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Abstract: Hepatocellular carcinoma (HCC) is the most common primary cancer of the liver with high
morbidity and mortality rates worldwide. Since 1963, when alpha-fetoprotein (AFP) was discovered
as a first HCC serum biomarker, several other protein biomarkers have been identified and introduced
into clinical practice. However, insufficient specificity and sensitivity of these biomarkers dictate
the necessity of novel biomarker discovery. Remarkable advancements in integrated multiomics
technologies for the identification of gene expression and protein or metabolite distribution patterns
can facilitate rising to this challenge. Current multiomics technologies lead to the accumulation of a
huge amount of data, which requires clustering and finding correlations between various datasets
and developing predictive models for data filtering, pre-processing, and reducing dimensionality.
Artificial intelligence (AI) technologies have an enormous potential to overcome accelerated data
growth, complexity, and heterogeneity within and across data sources. Our review focuses on the
recent progress in integrative proteomic profiling strategies and their usage in combination with
machine learning and deep learning technologies for the discovery of novel biomarker candidates
for HCC early diagnosis and prognosis. We discuss conventional and promising proteomic biomark-
ers of HCC such as AFP, lens culinaris agglutinin (LCA)-reactive L3 glycoform of AFP (AFP-L3),
des-gamma-carboxyprothrombin (DCP), osteopontin (OPN), glypican-3 (GPC3), dickkopf-1 (DKK1),
midkine (MDK), and squamous cell carcinoma antigen (SCCA) and highlight their functional sig-
nificance including the involvement in cell signaling such as Wnt/β-catenin, PI3K/Akt, integrin
αvβ3/NF-κB/HIF-1α, JAK/STAT3 and MAPK/ERK-mediated pathways dysregulated in HCC. We
show that currently available computational platforms for big data analysis and AI technologies
can both enhance proteomic profiling and improve imaging techniques to enhance the translational
application of proteomics data into precision medicine.

Keywords: proteomics; artificial intelligence; biomarkers; hepatocellular carcinoma; translational
medicine

1. Introduction

Hepatocellular carcinoma (HCC) is a multifactorial heterogeneous disease and the
most common primary malignant tumor of the liver with increasing incidence rate world-
wide [1]. HCC is the fifth diagnosed cancer and the second most frequent cause of cancer-
related deaths in men and the ninth cancer case and the sixth cause of deaths from cancers
in women [2]. Liver cirrhosis is a main cause of HCC and together with inflammation
associated with hepatitis B virus (HBV) or hepatitis C virus (HCV) accompanies early stages
of HCC [3,4]. Consequently, diagnostic and prognostic biomarkers with high specificity
and sensitivity for HCC diagnosis at an early stage and differentiation between HCC and
non-HCC diseases are of crucial importance. Moreover, monitoring patient’s postoperative
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status and treatment efficacy along with evaluation of disease progression and metastasis
risk to predict cancer recurrence are needed [5].

HCC is typically diagnosed by liver biopsy or cross-sectional liver imaging techniques
such as contrast-enhanced computer tomography (CT) and magnetic resonance imaging
(MRI) [6]. These techniques are useful for tumor staging and detecting extrahepatic metas-
tases, which involve, mostly, lungs, lymph nodes, bone, adrenal glands, and peritoneum [7].
Usage imaging criteria according to Liver Imaging Reporting and Data System (LI-RADS)
and introduction of novel imaging technologies such as contrast-enhanced liver ultra-
sound can improve early diagnosis and differentiating HCC from non-HCC liver diseases
to increase surveillance of HCC patients [8,9]. However, some limitations in imaging
approaches such as time consuming and low sensitivity dictate necessity of developing
both novel screening methods and highly sensitive and specific biomarkers for HCC early
diagnosis and prognosis.

Currently available integrative genomic/epigenomic/transcriptomic/proteomic pro-
filing approaches and biomarker assay techniques provide multifaceted insight into
biomarker discovery. Comprehensive multiomics profiling enables differentiating early
and advanced HCCs as well as HCC from chronic liver diseases, even without knowledge
of the clinical symptoms [10]. Additionally, this allows assessing intra-tumoral phenotypic
heterogeneity and uncovering individual variability and alterations in unique gene expres-
sion patterns, which underlie tumor initiation and progression [11]. Multiomics-based
platforms are used for molecular classification of HCC subtypes characterized by different
driver genes to provide deeper insight into cancer pathogenesis and to evaluate the potency
of genomic, epigenomic, and proteomic signatures as HCC biomarkers [12].

The challenge in multiomics technologies is the accumulation of a huge amount
of very heterogeneous raw data stored in different data formats. A large amount of
complex heterogeneous data is referred to as big data, which are described by top “V’s”
characteristics such as value, volume, velocity, variety, veracity, and variability [13]. Big
data analytics in cancer implies the integration, analysis, interpretation, validation, and
quality control of large datasets from thousands of patients. This requires suitable and
promising open-source distributed data processing software platforms.

Significant progress has been achieved due to the application of artificial intelligence
(AI) technologies, which enhance healthcare data collection and interpretation. This is
provided by computer-based algorithms for data analysis and by the construction of pre-
dictive models for improving image recognition and representation in HCC diagnosis and
prognosis [14]. Additionally, AI arises as a powerful tool in the analysis and integration of
complex and heterogeneous datasets obtained due to multiomics profiling for disease stag-
ing, prediction of disease recurrence, monitoring treatment response, and the identification
of diagnostic, prognostic, and predictive biomarkers [15].

Proteomics is a large-scale investigation and analysis of proteins aimed to iden-
tify and characterizing proteomes as a complete protein composition of a cell or tis-
sue [16]. Proteomics implies protein distribution profiling and protein expression/activity
patterning and protein-protein interaction identification. Current integrated proteomic
profiling technologies use hybrid platforms based on multi-dimensional (MD) separa-
tions and three-dimensional (3D) liquid chromatography (LC) and have provided pow-
erful solutions [17]. Currently available proteomic data from MS-based proteomic ex-
periments are integrated in public repositories such as ProteomeXchange Consortium
(http://www.proteomexchange.org, accessed on 28 December 2020) [18], Proteomics Iden-
tification (PRIDE) (http://www.ebi.ac.uk/pride, accessed on 28 December 2020) [19],
Human Plasma Peptide Atlas (http://www.peptideatlas.org, accessed on 28 December
2020) [20]. These repositories provide efficient and reliable dissemination, comparative
analysis, interpretation, and extraction of proteomic data.

Translational medicine implies, on the one hand, application of new knowledge into
clinical practice to increase efficacy of a disease diagnosis and therapeutic strategies and,
on the other hand, to facilitate generation of new hypotheses from clinical observations.

http://www.proteomexchange.org
http://www.ebi.ac.uk/pride
http://www.peptideatlas.org
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The aim of translational medicine is combination of benchside, bedside and community
in the enhancement of patient’s care decision making [21]. Integrated data from diverse
omics technologies enable the large-scale identification of novel molecular biomarkers
for translating them into clinical practice. Thus, translating knowledge on a biomarker
structure, functions, and expression into clinical practice should enable HCC early diagno-
sis, prognosis, and assessment of treatment efficacy. However, limited success has been
achieved in translating cancer biomarker proteomic profiling into clinical practice.

Our review focuses on the recent advancements in the integrative proteomic profiling
strategies and emerging AI technologies for discovery of novel biomarkers for HCC early
diagnosis and prognosis. We discuss proteomic signatures of HCC, starting from conven-
tional and promising biomarkers and alterations in cell signaling pathways involved in
hepatocarcinogenesis. This is followed by consideration of the latest findings in exploring
novel proteomic biomarker candidates with emphasis on their translational application.

