, maximum relative error, and relative area
error for different ML models (MFX, X = 1, 3, 5, 7, 9, 11, 11-GP). The
degree of overlapping median (IQR) systematically increased from
0.896 (0.874–0.933) for MF1 to 0.925 (0.911–0.948) for MF11. The
median (IQR) of the relative distance error was also reduced from
3.83 (2.94–4.98)% for MF1, to 3.02 (2.25–3.95)% for MF11-GP. The
median (IQR) of the maximum distance error was also reduced from
20.61 (10.53–22.75)% for MF1 to 16.77 (7.25–16.03)% for MF11-GP
The corresponding median (IQR) in the lumen area error remained
between 5.49 (2.50–10.50)% for MF1 and 5.12 (2.15–9.00)% for
MF11-GP. The dispersion in the relative distance and area errors
consistently decreased as we increased the number of frames, and
also when the GP regressor was coupled to the MFCNN output.
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Figure 2 shows the violin plots with the distribution of the degree

of overlapping and the relative distance error metrics (see Figure 2A
and B), for the whole sample (Figure 2D–F), and at per-pullback level
(Figure 2G). These results are shown for the different ML models (see
Figure 2C). The IQRs, median, mean and standard deviation values are
reported in Table 1. It is worth noting that increasing the number of
frames and the further addition of the GP stage widens the lower

part of the error distribution, while shrinks the upper part, improving
the results. By increasing the number of frames, the difference is stat-
istically significant (P < 0.05), as shown by the horizontal bars.

Figure 3 illustrates the relation between ML lumen area and GT
lumen area for the specific models MF1, MF11, and MF11-GP. The
metric employed in the assessment is described in Figure 3A and B.
Figure 3C displays the relative lumen area error, which is consistently

Figure 1 Workflow for the automatic processing of the lumen boundary in intravascular ultrasound (IVUS) datasets. (A) Raw IVUS dataset (longi-
tudinal view); (B) combined signal to describe the motion contained in the IVUS images and select the end-diastolic frames; (C) gated volume con-
structed from the selected end-diastolic frames; (D) multi-frame convolutional neural network (MFCNN) architecture; (E) mapping from image to
contour domain through Gaussian Process (GP) regression; (F) transversal and longitudinal lumen outline on top of the gated dataset; (G) final lumen
boundary represented in three-dimensional (3D) space as a surface.
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Figure 2 Segmentation error for the different machine learning (ML) models. (A) Lumen contour in Cartesian (top) and polar (bottom) coordinates
illustrating the mismatch between ground truth (GT) and ML segmentations; (B) definition of relevant metrics (relative distance error, maximum dis-
tance error, and degree of overlapping) to assess the performance of the ML segmentation; (C) notation for the GT and ML models; (D) violin plot of
the relative distance error for the entire test set; (E) violin plot of the maximum distance error for the entire test set; (F) violin plot of the degree of
overlapping for the entire test set; (G) violin plots showing the relative distance error metric at a per-pullback level. In all plots, horizontal bars indicate
scenarios with statistically different results.
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Figure 3 Lumen area error for the different machine learning (ML) models. (A) Lumen contour in Cartesian coordinates illustrating the definition
of ground truth (GT) lumen area and ML lumen area; (B) definition of the metrics to assess the error in the lumen area; (C) violin plot of the relative
lumen area error for different ML models (multi-frame—MF1, MF11, and MF11-Gaussian Process—GP) and the entire test dataset; (D) correlation
plot between the ML lumen area (MF11-GP) and the GT lumen area; (E) Bland–Altman plot for the signed lumen area error as a function of the GT
lumen area.
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reduced as we move towards a more complex model for the lumen
boundary segmentation. Particularly, Figure 3D and E present the cor-
relation and Bland–Altman plots between GT lumen area and ML
lumen area given by MF11-GP model.

Representative frames featuring the raw image, GT lumen bound-
ary (green contour) and ML lumen boundary (red contour) are dis-
played in Figure 4. These frames were randomly selected to illustrate
the segmentation capabilities for different morphological features of
the lumen contour in different pullbacks and for a wide range of rela-
tive area error magnitude. The relative area error is also
reported next to each row, ranging between 0.05 and 0.10 for these
frames.

Discussion

Automatic gating and segmentation are mandatory tools towards
improving the reliability in the assessment of IVUS datasets, and
reducing the intra- and inter-observer variability in the catheteriza-
tion lab.

In this work, several innovative ML segmentation strategies were
assessed using multiple frames. The proposed MFCNN approach
combined with GP regression resulted in an average distance error
with a median (IQR) of 3.02 (2.25–3.95)%. The median error (IQR) in
the lumen area was 5.12 (2.15–9.00)%. Adding information about
neighbouring frames surrounding the frame of interest consistently

....................................................................................................................................................................................................................