2. Proteomic Profiling Technologies and Big Data

The identification, standardization, and validation of effective tumor biomarkers can
dramatically influence the cancer diagnosis, prognosis, and anti-cancer drug development.
In the past, the focus of cancer biomarker research has been on the usage of a single experi-
mental technique such as immunoprecipitation analysis or ELISA. Currently, biomarker
candidates are being identified with the use of integrated technologies including genomics,
epigenomics, transcriptomics, proteomics, systems biology, bioinformatics, and molecular
imaging approaches (Figure 1) [22].

Biomedicines 2021, 9, x FOR PEER REVIEW 4 of 26 
 

prognosis, and assessment of treatment efficacy. However, limited success has been 

achieved in translating cancer biomarker proteomic profiling into clinical practice. 

Our review focuses on the recent advancements in the integrative proteomic profiling 
strategies and emerging AI technologies for discovery of novel biomarkers for HCC early di-

agnosis and prognosis. We discuss proteomic signatures of HCC, starting from conventional 
and promising biomarkers and alterations in cell signaling pathways involved in hepatocar-

cinogenesis. This is followed by consideration of the latest findings in exploring novel proteo-

mic biomarker candidates with emphasis on their translational application. 

2. Proteomic Profiling Technologies and Big Data 
The identification, standardization, and validation of effective tumor biomarkers can 

dramatically influence the cancer diagnosis, prognosis, and anti-cancer drug develop-

ment. In the past, the focus of cancer biomarker research has been on the usage of a single 
experimental technique such as immunoprecipitation analysis or ELISA. Currently, bi-

omarker candidates are being identified with the use of integrated technologies including 
genomics, epigenomics, transcriptomics, proteomics, systems biology, bioinformatics, 

and molecular imaging approaches (Figure 1) [22]. 

 

Figure 1. Multiomics biomarker discovery for translational medicine. Integrated high-throughput 

proteomics, genomics, epigenomics, transcriptomics, bioinformatics approaches along with systems 

biology, structural biology, artificial intelligence techniques allow identification of a candidate biomarker 

panel to discover new biomarkers for translation into practical medicine. 

The process of candidate biomarker identification typically involves analysis of tis-

sue samples and blood serum or plasma to reveal gene expression or epigenome patterns 
and protein or metabolite distribution profiles. This strategy is based on comparative 

study of tissue or blood samples to identify genes, proteins, and metabolites changed in 
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proteomics, genomics, epigenomics, transcriptomics, bioinformatics approaches along with sys-
tems biology, structural biology, artificial intelligence techniques allow identification of a candidate
biomarker panel to discover new biomarkers for translation into practical medicine.
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The process of candidate biomarker identification typically involves analysis of tissue
samples and blood serum or plasma to reveal gene expression or epigenome patterns and
protein or metabolite distribution profiles. This strategy is based on comparative study of
tissue or blood samples to identify genes, proteins, and metabolites changed in patients
as compared to those in healthy donors. In this manner, a panel of biomarkers can be
constructed with sensitivity and specificity necessary for disease detection and monitoring
to be ultimately applied in clinical practice. Simultaneous analysis of a biomarker panel and
quantitative verification and validation of candidate biomarkers represent an obligatory
and rate-limiting process, which can be enhanced by AI approaches and neural network
algorithms for the identification of serological liver marker profiles [23].

Correct sample preparation is a critical step in biomarker profiling. This is especially
important if a biomarker candidate presents in a sample at an extremely low concentration
(at ng/mL level). Standard multi-step sample preparation can cause protein degradation
and sample loss, which lead to result variations. Consequently, sample fractionation, pro-
tein enrichment by immuno-affinity depletion, and scalable automated proteomic pipeline
are usually employed to decrease the sample complexity and to increase the assay sensi-
tivity, specificity, high-throughput capability, and multiplicity [24]. Integrated proteomic
sample preparation technologies for the fast and deep plasma proteome profiling at native
pH values such as mixed-mode ion exchange-based method has been developed [25].
Additionally, simple and integrated spintip-based proteomics technology (SISPROT) for
sample preparation in combination with spatial proteome profiling using laser capture
microdissection (LCM) technique has been proposed to enable precise dissection of specific
cells in tumor sample at a single cell resolution. For example, LCM-SISPROT technology
based on immunochemistry has been used to identify HCC cell population specific spatial
proteome [26]. Moreover, single cell resolution multiomics technologies provide valuable
opportunity to measure various biomolecules at their low concentrations [27,28].

Proteomic profiling enables simultaneous analysis of thousands of proteins and identi-
fication of hundreds of biomarkers in a single sample and their large-scale characterization,
quantification, and validation. Thus, proteomic profiling is a useful tool for the evaluation
of changes in unique tumor-specific gene expression patterns, which lead to shifts in a
protein amount and distribution in tissues and body fluids. Changes in gene expression
signatures and protein distribution patterns have been used to assess tumor stage, tumor
recurrence, post-operative outcomes, and anti-cancer treatment response [29]. Moreover,
such a strategy has proved to be effective for determining intratumoral heterogeneity and
finding correlations between gene expression/protein concentration and disease progres-
sion levels.

Currently available proteomic profiling technologies involve 2-dimensional polyacry-
lamide gel electrophoresis (2-DE) and liquid chromatography (LC) combined with protein
and peptide identification and analysis using various tandem mass-spectrometry (MS)
types. High-throughput integrated proteomic approaches include liquid chromatography-
tandem mass-spectrometry (LC-MS/MS), liquid chromatography-selected reaction moni-
toring mass spectrometry (LC-SRM MS), matrix-assisted laser-desorption ionization time of
flight (MALDI-TOF) or surface-enhanced laser desorption/ionization time of flight (SELDI-
TOF) MS as well as protein chip and microarray technologies [30–32]. For example, a
combination of 2-DE and LC-MS has been used in targeted proteomics to discover biomark-
ers for early HCC diagnosis and distinguishing high-risk chronic hepatitis C virus infected
patients from HCC patients [33]. Subsequent quantitative verification and validation of
candidate biomarkers was performed by SRM-MS.

Capability of current MS/MS and LC-MS methods has been greatly enhanced by
the advancements in quantitative proteomic analysis by mass spectrometry using non-
radioactive isotope labeling to determine differences in the abundance of proteins and
peptides from different samples/treatments in a single experiment. These include stable
isotope labeling by amino acids in cell culture (SILAC), isotope coded affinity tag (ICAT),
and isobaric tags for relative and absolute quantitation (iTRAQ) technologies [34]. These
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approaches allow studying quantitative changes in a whole proteome and gene expression
level as well as functions of a certain protein biomarker (Figure 2).
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Figure 2. Workflow of biomarker identification, quantification, validation, and verification using
proteomic profiling technologies. Tissue and blood samples are first fractionated and enriched
using laser capture microdissection spintip-based proteomics (LCM-SISPROT) and immuno-affinity
depletion. Then, biomarker candidates are identified using two-dimensional gel electrophoresis
(2-DE) and liquid chromatography (LC) in combination with various types of mass-spectrometry
(MS) including selected reaction monitoring (SRM), matrix-assisted laser-desorption ionization time
of flight (MALDI-TOF) and surface-enhanced laser desorption/ionization time of flight (SELDI-TOF)
MS. Large-scale integrated proteomic profiling leads to the accumulation of a huge amount of data
(big data), which are collected and stored in special databases for further processing using stable
isotope labeling by amino acids in cell culture (SILAC), isotope coded affinity tag (ICAT), and isobaric
tags for relative and absolute quantitation (iTRAQ) and other technologies.