Table 1 Statistics for the different metrics considered for the different machine learning (ML) models (multi-frame—
MF1, MF3, MF5, MF7, MF9, MF11, MF11-Gaussian Process—GP)

Variable/scenario MF1 MF3 MF5 MF7 MF9 MF11 MF11-GP

Degree of overlapping (n = 1692)

Mean 0.896 0.913 0.922 0.921 0.924 0.925 NA

Standard deviation 0.547 0.523 0.452 0.423 0.389 0.383 NA

Min. value 0.446 0.414 0.439 0.477 0.613 0.514 NA

Max. value 0.977 0.980 0.982 0.980 0.982 0.980 NA

Median 0.909 0.926 0.933 0.931 0.932 0.933 NA

Start of Q2 0.874 0.899 0.910 0.907 0.909 0.911 NA

Start of Q4 0.933 0.943 0.949 0.948 0.950 0.948 NA

Relative distance error (n = 736)

Mean 0.0413 0.0381 0.0356 0.0355 0.0350 0.0347 0.0321

Standard deviation 0.0172 0.0161 0.0151 0.0147 0.0137 0.0134 0.0132

Min. value 0.0131 0.0114 0.0114 0.0107 0.0101 0.0117 0.00834

Max. value 0.151 0.116 0.106 0.114 0.107 0.108 0.102

Median 0.0383 0.0347 0.0326 0.0330 0.0330 0.0329 0.0302

Start of Q2 0.0294 0.0268 0.0256 0.0246 0.0247 0.0247 0.0225

Start of Q4 0.0498 0.0449 0.0418 0.0424 0.0426 0.0420 0.0395

Maximum distance error (n = 736)

Mean 0.206136 0.191395 0.183159 0.186508 0.186625 0.18236 0.167697

Standard deviation 0.167561 0.167939 0.169514 0.172888 0.168031 0.173319 0.179095

Min. value 0.050249 0.042731 0.03965 0.037524 0.032608 0.033117 0.020035

Max. value 1.080349 1.07283 1.081207 1.096364 1.096364 1.080349 1.067945

Median 0.148047 0.132288 0.126469 0.126746 0.131104 0.125005 0.103314

Start of Q2 0.105294 0.096762 0.085048 0.088773 0.090754 0.08798 0.072494

Start of Q4 0.227504 0.205034 0.190995 0.189249 0.198662 0.179076 0.160346

Relative area error (n = 736)

Mean 0.0765 0.0711 0.0719 0.0734 0.0695 0.0681 0.0643

Standard deviation 0.0721 0.0680 0.0646 0.0661 0.0606 0.0598 0.0559

Min. value 0.000113 0.000127 0.000321 0.000239 0.000157 0.00006 0.000011

Max. value 0.565 0.515 0.403 0.442 0.429 0.394 0.325

Median 0.0549 0.0533 0.0527 0.0534 0.0536 0.0534 0.0512

Start of Q2 0.0250 0.0233 0.0238 0.0251 0.0220 0.0224 0.0215

Start of Q4 0.105 0.0978 0.101 0.104 0.0988 0.0955 0.0900

Degree of overlapping: degree of coincident pixels between ML segmentation and ground truth (GT) images. Relative distance error: mean distance from ML lumen to GT
lumen. Maximum distance error: maximum distance from ML lumen to GT lumen. Relative area error: difference in the lumen area between ML lumen and GT lumen. Start of
Q2 and of Q4 define the interquartile range (IQR). NA: not applicable.
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Figure 4 Randomly selected frames showing a raw image, ground truth (GT) lumen boundary (green contour), and machine learning (ML) lumen
boundary (multi-frame—MF11-Gaussian process—GP, red contour).
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improved the segmentation performance. Moreover, the use of the
GP regressor improved the resulting segmentation by dealing with
high-frequency noise and enforcing contour continuity (periodicity)
of the lumen boundary, yielding anatomically coherent lumen
delineations.

Literature concerning automatic segmentation for IVUS datasets
using ML approaches is surprisingly scarce. Only a handful of methods
relying on standard ML approaches have been proposed,7–9 and
there was not consensus about the best approach to the problem. In
one, 109 IVUS frames were used to train a standard convolutional
neural network and, in another one, 77 sequences of five adjacent
IVUS frames, from a publicly available dataset, were used to train a
kernel learning algorithm. The predictive capabilities reported in this
work are in the range reported in these contributions. However, dir-
ect comparison with these techniques is not possible because the
datasets are not the same, and because of the lack of clarity in the def-
inition of the metrics employed in each case. Certainly, our method
naturally accounts for the longitudinal coherence through the MF
strategy, and deals with the noisy lumen definition in the image do-
main through the GP regressor. Hence, we strongly believe this ap-
proach of combining automatic gating, MF convolutional neural
network segmentation and GP regression provides a consistent and
reliable framework to account for the longitudinal and transversal co-
herence encountered in IVUS datasets.

In the catheterization laboratory, MLAs are commonly used to in-
form the clinical decision whether the lesion requires revasculariza-
tion particularly in the left main coronary artery.10 Currently, this
assessment is performed by visually inspecting the pullback and
selecting what by eye seems to be the smallest lumen area which
then by manual tracing a number is obtained representing the so-
called MLA. This approach assumes first that by visual inspection of
the pullback the right frame is selected (i.e. represents the smallest
lumen in that lesion) and second that the manual tracing of the lumen
is properly done. Unfortunately, there is a large variability in the se-
lection of the MLA frame and in the tracings of the lumen area as
well. More importantly, this is time-consuming and demands ad-
equately trained personnel. Machine learning solutions overcome all
these issues by providing a fast, accurate and precise assessment of
the lumen areas. Thereby, ML methods would make this procedure
more efficient and safer in a way since the error in the contour trac-
ing would be minimized dramatically.

Limitations
Machine learning methods need to be customized for each IVUS
catheter type and also need to account for manual vs. automatic pull-
back acquisition. The former would require new training of the algo-
rithm which may be a simpler task compared to the training of an ML
algorithm on a manually acquired pullback since the ML relies on a se-
lection of end-diastolic frames to speed up segmentation.

Conclusions

These results demonstrate that the proposed machine learning ap-
proach is suitable to effectively segment the lumen boundary in IVUS
scans, reducing the burden of costly and time-consuming manual
delineation.

Supplementary material

Supplementary material is available at European Heart Journal – Digital
Health online.
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