Liquid biopsies in combination with LC-MS/MS-based proteomics arise as a powerful
high-sensitive and non-invasive platform for the identification of biomarkers at extremely
low concentrations in a complex mixture [35]. Unlike conventional tissue biopsy, liquid
biopsy is a non-invasive approach, which allows repeated analysis to enable monitor-
ing tumor progression, metastasis, and recurrence, as well as treatment response. This
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enables identification and accounting novel biomarker candidates circulating in the blood-
stream with sensitivity, specificity, positive, and negative predictive values reaching up to
100% [36].

The latest achievements in big multiomics data have led to the creation of various
platforms for extracting, summarizing, and interpreting knowledge for their translating
into precision medicine [37]. Collection and representation of proteomic data can be
made in public repositories such as Global Proteome Machine (GPM) database created for
proteomic information obtained from tandem MS (https://www.thegpm.org/, accessed on
28 December 2020) [38] and The Peptide Atlas SRM Experiment Library (PASSEL) created
for storage of data obtained in SRM experiments and supported by Institute of Systems
Biology, Seattle, WA, USA (http://www.peptideatlas.org/passel, accessed on 28 December
2020) [39].

Current multiomics (genomics, epigenomics, transcriptomics, metabolomics, and pro-
teomics) technologies lead to the accumulation of a huge amount of data, which requires
clustering and finding correlations between various datasets and developing predictive
models with the use of bioinformatics, image analysis, and computational data mining
methods [40]. Big data characteristics are: a huge amount of data (volume), speed of
their collection, processing and analysis (velocity), dataset complexity and heterogeneity
(variety), quality and reliability as well as predictive value of data (veracity), data con-
sistency over the time (variability), and utility to patients and clinicians (value). These
characteristics require reducing data dimensionality, filtering and pre-processing, which
can be achieved due to emerging AI technologies.

3. Artificial Intelligence in HCC Imaging and Biomarker Exploring

AI is a promising approach to overcome accelerated data growth, complexity, and
heterogeneity within and across data sources. AI provides an automated integration of
multiomics data and prediction of whole-organism level phenotype from molecular-level
genotype through the identification of driver mutations in genes and changes in protein
expression, which underlie disease initiation and progression [41].

Machine learning (ML) is a fundamental concept of AI, which uses computer algo-
rithms to learn from an experience and to build models for prediction or decision making
with the use of sample data known as training data. Several studies have been carried out
exploiting ML technologies for uncovering biomarker signatures, which allow assessment
of cancer outcomes and recurrence. For example, a recent study used The Cancer Genome
Atlas (TCGA), AMC and Inserm databases, and ML algorithms to identify gene signatures
that could predict early HCC recurrence [42]. The constructed ML-based model showed
74.19% accuracy of the prediction, and the selected mutant genes were verified. Addition-
ally, probe electrospray ionization (PESI) MS in combination with AI have been employed
to assess the overall diagnostic accuracy of two algorithms, support vector machine (SVM)
and random forest (RF), in HCC detection [43]. This approach showed bench-top size,
minimal sample preparation, and short working time as well as high accuracy, specificity,
and sensitivity in HCC diagnosis. The overall diagnostic accuracy exceeded 94% for the
both AI algorithms.

A part of ML methods is deep learning (DL) based on artificial neuronal networks
(ANNs), which have layered structure with interconnected nodes and an activation func-
tion among them (Figure 3). DL refers to data representation learning with multiple levels
of abstraction through multiple processing layers in the network to construct computational
models for object recognition. ANNs are trained using back-propagation algorithm and
utilizing test samples to improve data representation. DL algorithms allow discovering
intricate structure in large datasets to indicate changes in internal parameters of a machine
that are used to compute the representation in each layer from the representation in the pre-
vious layer [44]. DL has been proposed as a tool for improving feature extraction from raw
data and classification to increase performance for high-level feature representation [45].

https://www.thegpm.org/
http://www.peptideatlas.org/passel
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Figure 3. Principles of artificial intelligence technologies. (A) Machine learning is usage of computer
algorithms to learn from an experience and to build predictive models based on training data. (B)
Deep learning is data representation learning through artificial neuronal networks and multiple
layers for feature extraction and classification to object recognition and decision making. Multiomics
profiling and imaging data can be used as inputs, while identification of driver mutations, drug
targets, plasma biomarkers, and image processing are outputs for hepatocellular carcinoma diagnosis,
prognosis, and prediction.

In recent years, DL algorithms and models have been, mostly, applied to cancer image-
based diagnosis, prognosis, and prediction [46,47]. For example, convolutional neural
networks (CNNs) have allowed interpretation of HCC images in the identification of liver
masses and recognizing specific features of pathological lesions [48]. Another example is
joint multiple fully connected CNNs, which have shown superior performance in HCC
nuclei grading [49]. Additionally, DL models combined with imaging techniques helped
in differentiating HCC patients who can benefit from interventional treatment. Indeed,
trained and validated residual CNN models in combination with CT imaging showed
high performance for prediction of post-operative HCC patients’ response to trans-arterial
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chemoembolization (TACE) [50]. Furthermore, visualization of 3D CNN analysis and
DL-based radiomics strategy, which utilized quantitative analysis of pre-operative contrast-
enhanced ultrasound (CEUS) cines have enabled accurate prediction of HCC patients’
response to TACE [51].

Combination of DL models with three-phase contrast-enhanced CT showed accuracy,
which was similar to four-phase CT in differentiating HCC from focal liver lesions [52].
The achieved performance was 83.3%, 81.1%, and 85.6% accuracy for models A, B, and C
suggesting that multiphase CT protocol can be optimized by removal of pre-contrast phase
to reduce radiation dose. ML-based radiomics combined with quantitative imaging features
extracted from triphasic CT scans can enhance HCC diagnosis in cirrhotic patients with
indeterminate liver nodules [53]. Additionally, multiphase CT radiomics in combination
with deep DL models have been shown to improve prediction accuracy in HCC early
recurrence after surgically removed tumor [54].

In recent years, some progress has been achieved in the application of DL algorithms,
not only to the image-based cancer detection and treatment prediction, but also to the
integration of multiomics data. This allows novel biomarker discovery through the iden-
tification of driver mutations and dysregulated signaling pathways for tumor molecular
classification and drug response prediction. For example, 360 HCC patients’ data have
been exploited to construct DL-based survival-sensitive model using sequencing of RNA
(RNA-Seq), miRNA (miRNA-Seq), and methylation data from TCGA [55]. This model
allowed patient classification into two optimal subtypes significantly differed by survival
rate. A more aggressive subtype was associated with frequent inactivation mutations in
the TP53 gene, along with overexpression of stemness markers (KRT19 and EPCAM) and
tumor marker BIRC5, and activated Wnt and PKB/Akt signaling pathways. Additionally,
DL algorithms based on conventional regression approach have been used to construct
predictive model of HCC recurrence after liver transplantation in 563 patients. This multi-
center study showed that tumor diameter, age, and levels of protein biomarkers such as
alpha-fetoprotein (AFP) and prothrombin induced by vitamin K absence or antagonist-II
(PIVKA-II) are the largest weighted parameters in the AI-based Model of Recurrence after
Liver Transplantation (MoRAL-AI) [56].

Additionally, evaluation of serum AFP level and albumin-bilirubin (ALBI) grade,
along with liver cirrhosis, tumor margin, and radiomics signatures have increased ML-
based contrast-enhanced CT performance accuracy in the prediction of HCC recurrence
rate after curative tumor resection [57]. Furthermore, DL algorithms based on multiomics
data from TCGA database were used for exploring prognostic indicators for 320 HCC
patients [58]. Genetic alterations such as the FAT3 and RYR2 mutations were identi-
fied in addition to sinusoidal capillarization, prominent nucleoli and karyotheca, the nu-
cleus/cytoplasm ratio, and infiltrating inflammatory cells as the main underlying features
of tumor risk score in HCC.

All the above-mentioned examples illustrate that AI algorithms can enhance both
imaging techniques and multiomics data-based large-scale biomarker identification, quan-
tification, and validation for HCC diagnosis and prognosis. However, there is still limited
success in the implementation of AI technologies in uncovering genotype-phenotype
relationships in cancer. The reasons are high heterogeneity of multiomics (genomics, epige-
nomics, transcriptomics, metabolomics, and proteomics) data and insufficiency of available
datasets to accurately train models.

4. Conventional Biomarkers of Hepatocellular Carcinoma

Currently, recommended biomarkers for combined testing for HCC includes AFP,
Lens culinaris agglutinin (LCA)-reactive L3 glycoform of AFP (AFP-L3), and des-gamma-
carboxyprothrombin (DCP). In addition to HCC diagnosis, they are useful as predictive
biomarkers for monitoring the tumor recurrence and treatment responsiveness. Among
them, AFP remains a primary molecular biomarker for HCC diagnosis and prognosis
recognized as a “golden standard” among serum tumor markers [59,60].
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4.1. Alpha-Fetoprotein and Its Glycoform

In 1956, Swedish researchers Bergstrand and Czar, using paper electrophoresis,
found a new human protein fraction in the fetal blood serum with the mobility of alpha-
globulins [61]. Later, in 1963, Russian scientists Garry Abelev and Yuri Tatarinov reported
on immunochemical discovery of a new antigen specific for chemically induced mouse
hepatoma and human primary liver cancer, respectively [62,63]. Afterwards, this oncofe-
tal antigen was designated as alpha-fetoprotein and has become recognized as the first
embryo-specific and cancer-associated biomarker (for more details, see history of AFP
discovery in [64]).

AFP has an ability of dual regulation of cell proliferation and survival depending on
cell type and AFP concentration, along with immunosuppressive activity and capability of
binding and transportation of different hydrophobic ligands [65–68]. It has been shown
that structure/function relationship exists between growth factors, cell adhesion proteins,
and AFP, and that the effects of AFP may be provided through the mitogen-activated
protein kinase (MAPK)-signaling pathway [69–71]. Additionally, an ability of cytoplasmic
AFP to co-localize and interact with caspase-3 and to block TNF-alpha-related apoptosis-
inducing ligand (TRAIL) and all-trans retinoic acid (ATRA)-mediated apoptosis has been
observed [72]. Cytoplasmic AFP can also function as a regulator of phosphatidyl-inositol-
3-kinase (PI3K)/Akt signaling in human hepatoma cell lines [73]. Mir-1236 miRNAs
cause inhibition of the PI3K/Akt-mediated pathway and down-regulate AFP expression
followed by the inhibition of AFP-stimulated cell proliferation, migration, invasion, and
vasculogenic mimicry [74]. This was accompanied by phosphatase and tensin homolog
(PTEN) accumulation and the inhibition of malignant phenotype of hepatoma cells. AFP
co-localized and interacted with PTEN inducing, thereby, CXCR4 chemokine receptor
expression by activating Akt/mTOR signaling pathway and stimulating migration of
hepatoma cells (Figure 4) [75].

AFP is the only biomarker which has passed through all five phases of biomarker
identification and validation procedure [76]. AFP is widely used in clinics as an inde-
pendent factor for HCC late stage, early recurrence, and poor prognosis [77,78]. Serum
concentration of AFP alone or in combination with ultrasound showed good accuracy
in HCC diagnosis, and sensitivity and specificity of the test with a threshold of AFP at
400 ng/mL were better than those at a threshold of 200 ng/mL [79]. Additionally, usage of
standard deviation of AFP and rate of AFP elevation as well as patient-specific risk factors
such as age, platelet count, and smoking status has been reported to improve prognostic
accuracy of the test as compared to usage of only AFP level [80]. Level of AFP >400 µg/mL
index tumor size >5 cm and vascular invasion have been shown to strongly associate with
extrahepatic metastases in HCC, especially when combined with into multi-parametric
metastasis prediction criterion [81].

However, because of low sensitivity and specificity, diagnostic value of the test for
AFP is not high and utility for HCC surveillance is controversial. Sensitivity and specificity
of AFP have been reported to vary from 39% to 64% and from 76% to 91%, respectively [82].
Besides, approximately 40% of early HCC patients and 15–20% of advanced HCC patients
have been shown to be AFP-negative, i.e., serum AFP level is less than 20 ng/mL [83].
Nevertheless, test for AFP improves performance of diagnosis and served as a valuable
surveillance test for HCC associated with HCV-caused cirrhosis with normal level of
alanine aminotransferase (ALT) [84].

AFP-L3 is a glycoprotein, which contains α-1,6-fucose attached to N-acetylglucosamine
at its reducing terminus, while AFP-L3 aberrant fucosylation is used in identifying HCV,
chronic hepatitis B (CHB), and liver cirrhosis (LC) patients with high risk of HCC develop-
ment. Based on data of aberrant protein fucosylation during HCC development, analysis
of relationships between fucosylation index, tumor genesis, and progression in HBV-
associated HCC was performed for blood serum proteomic profiling using MALDI-TOF
mass spectrometry [85]. When combined with serum AFP detection (AFP > 20 ng/mL),
the sensitivity/specificity of aberrant fucosylation test for HCC improved to 78/88%,
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85/88%, and 89/91% in all serum samples, HBV-associated chronic liver diseases and
HBV-associated cirrhosis, respectively.

A meta-analysis of fifteen studies with 4465 patients showed that high pre-treatment
level of AFP-L3 implies poor overall survival (OS) and poor prognosis in HCC patients
with low AFP level [86]. Additionally, an increase in the percentage of AFP-L3 over the
total AFP level (>10%) is highly specific for small-sized HCC. However, since serum levels
of these proteins are independent of each other, combined measurement of the two or
three biomarkers can increase their sensitivity and accuracy for HCC diagnosis. High or
increasing serum AFP and AFP-L3 levels have been shown to be indicative of large tumor
size, advanced stage, and extra-hepatic metastasis in HCC [87].

Biomedicines 2021, 9, x FOR PEER REVIEW 10 of 26 
 

and human primary liver cancer, respectively [62,63]. Afterwards, this oncofetal antigen was 

designated as alpha-fetoprotein and has become recognized as the first embryo-specific and 

cancer-associated biomarker (for more details, see history of AFP discovery in [64]). 
AFP has an ability of dual regulation of cell proliferation and survival depending on 

cell type and AFP concentration, along with immunosuppressive activity and capability 
of binding and transportation of different hydrophobic ligands [65–68]. It has been shown 

that structure/function relationship exists between growth factors, cell adhesion proteins, 

and AFP, and that the effects of AFP may be provided through the mitogen-activated pro-
tein kinase (MAPK)-signaling pathway [69–71]. Additionally, an ability of cytoplasmic 

AFP to co-localize and interact with caspase-3 and to block TNF-alpha-related apoptosis-
inducing ligand (TRAIL) and all-trans retinoic acid (ATRA)-mediated apoptosis has been 

observed [72]. Cytoplasmic AFP can also function as a regulator of phosphatidyl-inositol-

3-kinase (PI3K)/Akt signaling in human hepatoma cell lines [73]. Mir-1236 miRNAs cause 
inhibition of the PI3K/Akt-mediated pathway and down-regulate AFP expression fol-

lowed by the inhibition of AFP-stimulated cell proliferation, migration, invasion, and vas-
culogenic mimicry [74]. This was accompanied by phosphatase and tensin homolog 

(PTEN) accumulation and the inhibition of malignant phenotype of hepatoma cells. AFP 

co-localized and interacted with PTEN inducing, thereby, CXCR4 chemokine receptor ex-
pression by activating Akt/mTOR signaling pathway and stimulating migration of hepa-

toma cells (Figure 4) [75]. 

 

Figure 4. Cell signaling pathways involved in hepatocellular carcinoma progression. Proteomic biomarkers act through 

MAPK, Wnt/β-catenin, PI3K-Akt, JAK/STAT, and TGF-β/SMAD signaling pathways for cell proliferation, survival, mi-

gration and invasion, induction of epithelial-to-mesenchymal transition, angio- and vasculogenesis, inflammation, and 

tumor microenvironment remodeling. Regulation of a biomarker expression by non-coding RNAs and changes in gene 

expression signatures are shown. 

Figure 4. Cell signaling pathways involved in hepatocellular carcinoma progression. Proteomic biomarkers act through
MAPK, Wnt/β-catenin, PI3K-Akt, JAK/STAT, and TGF-β/SMAD signaling pathways for cell proliferation, survival,
migration and invasion, induction of epithelial-to-mesenchymal transition, angio- and vasculogenesis, inflammation, and
tumor microenvironment remodeling. Regulation of a biomarker expression by non-coding RNAs and changes in gene
expression signatures are shown.

4.2. Des-Gamma-Carboxyprothrombin

DCP is also known as PIVKA-II and an abnormal prothrombin without carboxylation
of γ-carbon atom in several glutamic acid residues in γ-carboxyglutamic (Gla) domain
located at its N-terminal region. Consequently, DCP does not have coagulation activity [88].
Instead, it exhibits growth factor activity and directly stimulates DNA synthesis and
HCC cell proliferation in both autocrine and paracrine manner. This is achieved through
Janus kinase-1 (JAK1)-signal transducer and activator of transcription-3 (STAT3) signal-
ing pathway by binding to c-Met cell surface receptor. Additionally, DCP can promote
vascular endothelial cell proliferation and migration through MAPK-mediated signaling
pathway [89] as confirmed by immunohistochemical analysis, which reveals the existence
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of correlation between DCP expression and HCC tumor size and hyper-vascularization [90].
In cultured HCC cells, DCP stimulates HCC growth and metastasis through activation
of MMP2 and MMP-9 due to binding to c-Met receptor and causing its phosphorylation
followed by epidermal growth factor receptor (EGFR) activation with subsequent ERK1/2,
MEK1/2, and c-Raf (MAPK signaling) stimulation [91].

Serum level of DCP has been reported to correlate with HCC aggressiveness and poor
prognosis [92]. Elevated level of DCP in HCC correlates with deficiency in carboxylation of
coagulation factors at their γ-glutamyl residues leading to prolonged activated partial pro-
thrombin time (APPT). This can be achieved due to down-regulation of vitamin K epoxide
reductase complex subunit 1 (VKORC1) through stimulation of p-ERK and suppression of
mTOR signaling [93].

Currently, DCP is considered as a phase II biomarker, which is more specific than
total AFP level in detecting HCC and more reliable than AFP as a prognostic tool for HCC
recurrence and patient survival after hepatectomy, liver transplantation, radio-frequency
ablation, and TACE treatment [94]. Additionally, in randomized trials for hepatitis C
antiviral long-term treatment against cirrhosis, DCP has shown sensitivity and specificity
comparable to those of AFP [95].

Simultaneous assessment of gender, age, AFP, AFP-L3, and DCP, a panel denoted
as GALAD score, in the same serum samples of 685 HCC patients showed that 55.8%
were AFP-positive, 34.1% were AFP-L3-positive, and 54.2% were DCP-positive and the
number of biomarkers present clearly reflected the extent of HCC and patient outcomes
decreasing after treatment [96]. Moreover, simultaneous multi-center measurement of
AFP, AFP-L3, and PIVKA-II in newly diagnosed HCC patients showed that AFP has the
best diagnostic performance as a single biomarker for HCC. However, diagnostic value
of AFP has improved when combined with PIVKA-II but adding AFP-L3 did not enable
distinguishing between HCC and non-HCC liver cirrhosis [97]. Nevertheless, another
study showed that combined testing for all three biomarkers improves diagnostic accuracy
as compared to each biomarker alone [98]. The sensitivity and specificity of the combination
of three biomarkers were 87.0% and 60.1%, respectively, in total HCC cases, and 75.7% and
60.1%, respectively, in early HCC cases.

Additionally, DCP concentration in the blood serum can increase in patients with
vitamin K deficiency and patients who have obstructive jaundice. In these conditions, DCP
designated as NX-DCP has an increased amount of Gla residues. NX-DCP is differed from
DCP itself by the expression level and biological properties. Since NX-DCP can be produced
in HCC tissues, it has been proposed as a useful biomarker for clinical evaluation of the
tumor severity and duration of survival among HCC patients [99]. The reason for DCP and
NX-DCP increase may be hypoxia caused by tumor growth that impairs vitamin K uptake
to induce DCP expression. Higher NX-DCP expression is associated with significantly low
histological grade and portal vein invasion than lower NX-DCP level [100]. Additionally,
DCP-positive (≥40 mAU/L), NX-DCP-positive ((≥90 mAU/L), and DCP/NX-DCP ratio
≥1.5 cases have been shown to closely relate to malignant properties of HCC.

5. Promising Proteomic Biomarkers of HCC

Promising proteomic biomarkers such as glypican-3 (GPC3), osteopontin (OPN), mid-
kine (MDK), dickkopf-1 (DKK-1), alpha-L-fucosidase, squamous cell carcinoma antigen-1
(SCCA-1), Golgi protein-73 (GOLPH2), carcinoembryonic antigen (CEA), vascular endothe-
lial growth factor (VEGF), and matrix metalloproteinases-2 and -9 (MMP-2 and MMP-9)
along with genomic driver mutations, miRNAs, lncRNAs, circulating tumor DNA (ctDNA)
and circulating exosomes are presently being extensively studied for HCC diagnosis and
prognosis, and treatment monitoring [101–109]. However, most of the newly discovered
biomarkers are still complementary to AFP since the diagnostic accuracy increases when
they are used in combination with AFP.
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5.1. Osteopontin

In 2012, comparative proteomic profiling with the use of mass spectrometry of highly
fractionated plasma from patients with cirrhosis and HCC identified osteopontin (OPN)
as a new promising biomarker for the early diagnosis of HCC [110]. Additionally, gene
expression profiling showed that OPN is one of the leading proteins associated with HCC
growth and metastasis [111]. Serum level of OPN is significantly increased even in tumors
with a small size, less than 2 cm. OPN expression is dramatically increased in HCC tissues
with metastasis correlating with poor OS and recurrence-free survival (RFS) [112].

Osteopontin is a very acidic chemokine-like secreted phosphoglycoprotein found in
extracellular matrix (ECM). It is normally expressed in variety of cells and tissues including
fibroblasts, osteoblasts, osteocytes, dendritic cells, macrophages, myoblasts, endothelial
cells, brain, kidney, and placental cells, where it performs diverse functions [113]. Its
normal physiological roles include the involvement in bone mineralization, regulation
of immune response, vascular remodeling, wound repair, and control of developmental
processes. OPN has been shown to enhance adhesion, migration, invasion, and survival of
cells and their attachment to ECM [114].

OPN has been implicated in tumor progression and metastasis through binding of
OPN to integrins and CD44 receptors to initiate signaling cascades [115,116]. OPN binds
to its receptor integrin αvβ3 to induce autophagy via sustaining FoxO3a stability and
to promote cancer stem cell-like phenotype through NF-κB/HIF-1α signaling [117,118].
Analysis of mutational profiles using TCGA revealed that OPN enhances glycolysis in HCC
through activating integrin αvβ3/NF-κB/HIF-1α signaling [119]. Additionally, OPN can
stimulate epithelial-to-mesenchymal transition (EMT) through Twist-mediated activation of
PI3K/Akt signaling [120]. C-C chemokine receptor 1 (CCR1) can be up-regulated by OPN
via activation of PI3K/Akt/ HIF-1α signaling [121]. In tumor-associated macrophages
(TAMs), OPN promotes programmed death ligand 1 (PD-L1) expression via activation of
colony-stimulating factor 1 (CSF1) and its receptor, CSF1R-mediated signaling to facilitate
migration and alternative activation of macrophages and to cause immunosuppressive
effect [122].

Currently, OPN belongs to phase III biomarkers, which has accuracy and diagnostic
value comparable to AFP in the diagnosis of HCC at a cut-off value of 280 ng/mL [123,124].
Despite the diagnostic value of OPN being comparable to that of AFP, sensitivity of
OPN can be better than that of AFP in HCC diagnosis. Sensitivity, specificity, and the
overall accuracy of the test for OPN can reach up to 100%, 98%, and 96% respectively. The
combination of AFP and OPN significantly improves HCC diagnostic performance as
compared to AFP alone and elevates both sensitivity and specificity, especially in the early
diagnosis of HCC as shown by several systemic meta-analyses [125,126].

Additionally, testing for OPN enables differentiating early-stage HCC from hepatitis
B virus-related HCC, hepatitis C virus-related HCC, and liver cirrhosis. The plasma
level of OPN in cirrhotic patients has been shown to be higher than that in non-cirrhotic
HCV patients. Statistically significant differences in plasma levels of OPN between HCC
(401 ± 72 ng/mL) group and non-HCC group are observed when the level of OPN in the
control group was 35 ± 6 ng/mL [124]. Combination of OPN with vascular cell adhesion
molecule 1 (VSAM-1) has been reported to increase, while OPN and IL-6 to correlate with
radiological response after trans-catheter arterial embolization (TAE) [127].

A proteomics approach exploited to analyze the secretory releasing proteome of HBV-
associated HCC has showed that among 1365 proteins identified in serum-free conditioned
media, levels of AFP, OPN, pregnancy-specific beta-1-glycoprotein-9 (PSG-9) and matrix
metalloproteinase-1 (MMP-1), members of transforming growth factor-β (TGF-β)-signaling
pathway were the most significantly increased in HCC patients [128]. Mass spectrometry
profiling showed an increase in diagnostic performance of the test for HCC when OPN was
used in combination with latent-transforming growth factor-β-binding protein-2 (LTBP2).
Both OPN and LTBP2 were significantly elevated in HCC patients compared to those with
other chronic liver diseases and healthy donors [129]. Meanwhile, LTBP1 alone is also
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remarkably overexpressed in HCC patients and can show a better diagnostic performance
in distinguishing HCC from HVB or cirrhosis as compared to AFP especially in the early
staged disease [130].

5.2. Glypican-3

Glypican-3 is a heparan sulfate proteoglycan bound to a cell membrane through
glycosyl-phosphatidylinositol anchor and first discovered in 2003 to be proposed as a
diagnostic and prognostic biomarker for HCC [131]. GPC3 is an oncofetal protein, which
can be regulated in the manner similar to that of AFP and can stimulate HCC growth
through canonical Wnt/β-catenin-mediated signaling pathway [132,133].

The elevated expression of GPC3 in 283 HCC patients and 445 chronic liver diseases
patients as compared to healthy donors has been shown, but there was no difference in GPC
levels between HCC and cirrhosis patients [134]. Another study, which enrolled 157 consec-
utive patients with newly diagnosed HCC to assess diagnostic value of GPC3 as compared
to AFP showed that performance of test for glypican-3 in HCC is not satisfactory [135].
Thus, GPC cannot be considered as a promising biomarker for HCC diagnosis and progno-
sis when used alone. Nevertheless, an introduction of emerging high-throughput imaging
techniques and radiomics signature have been proposed as an effective non-invasive and
individualized tool to predict GPC3-positive HCC cases correlated with histopathologic
grade of the disease [136]. Additionally, several studies showed that GPC3 could be com-
plementary to AFP in increasing diagnostic accuracy of the test for HCC. For example,
combination of AFP with GPC3 improved sensitivity of the test for HCC up to 82% or 94%,
depending on HCC type [131,137].

Down-regulation of GPC3 with the use of specific siRNAs, miRNAs, or anti-GPC3
antibodies results in a decrease in cancer cell migration, metastasis, and invasion. These
data indicate that GPC3 might be a target for anticancer therapy. For example, silencing of
GPC3 gene transcription using miR-4510 has been shown to inhibit Ras/Raf/MEK.ERK-
mediated signaling and tumor growth [138]. Mostly, miRNAs such as miR-219-5p, miR-
485-5P, and miR-194 inhibit HCC progression by targeting GPC3 and inhibition of Wnt/β-
catenin signaling [139,140]. In addition to anti-GPC3 antibodies, their conjugation to toxins
(immunotoxins) or chimeric antigen receptor T cell (CAR-T) as promising therapeutic
strategies are currently being developed for translating into clinical practice [141,142].

5.3. Midkine

Midkine (MDK) is a 13-kDA small heparin-binding growth factor detected in the
majority of HCC tissues and rarely expressed in surrounding non-tumor tissues [143].
Elevated MDK level has been observed both in the tumor tissue and in the blood sam-
ples of HCC patients. Moreover, patients with MDK-elevated HCC have higher amount
of circulating tumor cells (CTCs) and significantly higher recurrence rate and shorter
RFS [144]. MDK plays an important role in resistance of CTCs to anoikis through acti-
vation of PI3K/Akt/NF-kB/TrkB signaling. MDK can be involved in HCC progression
and metastasis via ERK/JNK/p38MAPK-mediated signaling promoted by long lncRNA
ZFAS1 [145]. The ZFAS1 expression is elevated in HCC but can be suppressed by miR-624.

The sensitivity of MDK for HCC diagnosis is higher than that of AFP even at the early
stage of HCC; however, both biomarkers have almost similar specificities, as shown in
many studies [146,147]. For example, Zhu et al. showed that AFP and MDK demonstrated
specificities of 83.9% and 86.3%, respectively, and the serum level of MDK significantly
decreases after curative tumor resection and increases again if tumor relapse occurred [146].

The sensitivity of MDK at a threshold 0.387 ng/mL for HCC diagnosis has been
higher than that of AFP at cutoffs of 20, 88.5, and 200 ng/mL, reaching 93.3% in patients
with AFP level less than 20 ng/mL [148]. Moreover, in most AFP-negative HCC patients,
MDK is overexpressed, and the usage of a combined test for AFP and MDK significantly
increases the number of detected HCC cases [149]. A systemic review and meta-analysis
study showed that MDK is more accurate in diagnosing HCC, especially in the early-stage
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and AFP-negative HCC, while both MDK and AFP demonstrated excellent diagnostic
performance for hepatitis virus-related HCC [150]. However, meta-analysis data on diag-
nostic accuracy of MDK is inconsistent due to the limitations in study design and sample
sizes [151].

5.4. Dickkopf-1

Dickkopf protein (DKK-1) is a secreted glycoprotein and inducer of Spemann’s orga-
nizer in Xenopus and can act as an inhibitor of Wnt/β-catenin signaling [152]. Its expression
is dysregulated in many malignant tumor types including HCC, multiple myeloma, col-
orectal adenocarcinoma, etc. [153–155]. The elevated expression of both DKK1 and DKK3
in carcinoma tissues of HCC patients as compared to non-carcinoma tissues have been
reported [156]. The multi-variant analysis showed significantly longer survival of HCC
patients with low DKK1 expression as compared to those with overexpressed DKK1 [157].

Initially, DKK1 was recognized to inhibit Wnt/β-catenin pathway; however, studies
show that it has more complex cellular and biological functions [158]. DKK1 has been
shown to cause inflammation and to promote cell migration and invasion in HCC through
TGF-β1-mediated remodeling of tumor microenvironment. It exerts oncogenic effects in
HepG2/C3C cell lines by up-regulating MYC, CCND1, hTERT, and MDM2 oncogenes and
down-regulating tumor suppressor genes such as RB1, associated with mutation in exon
3 of the CTNNB1 gene and affect the canonical Wnt/β-catenin signaling pathway [159].

DKK1 is HCC biomarker complementary to AFP in the identification of patients with
AFP-negative HCC and distinguishing HCC from non-malignant chronic liver diseases as
shown in a large-scale multicenter study [160]. Data obtained using 401 blood samples from
208 HCC patients and 193 liver cirrhosis patients showed that sensitivity and specificity of
the tests for AFP were 62% and 90.2%, for PIVKA-II were 51% and 91.2%, for OPN 46.2%
and 80.3%, and for DKK1 50% and 80.8%, respectively [161]. However, combined usage
of AFP and DKK1 can improve the diagnostic performance for these biomarkers to 78.4%
sensitivity and 72.5% specificity.

A meta-analysis of diagnostic accuracy of DKK1 and AFP alone and in combination
with each other showed that combined testing for DKK1 and AFP results in the highest
accuracy, while DKK-1 alone shows a moderate accuracy in HCC diagnosis [162]. Moreover,
combination of three biomarkers including AFP, DKK1, and OPN in a panel showed a
better diagnostic performance than AFP alone [163]. Importantly, this combination showed
a great improvement in HCC diagnosis at the early stage of the disease. Additionally, the
combination of OPN/DKK1 with AFP has been shown to serve as a promising prognostic
marker for long-term survival of HCC patients after hepatectomy [164].

5.5. Squamous Cell Carcinoma Antigen

Initially, squamous cell carcinoma antigen (SCCA) was discovered as 390 amino acid-
containing member of ovalbumin serine protease inhibitor (serpin) family and a tumor
marker of squamous cell carcinoma [165]. Afterwards, its two isoforms, SCCA-1 and SCCA-
2, encoded by the almost identical tandemly arranged genes, which are not restricted to
the squamous epithelium, but can be found in other tissues were reported [166,167]. These
serpins may coordinately regulate cysteine and serine proteinase activity in both normal
and transformed cells to stimulate cell proliferation and EMT.

Overexpression of SCCA-1 known as SERPINB3 has been found in aggressive HCC
with poor prognosis and early tumor recurrence [168]. Mechanisms of tumor growth
induced by SERPINB3 include the inhibition of intra-tumor infiltration by natural killer
cells, up-regulation of Myc oncogene, and participation in Ras-mediated signaling [169].
Moreover, significant correlation between SCCA-1 and TGF-β expression at both mRNA
and protein levels was observed. TGF-β-initiated signaling associated with Wnt target
gene expression was also identified as one of the important features of the most aggressive
HCCs [170]. Microarray studies showed transcriptional overexpression of SMAD4, the
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intracellular effector of TGF-β and bone morphogenesis protein (BMP) signaling pathways,
in a subset of HCCs [171].

Additionally, SERPINB3 can protect cancer cells from oxidative stress through the up-
regulation of HIF-1α transcription and HIF-2α stabilization to favor tumor growth [172,173].
In chronic liver damage, this serpin can lead to HCC promotion through the inhibition of
apoptosis, EMT induction, and increase in cell proliferation and invasiveness [174].

Immune complex composed of SCCA and immunoglobulin M (IgM), alone or in
combination with AFP, have been proposed as serological HCC biomarkers, which signifi-
cantly increase sensitivity of HCC diagnosis [175]. Additionally, a significant difference in
levels of SCCA-IgM and alpha-L-fucosidase has been observed between HCC and cirrhotic
patients suggesting their potential roles as a diagnostic tool to differentiate these two
pathologies [176].

Several meta-analyses have been performed to estimate SCCA and SCCA-IgM ac-
curacy for HCC diagnosis. For example, a meta-analysis based on 12 studies showed
moderate accuracy of SCCA and SCCA-IgM in HCC diagnosis; however, their combination
with AFP is considered as the best diagnostic option [177–179]. Simultaneous and com-
bined measurements of AFP, DCP, and SCCA-IgM have been recommended to increase
sensitivity, specificity, and diagnostic accuracy of the test for HCC and to make reliable
prognosis [180]. Data on HCC conventional and promising biomarkers are summarized in
Table 1.

Table 1. Conventional and Promising Circulating Proteomic Biomarkers of HCC.

Biomarker Chemical Nature Functions Signaling Pathways References

AFP and
AFL-L3

Embryo-specific and
tumor-associated
glycoprotein

Dual regulation of cell
proliferation and survival

MAPK- an
PI3K/Akt/mTOR
signaling

[69–73]

DCP

Abnormal prothrombin
without carboxylation of
γ-carbon atom in Glu
residues in
γ-carboxyglutamic (Gla)
domain

Growth factor activity and DNA
synthesis

JAK/STAT3,
Raf/MEK1/2/ERK1/2
(MAPK) signaling

[89–91]

OPN
Acidic chemokine-like
secreted ECM-specific
phosphoglycoprotein

Cell adhesion, migration, invasion,
and survival,
epithelial-to-mesenchymal
transition

Integrin
αvβ3/NF-κB/HIF-1α and
PI3K/Akt/NF-κB and
CD44-mediated signaling

[117–121]

GPC3 Heparan sulfate
proteoglycan

Cell proliferation and tumor
growth

Co-receptor of canonical
Wnt/β-catenin signaling;
Ras/Raf/MEK/ERK
signaling

[138–140]

MDK Small heparin-binding
growth factor

HCC progression and metastasis,
resistance of CTCs to anoikis

PI3K/Akt/NF-kB/TrkB
and
ERK/JNK/p38-mediated
signaling

[143–145]

DKK1 Secreted glycoprotein
TME remodeling, promotion of
inflammation, cell migration and
invasion

TGF-β1-mediated pathway [158,159]

SCCA and
SCCA-IgM

Member of serine protease
inhibitor (serpin) family

Inhibition of apoptosis and
intra-tumor infiltration by NK
cells; induction of
epithelial-to-mesenchymal
transition, cell proliferation and
invasion

c-Myc and
Ras/TGF-β/SMAD4
signaling

[169–171]

Notes: AFP, alpha-fetoprotein; AFP-L3, lens culinaris agglutinin (LCA)-reactive L3 glycoform of AFP; DCP, des-gamma-
carboxyprothrombin; OPN, osteopontin; GCP3, glypican-3; MDK, midkine; DKK1, dickkopf-1 protein; SCCA, quamous cell carcinoma
antigen; IgM, immunoglobulin M.
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6. Screening for Novel HCC Proteomic Biomarker Candidates

Proteomic profiling technologies are currently being extensively utilized to reveal dif-
ferentially expressed proteins (DEPs) involved in cell signaling, metabolic reprogramming,
and ubiquitin-proteasomal degradation during hepatocarcinogenesis. Phosphoproteome
and glycoproteome analyses also contribute to candidate biomarker discovery for HCC
early diagnosis and prognosis. For example, in a recent study, high performance multiple
reaction monitoring mass spectrometry (MRM-MS) was utilized in detecting early-stage
HCC within at-risk populations to allow identification of 385 serum HCC biomarker
candidates. A multimarker panel consisting of 28 peptides has been created that best dif-
ferentiated HCC from controls [181]. This multimarker panel showed significantly greater
sensitivity (81.1% vs. 26.8%) and lower specificity (84.8% vs. 98.8%) in detecting HCC cases
as compared to AFP.

Another recent global quantitative proteomic analysis of HCC, liver cirrhosis, and
non-tumor tissues revealed 33 proteins up-regulated in HCC tissue [182]. Among them,
aldo-keto reductase family 1 member B10 (AKR1B10) and cathepsin A (CTSA) in combina-
tion with AFP showed the greatest area under the curve (AUC). Additionally, MS-based
plasma proteomic atlas containing 53 and 25 molecular biomarkers for HCC and cholan-
giocarcinoma, respectively, has been constructed to differentiate tumor stage and to assess
post-operative prognosis [35]. Six and two HCC biomarkers were abundant in phase II
and phase III HCC, respectively, including alpha-2-HS-glycoprotein and apolipoprotein
CIII (both ≥0.2%), Ig λ-chain VI region NEWM (≥1.0%), and serum amyloid P component
(≥0.3%), which positively correlated with the best OS and RFS.

Further, immunochemistry-based SISPROT proteomic technology allowed accurate
and cell-type-specific proteome profiling for the identification of 6660 and 6052 proteins in
cancer cells and cancer-associated fibroblasts (CAFs), respectively, in 5 mm2 and 12 µm
thickness HCC tissues [26]. Among these proteins, cell-type specific ligands and receptors
and new potential communications between cancer cells and CAFs have been revealed
by bioinformatics analysis. HCC-derived CAFs have been shown to promote cancer cell
proliferation and EMT through the overexpression of tissue transglutaminase-2 (TG2) and
IL6/IL6R/STAT3 signaling [183].

Analysis of proteomic data from Clinical Proteomic Tumor Analysis Consortium
(CPTAC) and validated in The Cancer Proteome Atlas (TCPA) for 159 patients diagnosed
with HBV-related HCC revealed 422 DEPs [184]. Among them were survival-associated
proteins including proliferating cell nuclear antigen (PCNA), MutS homolog 6 (MSH6),
cyclin-dependent kinase 1 (CDK1), and asparagine synthetase (ASNS) (Figure 5). Addi-
tionally, using high pH fractionation and LC-MS/MS analysis, more than 6000 DEPs were
identified in IFN-α and INF-λ-stimulated HepG2 cell line under HBV transfection condi-
tion [185]. Among these proteins were those involved in interferon signaling, metabolic
processes, antiviral response, ubiquitin-proteasomal degradation, and vesicle-mediated
transportation. LC-MS/MS approach has been also utilized to reveal diverse ubiquitination
patterns of HCC cell lines with different metastatic potential [186].

A recent study performed using proteomic analysis, chromatin immune precipitation
assay, and small guide RNA-mediated loss-of-function experiments showed up-regulation
of 77 proteins in BIX-01294-treated HCC cells [187]. They include stress-responsive Ras-
related GTPase C (RRAGC), which is suppressed by euchromatin histone methyltransferase
II (EHMT2) catalyzing dimethylation of histone H3 protein. EHMT2 regulated RRAP
expression in ROS generation-dependent manner and has been suggested as a key regulator
of stress-responsive genes in HCC.

Among phosphoproteome signatures, receptor tyrosine kinases (RTKs) have attracted
a special attention of researchers due to their key regulatory roles in cell proliferation and
migration. Integration of proteomics and phosphoproteomics datasets enabled identifica-
tion of about 176 thousand unique peptide sequences covering about 11,000 protein groups
and 32,000 phosphosites [188]. These data were stored and are available in ProteomeX-
change repository (http://www.proteomexchange.org, accessed on 28 December 2020). A

http://www.proteomexchange.org
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recent study showed that overexpression of Paraspeckle protein 1 (PSPC1) induces focal
adhesion formation and facilitates cell motility via activation of RTK insulin-like growth fac-
tor 1 receptor (IGF1R)-mediated signaling [189]. PSPC1 overexpression in tumors has been
suggested as a potential biomarker of target therapy with IGF1R inhibitor for improvement
of HCC therapy.
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Figure 5. Representation of clinical application of hepatocellular carcinoma (HCC) proteomic
biomarkers. Alpha-fetoprotein (AFP) is on the top as the only biomarker, which has passed phase
V of clinical trials to be recommended for clinical usage. AFP has low sensitivity from 39 to 64%
and specificity from 76 to 91%. Combination of AFP with other biomarkers and imaging techniques
significantly improves performance of HCC detection. Gender, age, AFP, AFP-L3, and des-gamma-
carboxyprothrombin (GALAD) score is also recommended for clinical usage and has 87% sensitivity
and 60% specificity. Promising biomarkers have positions between recommended and candidate
biomarkers. Novel HCC biomarker candidates identified by proteomic profiling technologies are
needed further verification and validation and are located on the base of the triangle.

Large-scale glycoproteome profiling and quantification of more than 4700 intact N-
glycopeptides from 20 HCC and 20 paired paracancer samples enabled distinguishing
low and high AFP level HCCs. Several sialylated but not core fucosylated tri-antennary
glycans have been found to be uniquely increased in HCC with low AFP level, while
many core fucosylated bi-antennary or hybrid glycans as well as bisecting glycans were
uniquely increased in high AFP level tumors [190]. Differential quantitation analysis
revealed that five N-glycopeptides at sites N184 and N241 of serum haptoglobin bearing a
monofucosylated triantennary glycan were significantly elevated during the progression
from non-alcoholic steatohepatitis (NASH) and cirrhosis to HCC. When combined with
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AFP, the sensitivity for early NASH-related HCC was improved from 59% (AFP alone) to
73% while maintaining a specificity of 70%. These N-glycopeptide biomarkers enabled
distinguishing 58% of AFP-negative HCC patients from cirrhotic patients [191].

A recent study attempted to identify DEPs in gender-depending hepatocarcinogenesis
using Hras12V transgenic mice. In total, 5733 proteins and 1344 DEPs, the common and
gender-disparate items, have been identified [192]. Serum amyloid A2 (SAA2), alpha-1-
acid-glycoprotein 2 (Orm2), and serine protease inhibitor superfamily member SERPINA1E
have been proposed as biomarkers of gender-dependent carcinogenesis in HCC.

7. Conclusions

High morbidity and mortality rates of HCC dictate necessity of early and accurate
diagnosis of the disease. Over the last decade, the revolution in AI technologies has enor-
mously enhanced HCC diagnosis and prognosis based on the usage of various imaging
techniques, especially in combination with HCC molecular biomarkers. However, insuffi-
cient specificity and sensitivity of conventional and promising proteomic biomarkers is a
major challenge in HCC detection. This is especially important taking into account that
HCC is highly heterogeneous and multifactorial tumor. The early diagnosis and prognosis
and development of reliable tools for the assessment of therapeutic strategies can increase
survival rate for HCC patients. Integrative multiomics (proteomics, genomics, epige-
nomics, transcriptomics, metabolomics, and peptidomics) approaches are being currently
developed for discovery novel biomarkers to improve sensitivity and specificity of the
tests for HCC early and accurate diagnosis. Current high-throughput proteomic profiling
technologies in combination with AI algorithms (machine learning and deep learning) and
predictive models allow exploring novel HCC biomarker candidates to increase sensitivity
and specificity of HCC detection and prediction of treatment response for translating into
clinical practice. Big data integration provides the best strategy for patients’ health care
decision making and gives significant perspectives in HCC precision medicine. However,
there has been achieved only limited success in the implementation of AI methods and
computational platforms for analysis and interpretation of genomic/proteomic data in
cancer detection. Further investigations are needed in this field.
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